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Abstract

Background: Cold-adapted enzymes are proteins produced by psychrophilic organisms that display a high
catalytic efficiency at extremely low temperatures. Chitin consists of the insoluble homopolysaccharide B-(1, 4)-
linked N-acetylglucosamine, which is the second most abundant biopolymer found in nature. Chitinases (EC
3.2.1.14) play an important role in chitin recycling in nature. Biodegradation of chitin by the action of cold-adapted
chitinases offers significant advantages in industrial applications such as the treatment of chitin-rich waste at low
temperatures, the biocontrol of phytopathogens in cold environments and the biocontrol of microbial spoilage of
refrigerated food.

Results: A gene encoding a cold-adapted chitinase (CHI Il) from Glaciozyma antarctica PI12 was isolated using
Rapid Amplification of cDNA Ends (RACE) and RT-PCR techniques. The isolated gene was successfully expressed in
the Pichia pastoris expression system. Analysis of the nucleotide sequence revealed the presence of an open
reading frame of 1,215 bp, which encodes a 404 amino acid protein. The recombinant chitinase was secreted into
the medium when induced with 1% methanol in BMMY medium at 25°C. The purified recombinant chitinase
exhibited two bands, corresponding to the non-glycosylated and glycosylated proteins, by SDS-PAGE with
molecular masses of approximately 39 and 50 kDa, respectively. The enzyme displayed an acidic pH characteristic
with an optimum pH at 4.0 and an optimum temperature at 15°C. The enzyme was stable between pH 3.0-4.5 and
was able to retain its activity from 5 to 25°C. The presence of K*, Mn?* and Co®* ions increased the enzyme
activity up to 20%. Analysis of the insoluble substrates showed that the purified recombinant chitinase had a
strong affinity towards colloidal chitin and little effect on glycol chitosan. CHI Il recombinant chitinase exhibited
higher Vimax and Kes; values toward colloidal chitin than other substrates at low temperatures.

Conclusion: By taking advantage of its high activity at low temperatures and its acidic pH optimum, this
recombinant chitinase will be valuable in various biotechnological applications under low temperature and acidic
pH conditions.
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Background

Extremophiles are microorganisms that can grow and
thrive in extreme environments. Proteins, especially
enzymes, isolated from the extremophiles are of particu-
lar interest because of their ability to function effectively
and remain stable near extreme conditions [1]. Psychro-
philes are organisms that live at very low temperatures
and can be found in several perennially cold environ-
ments, such as the Antarctic. The survival of the psy-
chrophilic organisms at low temperatures (cold-
adaptation) are due to several factors such as tempera-
ture sensing, reduced membrane fluidity, stabilised inhi-
bitory nucleic acid structures, the formation of
intracellular crystalline ice and cellular responses that
counteract solute uptake rates and lowered enzyme
reactions [2]. Recently, psychrophilic enzymes are
becoming more attractive in industrial applications,
partly because of ongoing efforts to decrease energy
consumption. At low temperatures, the kinetic energy of
reacting molecules is too low to allow reactions to
occur. Psychrophilic or cold-adapted enzymes compen-
sate in this situation by having a highly flexible protein
structure and conformation, thereby increasing their
thermolability and a high catalytic efficiency at a low
energy cost [2,3]. To date, many cold-adapted enzymes
have been successfully isolated and their expression stu-
dies have also been conducted. This includes the glyco-
syl hydrolase group of enzymes, such as lipases [4], a-
Amylases [5] and chitinases [6,7].

Chitin is the most abundant biopolymer found in nat-
ure after cellulose and attracted special interest as a reu-
sable material [6,8]. This polysaccharide is a crucial
structural component in fungal cell walls and certain
green algae and is a major constituent in the shells, cuti-
cles and exoskeletons of worms, molluscs and arthro-
pods, including crustaceans and insects [7]. Chitin
comprises 20 to 58% of the dry weight of the marine
invertebrates, which include shrimp, crabs, squids,
oysters and cuttlefish [9]. The enormous amounts of
chitin continuously generated in nature require disposal
and recycling on a formidable scale [10]. Previous stu-
dies revealed the broad range applications of chitin in
various biochemical, food and chemical industries. Patil
et al. [11] showed that chitin can be used in human
health care as an antimicrobial, anticholesterol or antitu-
mor agent. Chitin and its derivatives are also used in
wastewater treatment, drug delivery, wound healing and
dietary fibre [12]. Due to chitin’s important biological
role, its synthesis and degradation has been the subject
of extensive research.

Chitinases catalyse the hydrolysis of B-1, 4-linkages in
chitin. Many organisms produce chitinases for different
purposes [13]. Chitinases produced by bacteria and
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plants are important for nutritive purposes and in fungal
invasion, respectively. All chitin-containing organisms
such as fungi and yeast produce chitinases (EC 2.4.1.14)
and chitin synthase (EC 2.4.1.16) to mediate cell wall
synthesis and growth [12,14]. Chitinases are classified
into two families of glycosyl hydrolases, family 18 and
family 19, based on the amino acid sequence of the cat-
alytic regions [15]. Family 18 contains chitinases from
bacteria, fungi, viruses, animals and some plants [7].
Cold-adapted chitinases are always characterised by low
optimal temperatures and increased structural flexibility
that is achieved through a combination of structural fea-
tures [16]. Heat labile and cold-adapted chitinases have
been reported from several psychrophilic bacteria [7,17],
plants [18] and fungi [19]. However, a cold-adapted
chitinase from psychrophilic or psychrotolerant yeast
has yet to be reported.

