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Modeling amyloids in bacteria
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Abstract

An increasing number of proteins are being shown to assemble into amyloid structures, self-seeding fibrillar
aggregates that may lead to pathological states or play essential biological functions in organisms. Bacterial cell
factories have raised as privileged model systems to understand the mechanisms behind amyloid assembly and the
cellular fitness cost associated to the formation of these aggregates. In the near future, these bacterial systems will
allow implementing high-throughput screening approaches to identify effective modulators of amyloid
aggregation.
The aggregation of proteins into amyloid structures is the
triggering event on the onset of a growing number of
human disorders, from neurodegenerative diseases as
Alzheimer, Parkinson, Huntington or transmissible spongi-
form encephalopathies to non-neurodegenerative systemic
and localized amyloidosis, as senile systemic amyloidosis or
type II diabetes [1]. In addition, it is now clear that different
organisms, from virus to humans, exploit the special archi-
tecture of amyloids for functional purposes, such as cellular
invasion or hormone storage [2]. Therefore, protein aggre-
gation has emerged from a neglected area of protein
science to a central issue in biology and biomedicine.
Many biochemical pathways, from DNA replication to

protein degradation, have been modeled first in bacteria.
However, despite it has been long recognized that
heterologous protein expression in bacterial cell factories
results often in the formation of insoluble deposits com-
posed essentially by the target protein [3,4], only recently
some groups have dared to exploit this well-characterized
phenomena to model amyloid formation [5,6]. This delay
resulted mainly from the fact that these aggregates, known
as inclusion bodies (IBs), were traditionally considered
unstructured protein particles only useful to obtain
denatured protein for refolding purposes. This old frame-
work has changed into a new scenario where intracellular
aggregation in bacteria is providing important clues on
the molecular determinants of amyloid formation and its
remediation [7,8].
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A first inflection in the field came along with early
reports describing a selective molecular structure inside
IBs. It has been found a substantial similitude between
the properties of these bacterial aggregates and the
pathological fibrils linked to amyloidosis. On one side,
IBs generally bind thioflavin T and Congo Red, the
typical amyloid dyes, and display seeding ability in the
fibrillar assembly of homologous monomers [9,10]. On
the other side, low resolution techniques, such as infra-
red spectroscopy, circular dichroism or X-ray difracc-
tion, denote the presence of signals corresponding to
tightly packed intermolecular β-sheets, similar to those
in amyloid fibrils [9-11]. Importantly, these findings
come from independent studies using completely different
protein models, not related in sequence or structure, thus
suggesting that the amyloid signature might be a generic
feature of bacterial aggregates. Furthermore, high reso-
lution approaches, such as hydrogen/deuterium exchange
by NMR or solid-state NMR have been used to study dif-
ferent bacterial IBs, defining their molecular structure at
the residue level. These analysis prove that, at least for
amyloidogenic proteins, bacterial IBs and fibrils share the
same amyloid core. However, they also show that part of
the polypeptide sequence or, alternatively, a fraction of the
molecules remain disordered and/or in native-like confor-
mations inside these aggregates [11,12]. Contrary to the
previous assumption that IBs were totally inactive, the
presence of native-like structure endorse IBs with a
certain degree of biological activity [13-17]. This observa-
tion has opened the door to the use of bacteria as small
factories to produce promising functional materials and
catalysts, boosting the investigation of the structural and
functional properties of IBs [18-23].
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It is now clear that they are the oligomeric assemblies
populating the fibrillation pathway and not the mature
fibrils that exert the main cytotoxic effect in con-
formational disorders [2]. The structures of these oligo-
meric intermediates states have been the subject of debate
for many years. The similarity between IBs and amyloids
has arisen a critical question: do IBs exert a cytotoxic
effect analogous to that recurrently observed for fibrils?
The answer is: Yes, the addition of purified bacterial
IBs to neuronal cultured cells produces a loss in cell
viability equal to that promoted by the same concen-
tration of amyloid material [24,25]. Bacterial IBs con-
tain small heat shock proteins (sHSPs), which are
highly homologous to those found in the aggregates
of the brains of patients suffering different neuronal
pathologies. It has been proposed that in the brain
these sHSPs might break down amyloid fibril struc-
ture, resulting in the accumulation of toxic oligo-
meric species. The observation that the neurotoxicity
of IBs correlates with the amount of oligomeric as-
semblies and chaperones in these aggregates and the
possibility to identify at the residue level the deter-
minants of this effect [25] are expected to provide
new molecular insights on the structures of the dele-
terious species in amyloid assemblies. Thus, protein
overexpression in bacterial cell factories, by mimick-
ing the conditions in the cell under stress, will likely
allow to address aspects of amyloid biology that are
otherwise technically impossible to study in more
complex contexts.
Prion proteins are a particularly interesting and dan-