Due to difficulties in getting significant amount of
native chitinase of G. antarctica P112 for protein purifi-
cation, initial expression of the CHI II gene was carried
out in E. coli system. However no expression was
observed (data not shown). This could be due to the
reduced stability of recombinant psychrophilic proteins
expressed in a mesophilic host such as E. coli [20,21].
An alternative host to E. coli is the methylotrophic
yeast, P. pastoris which can be regarded as a moderate
psychrotrophic organism that can grow at temperature
as low as 12°C. This strain has emerged as a powerful
and inexpensive expression system for the production of
the eukaryotic recombinant proteins [22].

In this study, we described the isolation and recombi-
nant expression of a psychrophilic chitinase (CHI II)
gene from G. antarctica PI12 in P. pastoris. Purification
and characterisation of the expressed recombinant CHI
II were also conducted. Subsequent biochemical charac-
terisation of this enzyme suggests its usefulness in some
biotechnology applications.

Results and Discussion

Cloning and sequence analysis of CHI Il from

G. antarctica PI12

A nucleotide sequence obtained from a GSS survey of
the G. antarctica PI12 genome was identified to
encode the consensus domain of the glycosyl hydrolase
family 18 using NCBI databases. Further analyses sug-
gest that the nucleotide sequence encoded part of a
chitinase gene sequence. Isolation of the full-length chit-
inase gene was accomplished by RT-PCR followed by
RACE amplification. A DNA fragment of approximately
500 bp was obtained from the RT-PCR method. Due to
a lack of DNA information for the G. antarctica PI112
chitinase, RACE techniques were used to amplify the
full-length cDNA sequence. The RACE method was
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conducted using the RNA of G. antarctica PI12 and the
5 and 3’ portion sequence of the full-length cDNA was
obtained by 5" and 3’ RACE, respectively. About 1100
bp was amplified from 5 RACE and approximately 1200
bp from 3’ RACE. Conjugation of the 5" and 3’ frag-
ments revealed a full-length chitinase cDNA of 1215 bp
containing a 404 bp ORF, a 448 bp 5’ untranslated
region and a 121 bp untranslated flank at 3’ end. The
latter includes a polyadenylation signal AATAAA
located 23 bp to the 5" side of the poly A tail and a
ATTTA sequence, which is involved in the targeting of
mRNAs for rapid turnover. Based upon the RACE
sequences, a set of primers was designed (CHI-For and
CHI-Rev) and the full-length ¢cDNA sequence was
amplified via the RT-PCR method. The cDNA sequence
was deposited into GenBank with the Accession No.:
JE901326.

The DNA sequence encodes a 404 amino acid protein
with a calculated molecular weight of 42.9 kDa and a
theoretical pI of 9.65. Previous studies reported that the
chitinases from various organisms had a molecular mass
of about 40-80 kDa. The recombinant chitinase from
Clonostachys rosea had a molecular mass of 43.8 kDa
[23], whereas the recombinant chitinase from Chaeto-
mium cupreum and Vibrio sp. Fi:7 was found to have a
molecular mass of 58 kDa [24] and 79.4 kDa [25],
respectively. A SignalP [26] prediction revealed that the
CHI 1II protein contains a putative N-terminal signal
peptide of 19 amino acids in length with a predicted
cleavage site located between A19 and E18 (THA|||EL).
This result suggested that this enzyme is secretory in
nature. Analysis of the CHI II sequence by NetNGlyc
1.0 Server [27] showed that there is one potential N-
linked glycosylation site at position -371. Interproscan
[28] analysis predicted that CHI II encodes a glycosyl
hydrolase family 18 member because of the amino acid
segment “FDGVDLDWE” at nucleotide position 498,
which matches the consensus catalytic sequence pattern
[LIVMEY]-[DN]-G-[LIVMEF]-[DN]-[LIVME]-[DN]-x-E of
chitinases in family 18 glycosyl hydrolases. The CHI II
InterPro Accession No. is IPR001223, indicating that it
is a novel member of the family 18 glycosyl hydrolases
(endochitinase) and belongs to the chitinase class II.

Based on a Blast search analysis, CHI II showed low
similarity to all proteins in the database with an identity
of 34% to chitinase from Puccinia triticina and 33% to
endochitinase from Amanita muscaria. A low identity
of the CHI II sequence with the available sequences in
the database suggested that this chitinase from G. ant-
arctica PI12 was a newly isolated chitinase sequence
from yeast. CHI II appears to be a simple and compact
chitinase with an N-terminal sequence encoding for a
signal peptide and a C-terminal catalytic domain (CaD).
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Interestingly, neither the chitin-binding domain (CBD)
nor the Ser/Pro/Thr rich linker, which were often asso-
ciated with the catalytic domain in family 18 chitinases,
was found in CHI II (Figure 1). This finding supports
the study by Wang et al. [29] that showed that a single
CaD is sufficient for the catalytic activity of chitinase
and further suggested that the CBD may facilitate
hydrolysis of an insoluble substrate [30] but was not
required for chitinase activity. Figure 1 shows the
domain organisations of family 18 chitinases that
demonstrates the similarity of the CHI II domain struc-
ture with the chitinase from Bacillus cereus (chi36) [29]
and the differences from others. It is unclear whether
CHI II from G. antarctica P112 evolved from multido-
main chitinases as an alternative mechanism to proteo-
lytic cleavage for the acquisition of high efficiency
soluble chitinolytic activity.

A multiple sequence alignment of the catalytic domain
was conducted using the DNAMAN programme
(Figure 2). Five catalytic domains of chitinases from
other eukaryotes were chosen and aligned based on
their strong identity to the chitinase from G. antarctica
PI12. This core region contains two conserved amino
acid regions, each consisting of SxGG and DxxDxDxE,
which are highly conserved among the family 18 chiti-
nases and may constitute the catalytic pocket [15,23].
Importantly, residues that are essential for chitinase
activity, particularly Aspl44, Aspl47, Aspl49 and
Glul51, were also observed in the CHI II catalytic
domain, implying the crucial role of these residues in
the catalytic activity and structure of chitinases [31].

CHITI (404 az) . |

asscoo [T
anissesssan I | |

CTS1(563 az) - | | |

Chitinase (553 aa) . I I I

. signal peptide |:| Catalytic Domain (CaDD) |:| Domain of unknown fimnction

D Chitin-binding domain (CBD) D Linker or Ser/pro/Thrrich region

. Type I fibronectin-like domain (Fn3D)

Figure 1 Domain organisation of family 18 chitinases;
G. antarctica PI12 (CHI l), Bacillus cereus (chi 36) [29],
Chaetomium cupreum (chi 58) [24], Saccharomyces cerevisiae
(CTSI) [56], Lacanobia oleracea (Chitinase) [57]and Bacillus
circulans WL-12 (ChiD) [58].
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Figure 2 Multiple sequence alignment of the core region of the catalytic domains between CHI Il and some eukaryotic chitinases.
Highly conserved regions, SxGG and DxxDxDxE, are boxed. Residues responsible for the catalytic activity are indicated with asterisks. Sequence
fragments displaying the typical motifs with the G. antarctica PI12 catalytic domain include Amanita muscaria, Laccaria bicolor, Coprinellus
congregatus, Puccinia triticina and Taiwanofungus camphorates.

Multiple sequence alignment and phylogenetic analysis
To investigate the evolutionary relationship among the
cold-adapted chitinase identified in this work and others
reported in the literature, phylogenetic analysis was per-
formed. The search for complete protein sequence was
explored using the NCBI BlastP service. A total of 24
chitinase sequences (all hits with an e-value lower than
6 x 10™°) were downloaded and aligned using clustal X.
From this alignment, a NJ tree was constructed to
examine the distances among these sequences. An NJ
tree was then inferred and the tree topology was ana-
lysed using bootstrapping (1000 replicates). The chiti-
nase of Streptomyces griseus, which did not coincide
with the taxonomic status of the CHI II, was used as an
out-group in order to root the tree.

The analysis summarised in Figure 3 shows that the
chitinase sequences clustered into two supported sub-
groups corresponding to clade I and II, which are both
monophyletic clades. The monophyletic lineages pro-
vided a support for the hypothesis that clade I and II
chitinases are likely to have evolved from one common
ancestor [32]. Clade I consists of two subclades; chiti-
nases from Vertebrate and Insecta were clustered and
formed the subclade Ia, while chitinases from the bacteria
domain (Firmicutes, Proteobacteria and Bacteroidetes)
were clustered and formed the subclade Ib. Chitinases
from Basidiomycota and Archaea were clustered and
formed the second monophyletic clade (clade II) that
consisted of subclade Ila (Basidiomycota) and subclade

IIb (Archaea). CHI II chitinase from G. antarctica P112
was clustered in the Basidiomycota group, which was
well supported by bootstrapping (NJ: 100%). Homology
values ranging between 21 to 54% were found when com-
paring CHI II with the other Basidiomycota chitinases.
Orikoshi et al. [17] found that the redundancy of the
chitinase genes within the same species may reflect their
functional difference between related proteins and also
the adaptive evolution of the chitinases. Bootstrap values,
an index of the accuracy of the phylogenetic tree, were
found to be higher outside the tree but lower inside the
tree, which may indicate the low relative diversity of all
the sequences used in the analysis [33].