gerous type of amyloids, since their aggregated states
have self-perpetuating ability and thus become infec-
tious. Het-s, from the fungus Podospora anserina, was
the first prion protein whose bacterial IBs were shown
to display amyloid-like properties [12,26]. The differen-
tial trait of these aggregates emerged when they were
transfected into prion-free fungal strains, as they pro-
moted prionic conversion at levels comparable to those
induced by homologous amyloid fibrils [12]. This result
has been later corroborated in the case of the yeast prion
Sup35. The IBs of this protein have been used to induce
the prion phenotype in prion-free yeast strains, with the
novel evidence that the infectivity rate can be easily
modulated by tuning the environmental conditions
during the formation of IBs [27]. When instead of
being expressed intracellularly, this protein is directed
to the secretory pathway, the aggregates are formed
in the cell surface of bacteria, but they are also able
to template the conformational prionic change [28].
These recent observations provide perhaps the best
confirmation that the IBs molecular structure highly
resembles to the fine architecture of amyloid fibrils,
in such a way that even the infectious properties of
amyloids, which depend on very specific conformational
properties, are conserved in the two type of aggre-
gates. This evidence bears important implications for
the use of bacteria to model amyloids, since prion-like
behaviour is currently receiving preferential attention
in the field, due to the growing realisation that
protein-based infection may be behind frequently oc-
curring neurodegenerative disorders such Alzheimer’s
and Parkinson’s diseases [29].
The increasing medical and economic impact of

aggregation-linked diseases in our society has fueled
the development of methods to identify chemical
compounds that can interfere with amyloidogenic
pathways, having thus therapeutic potential to treat or
prevent these disorders. Generally, these assays, used
by many biopharma companies, are cumbersome, lack
reproducibility, use expensive synthetic peptides and
are performed in physiologically non-relevant con-
texts. Several labs are focusing their efforts towards
bacterial systems to overcome these limitations. In
this context, fluorescent tag reporters of aggregation
have been employed in bacteria to measure in a
straightforward manner the amyloid assembly rate, as
the final fluorescence of the aggregate is the result of
a kinetic competition between folding and aggregation
[15,30,31]. Any compound that enhances or inhibits
one of these two competing reactions can be easily
detected by spectrofluorometry. This property has
been exploited recently both in living bacteria and
in vitro, using purified IBs, to implement high-
throughput, 96-well-plate based, assays able to
identify and characterize novel amyloid modulators in
large compound libraries [32,33]. As stated above, the
amyloid nature of bacterial aggregates can be assessed
using dyes such as Thioflavin-S (Th-S), whose spec-
troscopic properties change upon binding to amyloid
structures. This characteristic, together with the ability
of the dye to enter intact cells can be used to detect
in vivo the formation of amyloid structures inside
bacteria. The application of flow cytometry to detect
(Th-S) fluorescence has been shown to be a fast,
robust, quantitative, non-invasive method to screen
for the presence of in vivo intracellular amyloid-like
aggregates in bacteria as well as for monitoring the
effect of amyloid inhibitors in intact cells, skipping
the need for a genetically encoded reporter [34].
Although still in an early stage, it is clear that, apart
from its academic interest, modeling amyloid forma-
tion in bacteria might render important economic
revenues. The above examples illustrate how bacterial
cell factories can be easily adapted to develop screening
tools for amyloid aggregation inhibitors that will
outperform the conventional screening procedures
used by the industry.
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