Heterologous expression of the recombinant CHI Il in P.
pastoris

The expression of CHI II was conducted in a P. pastoris
expression system. Culture condition is one of the critical
parameters that significantly affect cell growth and the
yield of recombinant product. Stress imposed by cultiva-
tion conditions or strategies can lead to a decrease in cell
viability, which in turn lowers productivity and induces
cell lysis [34]. In this study, the highest extracellular chiti-
nase activity was found to be 1.24 U ml™" at 120 h post-
induction when cells were grown in BMMY medium (pH
6.0) at 25°C with 1% (v/v) methanol as inducer. Yield of
the recombinant CHI II expressed in P. pastoris was
shown to be significantly improved at low temperatures.
This could be due to the characteristic of psychrophilic
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Figure 3 Phylogenetic tree showing the relationship between CHI Il from G. antarctica PI12 and other chitinases. The chitinase gene of
S. griseus was used as an out-group to root the tree. Confidence values were assessed from 1,000 bootstrap replicates of the original sequence
data.

proteins to be stable at low temperatures when compared
with other mesophilic chitinases [24,31] expressed in P.
pastoris. Hong et al. [35] reported that high cultivation
temperatures can induce the release of proteases from
dead cells and may also affect the protein folding process.
SDS-PAGE and western blotting analysis of the crude
supernatants at the inducible period from 24 to 120 h
showed two clearly visible protein bands with a molecu-
lar mass of approximately 39 and 50 kDa, respectively

(Figure 4a and 4b). This study shows that P. pastoris is
the suitable host for the production of cold-adapted pro-
tein such as CHI II. Similar finding for the high yield pro-
duction of recombinant protein in methylotrophic yeast
P. pastoris was obtained for other cold-adapted chitinase
such as in the case of endochitinase from Sanguibacter
antarcticus [36].

The recombinant chitinase CHI II protein (encoding
CHI II mature protein) had an apparent molecular mass
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Figure 4 SDS-PAGE, western blot and glycosylation analysis of recombinant CHI Il protein in P. pastoris GS115. (a) SDS-PAGE of
transformant, M: protein molecular mass marker; Lanes 1-5: transformants induced by methanol for 1 to 5 days; Lane 6: control, GS115
transformed with empty pPICZaA and induced by methanol for 5 days. (b) Western blot of transformant, Lanes 1-5: transformants induced by
methanol for 1 to 5 days; Lane 6: control, GS115 transformed with empty pPICZaA and induced by methanol for 5 days. (c) Glycosylation
analysis of transformant, Lanes 1-2: transformants induced by methanol for 4 to 5 days; Lane 3: Horseradish Peroxidase Positive Control; Lane 4:
Soybean Trypsin Inhibitor Negative Control. A 50 kDa protein was positively stained and indicated by an arrow.

of about 39 kDa, less than the theoretically calculated
molecular mass of 40.86 kDa. Another apparent band of
about 50 kDa is higher than the calculated molecular
mass and was predicted to be post-translationally modi-
fied and a glycosylated form of CHI II in P. pastoris. A
GelCode Glycoprotein Staining kit was used to confirm
the glycosylated moiety of the expressed chitinase in the
polyacrylamide gel. As presented in Figure 4c, the 50
kDa band was positively stained, appearing as a magenta
band with light pink background, whereas the 39 kDa
band was not, indicating that the 50 kDa band was gly-
cosylated. One putative N-glycosylation site (Asn-Xaa-
Thr/ser) was found in the mature protein when the
amino acid sequence were analysed using NetNGlyc 1.0
Server [27], while there was four potential O-glycosyla-
tion sites predicted using NetOGlyc 3.0 Server [37]. In
eukaryotes, enhanced protein stability is often achieved
by glycosylation resulting in protection by the attached
sugar moieties. In P. pastoris, N-glycosylation is a com-
mon post-translational modification that enhances

protein stability. Previous studies of chitinases from
Haemaphysalis longicornis [38] and Oryza sativa L. [39]
found larger proteins than the predicted molecular
masses, implying that these chitinase proteins under-
went post-translational modification.

Enzymatic properties of purified CHI Il

To examine the catalytic properties of CHI II produced
by P. pastoris, the recombinant enzyme was purified to
homogeneity using HisTrap ™ HP Columns from GE
Healthcare. The purified recombinant chitinase CHI II
was resolved as two bands by SDS-PAGE as shown in
Figure 5.

To determine the pH and temperature optima of the
CHI II, the enzyme’s activity was assayed at different pH
levels and temperatures. The effect of pH on the chitino-
lytic activity was studied with a citrate-phosphate buffer
(pH 2.5 to 6.5) and a potassium phosphate buffer (pH 6.0
to 8.0). Purified CHI II exhibited enzymatic activity over
a pH range of 2.5 to 6.5 (measured at 15°C) and the
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Figure 5 Purification of recombinant chitinase (CHI Il). Approximately 20 pl of sample was loaded into each well. M: protein molecular mass
marker; Lane 1: crude concentrated enzyme; Lane 2 & 3: unbound fraction; Lane 3 & 4: elution fraction.

activity of the purified chitinase was increased with  while cold-adapted chitinase (ChiB) from a marine bac-
increasing pH up to pH 4.0 in citrate-phosphate buffer. It  terium, Alteromonas sp. Strain O-7 is pH 6.0 [17]. At pH
was found that the optimal pH was 4.0 with more than 4.5, the enzyme activity began to decline, resulting in a
80% of the relative chitinase activity retained at the acidic  relative chitinase activity below 80%, while at pH 6.5, the
condition of pH 3.5, as shown in Figure 6a. Alternatively, relative activity was only about 10%. Even though the
the optimum pH for chitinases produced by the psychro-  chitinase activity declined, purified chitinase was found
tolerant bacterium Vibrio sp. strain Fi:7 was pH 8.0 [25]  to be stable. More than 80% of the maximum activity was
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Figure 6 Effect of pH (a) and temperature (b) on chitinase activity and stability. The highest chitinase activity was set to 100%.
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retained at pH 3.0 to 3.5, but activity began to be lost
after an incubation at a pH over 4.0. Extreme pH levels
reduced the enzyme’s ability to perform its catalytic
activity. Most of the fungal chitinolytic enzymes have an
optimum pH between 4.0 and 7.0 [40].

The effects of temperature on the recombinant chiti-
nase’s activity and stability were also determined. The
optimum temperature for CHI II activity was 15°C
(Figure 6b). The thermal stability of chitinase was mea-
sured by incubating an aliquot of the enzyme at differ-
ent temperatures for 30 min and then assaying the
residual activity under optimal pH and temperature con-
ditions. Chitinase was stable at 15°C for 30 min and
retained more than 90% of its initial activity when incu-
bated at 10°C. Incubation at 20°C resulted in a 20% loss
of the residual activity, while more than 70% of the
maximal activity was retained when the enzyme was
incubated at 5°C and 25°C. Moreover, the residual activ-
ity of the enzyme was 50% lower when incubated at 30°
C. In general, cold-adapted enzymes display an apparent
optimal activity shifted toward low temperatures and
also heat lability [17]. It has been proposed that
increased flexibility is the most important factor for the
catalytic efficiency of cold-adapted enzymes at low tem-
peratures [17], which is achieved through a combination
of structural features [16]. Noticeably, the optimum
temperature of CHI II (15°C) was much lower than
those reported for the chitinase from Moritella marina
(28°C) [7], cold-adapted chitinase B of Alteromonas sp.
strain O-7 (30°C) [17] and chitinase A of Vibrio sp.
strain Fi:7 (30°C) [25], yet the reasons for this finding
remain unclear.

The catalytic activity of CHI II was strongly affected
by the addition of Ca®>* and Fe** and was moderately
inhibited by the other metal ions, such as Na*, Zn>* and
Cu?*, which is comparable to the endochitinase from
Bacillus cereus [41] (Figure 7). Chitinases from different
fungi exhibit different responses to various metal ions
[24]. It was reported that EDTA was an inhibitor of
chitinase, e.g., it inhibited the chitinase from Enterobac-
ter sp. NRG4 [9]. However, the addition of EDTA did
not affect the catalytic activity of CHI II, suggesting that
these chitinases may have different catalytic mechan-
isms. Differing from the Trichoderma virens UKM-1
endochitinase [42], which was completely inhibited by
Mn** and Co>*, CHI II was activated by the presence of
both Mn?* and Co?*, which enhanced the activity about
10 to 20%. Moreover, K* also increased the activity of
the recombinant CHI II to about 15%, while the CHI46
chitinase from Chaetomium globosum was inhibited by
K* [31]. These results showed that chitinases could be
activated or inhibited by certain metal ions. However,
the chitinases from different species may be stimulated
or inhibited by different ions.
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Figure 7 Effect of metal ions and reagents on the recombinant
CHI Il chitinase activity. No addition (with no metals added to the
enzyme solutions) was used for 100% relative activity.

Chitinases from different sources can use a variety of
substrates. In this study, CHI II showed the highest
activity toward colloidal chitin (0.690 U/ml) followed by
swollen chitin (0.570 U/ml), carboxymethyl chitosan
(0.465 U/ml), and glycol chitosan (0.278 U/ml). When a
native chitinase from G. antarctica PI112 were tested
against the same substrates, highest activity was exhib-
ited with colloidal chitin (0.424 U/ml), followed by swol-
len chitin (0.340 U/ml), carboxymethyl chitosan (0.320
U/ml), and glycol chitosan (0.0615 U/ml). These obser-
vations show similar activity profile between the recom-
binant and native chitinase. The preference for
hydrolysis of colloidal chitin over other substrates prob-
ably reflects that increased accessibility of colloidal
chitin to the chitinase active site due to the removal of
lipids and proteins from the crab shell chitin after acid
hydrolysis treatment [43], while glycol chitosan is che-
mically different. The higher specificity to the colloidal
chitin substrate was similar to that from Trichoderma
virens [42]. However, its low hydrolytic activity against
glycol chitosan was different from a previous study of
chitinase from Schizophyllum commune [44].

Using the purified enzyme of CHI II, kinetic experi-
ments were performed at a temperature of 15°C by vary-
ing the substrate concentration in a standard activity
test from 2.0-10.0 mg ml™". On the basis of the Linewea-
ver-Burk plot, the values of kinetic constants K, V.0
and subsequently k.., and k.,/K,, of CHI II towards
different substrates (colloidal chitin, swollen chitin and
carboxymethyl chitosan) were calculated as shown in
Table 1. Using colloidal chitin as a substrate, a higher
value of Vax which was 3.559 pumol pg™' h™', was
achieved compared to other substrates. The higher V..
value indicates the higher efficiency of the enzyme and
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Table 1 Kinetic parameters of CHI Il on different chitin
substrates

Vmax Km Kcat kcat/Km
(umole pg* h- (mgml s’ mimg’'s
1 1 1
)
Colloidal chitin 3.559 27918 0915 0.0328
Swollen chitin 2.695 13.83 0.693 0.0501
Carboxymethyl 2725 26.79 0.701 0.0262
chitosan

suggests that CHI II chitinase has a higher catalytic effi-
ciency towards colloidal chitin as compared to the swol-
len chitin and carboxymethyl chitosan. The K, values of
CHI II against different substrates were 27.918 mg ml?,
13.83 mg ml ™" and 26.79 mg ml, with colloidal chitin,
swollen chitin, and carboxymethyl chitosan, respectively,
which are comparatively higher than the other reports
in literature [45,46]. Stefanidi et al. [7] suggested that
enzymes produced by marine bacteria work at saturating
concentrations of chitin and showed the high values of
the K, constant. On the contrary, some cold-adapted
enzymes have a lower K, than their thermostable
homologues. For secreted enzymes from marine micro-
organisms, the requirement for a low K, may relate to
the need to scavenge substrates that are at low concen-
trations in the environment [47].

Furthermore, the K, value of CHI II was also found to
be highest with colloidal chitin, which was 0.915 s and
followed by carboxymethyl chitosan (0.701 s™) and swol-
len chitin (0.693 s). The results support the V., value
that indicated that CHI II had a lower turnover efficiency
towards carboxymethyl chitosan and swollen chitin than
towards colloidal chitin. However, the specificity constant
keat/Ky, is generally a better indication of the catalytic effi-
ciency than kg, alone [48]. Comparable with the K, value,
the kea/ Ky, values suggested that CHI II had a higher cata-
lytic efficiency towards swollen chitin than colloidal chitin
and carboxymethyl chitosan at low temperatures. A pre-
vious study found that a higher K, and k., are also char-
acteristics of lactate dehydrogenase (LDH-A4) enzymes
from a cold-water fish where a higher K, results in a
decrease in AGgg, with a concomitant decrease in the
energy of activation required to form the transition state,
thereby increasing the k., [49]. Therefore, the strategy
used to maintain sustainable activity at a permanently low
temperature is to enhance the k¢, and k.,/K,, values
instead of decreasing the K, [50].

Conclusion

In this study, a chitinase from G. antarctica P112 was
isolated, purified and characterised. The protein displays
an optimum catalytic activity at an apparently low tem-
perature and pH. Due to its high versatility regarding its
pH range, temperature range and substrate specificity
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towards chitin polymers, the G. antarctica P112 family
18 chitinase seems to be a highly attractive enzyme for
the production of chitooligosaccharides, and more gen-
erally for biotechnological applications such as for the
biocontrol of microbial spoilage of refrigerated foods
and use as a mycoparasite of phytopathogenic fungi in
cold environments.

Methods

Microorganisms, plasmids, growth media, enzymes and
reagents

The psychrophilic yeast, G. antarctica PI12 was
obtained from School of Biosciences & Biotechnology,
Universiti Kebangsaan Malaysia, Malaysia. Escherichia
coli JM109 (Promega) was used as cloning host. The
pPICZoaA vector (Invitrogen), which can propagate in
both bacterial and yeast systems, was used for initial
cloning in bacteria and subsequent expression in yeast.
P. pastoris GS115 (Invitrogen) was used for heterologous
protein expression. G. antarctica PI12 was grown on
Yeast extract Peptone Dextrose (YPD) and chitinase
induction medium (0.3% (w/v) yeast extract, 0.5% (w/v)
peptone, 0.3% (w/v) NaCl and 3% (w/v) colloidal chitin),
both containing 25 pg/ml ampicillin and 25 pg/ml kana-
mycin. The G. antarctica P112 cells were incubated at 4°
C for 7 to 8 days. E. coli JM109 was grown in Luria Ber-
tani (LB) medium with 100 pg/ml ampicillin as a select-
able antibiotic. Media and protocols used for P. pastoris
are described in the Pichia expression manual (Invitro-
gen). Restriction enzymes were obtained from Promega
and New England Biolabs (NEB), while all other chemi-
cals were of analytical grade and were obtained from
Sigma, Amresco, Fluka or Merck.

Total RNA isolation and cDNA synthesis of the full-length
chitinase gene

Total RNA was extracted from G. antarctica PI12 using
a method as described by Sokolovsky et al. [51]. Briefly,
G. antarctica P112 was grown at 4°C for seven days in
chitinase induction medium. RNA was purified and used
immediately for cDNA synthesis or stored at -80°C. All
primers used in PCR amplifications are listed in
Table 2. The partial cDNA fragment of G. antarctica
PI12 chitinase was amplified using primers LChi (F) and
LChi (R) and an RT-PCR System (Promega), as recom-
mended by the manufacturer. The primers were
designed based on the Genome Sequencing Survey
(GSS) Database of G. antarctica P112 available at Malay-
sia Genome Institute (MGI). The resulting DNA frag-
ment was used as a template for a subsequent RACE
amplification to obtain the full-length CHI II sequence.
3’ RACE was performed using primer 3-RC and a Cap-
Fishing™full-length ¢cDNA Premix kit (Seegene) while 5’
RACE was performed using primer 5-RC and a
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Table 2 PCR primers used in this study
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Primer name Sequence (5'-3') Orientation Use

LChi (F) GAGAATCGCAACTGACTT Forward RT-PCR

LChi (R) GCAGGTGAATTCAGACGG Reverse RT-PCR

3-RC AGGAAACCAGATCGGGATGT ACTGGCC Forward RACE amplification
5-RC GTCGTCGCGCTCCAGGAGCCATAAAT Reverse RACE amplification
CHI-For ATGAAGATCCCTCTCCTCTCCTCC Forward RT-PCR

CHI-Rev CTACGCCTTGAACGTCCCCGCCAGT Reverse RT-PCR

CHI-Notl TTTGCGGCCGCCTCACCCCTACCACTCCCTC Forward PCR

CHI-Xbal TTTTCTAGAAACGCCTTGAACGTCC CCGCCAGT Reverse PCR

The location of Notl and Xbal are underlined

SMART™ RACE ¢cDNA Amplification kit (Clontech), as
recommended by the manufacturers. Using the sequence
information from the RACE result, the full-length gene
of chitinase was amplified using primer CHI-Rev and
CHI-For via RT-PCR. DNA sequences amplified by PCR
were confirmed by nucleotide sequencing (First BASE
Laboratories).

Multiple sequence alignment and phylogenetic analysis

The phylogenetic relationship of CHI II was generated
with 24 other deduced chitinases available from the
NCBI databases as shows in Table 3. A phylogenetic tree
was constructed by multiple sequence alignment using
clustal X [52] and was generated using the Neighbour-
Joining method (NJ) and bootstrap analysis. The phyloge-
netic tree was visualised using Treeview software. Confi-
dence values for individual branches were assessed from
1000 bootstrap replicates of the original sequence data.

Construction of the chitinase expression plasmid and
yeast transformants

The mature CHI II sequence was PCR amplified using
primers CHI-Notl and CHI-Xbal and with the full-
length ¢cDNA as a template. The resulting DNA frag-
ment (1100 bp) was digested with Notl and Xbal before
being ligated into the corresponding sites of the pPIC-
ZoA vector and termed plasmid CHI II-pPICZo.A. The
recombinant enzyme was constructed such that the
native signal peptide of the G. antarctica PI12 chitinase
was replaced by the Saccharomyces cerevisiae a.-factor
signal peptide and was cloned in frame with the C-term-
inal tag. The ligation product was transformed into E.
coli JM109. The correct sequence of the expression plas-
mid was confirmed by DNA sequencing.

Transformation of recombinant CHI II into P. pastoris
GS115 was performed as recommended by the manufac-
turer (Invitrogen). Briefly, CHI II-pPICZa A was line-
arised using Pmel. The purified DNA product (2-5 pg)
was transformed into competent P. pastoris GS115 cells
via electroporation. Transformants were selected by
plating onto YPD agar plates containing 100 pug/ml

zeocin. The methanol metabolisation phenotype (Mut")
of P. pastoris recombinants was analysed by colony PCR
using universal primers 5° AOX and 3’ AOX. Colonies
that produced a 1700 bp (plus the size of the parent
plasmid) PCR product were selected and kept for subse-
quent analysis.

Expression of recombinant CHI Il in P. pastoris GS115

P. pastoris GS115 transformants were grown in 100 ml of
fresh Buffered Complex Medium containing Glycerol
termed as BMGY medium (1% (w/v) yeast extract, 2%
(w/v) peptone, 100 mM potassium phosphate (pH 6.0),
1.34% YNB, 4 x 10™°% biotin and 1% (v/v) glycerol) in a
1000 ml baffled flask at 29°C and 250 rpm until the cul-
ture reached an Aggy of 2-6 (approximately 18-20 hours).
To induce CHI II production in P. pastoris, the cells were
harvested and resuspended in Buffered Complex Medium
containing Methanol or known as BMMY medium (1%
(w/v) yeast extract, 2% (w/v) peptone, 100 mM potassium
phosphate (pH 6.0), 1.34% YNB, 4 x 10™% biotin and
0.5% (v/v) methanol) using 1/5 of the original culture
volume (20 ml). Absolute methanol was added every 24
hours to a final concentration of 1% (v/v) to maintain
induction. To analyse expression levels and the optimal
time post-induction for harvest, the culture supernatant
was collected at 1, 2, 3, 4 and 5 days. Expression of
secreted proteins was analysed by SDS-PAGE.

Purification of recombinant chitinase

All purification steps were performed at 4°C. The crude
enzyme was concentrated by an Amicon concentrator
10,000 MWCO (MILIPORE) followed by purification
using HisTrap™ HP Columns (GE Healthcare). The
purified protein was collected and characterised further.
The purified proteins were analysed by SDS-PAGE on a
10% gradient gel.

Measurement of enzyme activity and protein
determination

Chitinase activity was measured using 3, 5-dinitrosa-
licylic acid (DNS) as described by Miller et al. [53] but
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Table 3 Chitinases from different organisms used in the phylogenetic analysis
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Taxanomy

Name/source

Abbreviation

Accession No

Bacteria;
Proteobacteria
Firmicutes

Bacteroidetes

Collimonas fungivorans
Brevibacillus brevis
Paenibacillus sp.
Bacillus circulans
Bacillus halodurans
Kurthia zopfii
Clostridium papyrosolvens
Bacillus coahuilensis
Bacillus thuringiensis
Bacillus mycoides
Rhodothermus marinus
Spirosoma linguale

Archaea;
Euryarchaeota Thermococcus kodakarensis
Halogeometricum borinquense
Eukaryota;
Metazoa;
Arthropoda;
Hexapoda;
Insecta Aedes aegypti
Tribolium castaneum
Culex quinquefasciatus
Chordata;
Craniata;
Vertebrata Mus musculus
Fungi;
Dikarya;

Basidiomycota

Amanita muscaria

Puccinia triticina

Laccaria bicolor

Coprinellus congregatus
Cryptococcus neoformans
Taiwanofungus camphoratus

Cfungivorans

ACF93784

B.brevis YP_002771189
Paenibacil ZP_04850994
B.circulans AAF74782
B.halodura NP_241782
Kzopfii BAAQ09831
C.papyroso ZP_03226994
B. coahuile ZP_03226994
B. thuringi ABQ65137
B.mycoides ZP_04167090
R.marinus ZP_04424886
Slinguale /P_04488661
Tkodakare YP_184178

H.borinquense

A.aegypti
T. castaneu
C. quinquefasciatus

ZP_04000472

XP_001656054
NP_001038094
XP_001867701

M.musculus ABK78778
A.muscaria CAC35202.1
P.triticin AAP42832.1
L.bicolor XP_001886180
C.congregatus CAQ51152
C.neoforma XP_572898
T.camphora ABB90389

with some modifications. The reaction mixture con-
tained 0.25 ml of 10% colloidal chitin in 0.2 M sodium
acetate buffer (pH 4.0) and 0.25 ml enzyme solution.
After an incubation at 15°C for 1 h, the reaction was
terminated by boiling at 100°C for 5 min. The reaction
mixture was centrifuged at 8,000 x g for 1 min. Next,
0.75 ml of DNS reagent was added to the aliquots of
0.25 ml reaction mixture that was then boiled at 100°C
for 10 min. After cooling, the reducing sugars that were
released as a result of the chitinase activity were mea-
sured at 540 nm using a UV spectrophotometer. One
unit (U) of the chitinase activity is defined as the
amount of enzyme that is required to release 1 umol of
N-acetyl-B-D-glucosamine per hour under the assay
conditions. Protein content was measured according to
the method of Bradford [54] using bovine serum

albumin (BSA) as a protein standard. The reaction was
measured at a wavelength of 595 nm.

SDS-PAGE, western blot and glycosylation analysis of
chitinase

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
(SDS-PAGE) was conducted to analyse the recombinant
protein expression by the method of Laemmli [55] and the
gel was then stained with 1% Coomassie Brilliant Blue R-
250. Western blotting was performed by colorimetric detec-
tion using a His-Tag monoclonal antibody, as recom-
mended by the manufacturer (Novagen). Glycoprotein
sugar moieties in the polyacrylamide gel were detected
using a GelCode glycoprotein staining kit (Pierce Biotech-
nology) according to the instructions provided by the
manufacturer.
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Characterisation of purified CHI I

The optimum pH for the purified CHI II was evaluated
at 15°C over a pH range of 2.5 to 8.0, using appropriate
buffers (100 mM), citrate-phosphate buffer (pH 2.5 to
6.5) and potassium phosphate buffer (pH 6.0 to 8.0),
under CHI II chitinase assay procedures. The pH stabi-
lity of the enzyme was investigated further at 15°C by
pre-incubation of the enzyme solutions in the described
buffer systems in the absence of substrate for 30 min.
The reaction mixture was then subjected to the CHI II
chitinase assay and a pH profile was produced with the
enzyme activity at the optimum pH set to 100%.

The optimum temperature for purified CHI II activ-
ity was measured by incubating the purified enzyme
for 30 min at temperatures ranging from 5°C to 30°C.
The thermostability of CHI II was also investigated at
temperatures of 5°C to 30°C after incubation of the
enzyme solutions in the absence of substrate for 30
min. A temperature profile was produced with the
enzyme activity at the optimum temperature set
to 100%.

Metal ions are generally considered to be important
factors affecting microbial enzyme activity. The reaction
mixture consisted of purified enzyme in 100 mM citrate
buffer (pH 4.0) containing 1 mM metal ions (K*, Cu**,
Mn?*, Fe?*, Co?*, Ca%*, Na* and Zn?") and different
reagents (such as 1 mM EDTA and 1% SDS). The effect
of these metal ions was investigated using the CHI II
chitinase assay system. The system without any additives
was used as a control.

Substrate specificity and kinetic parameters

The substrate specificity of CHI II was determined by
measuring the enzyme activity after incubation in 100
mM citrate buffer containing 1% of each substrate
(colloidal chitin, swollen chitin, glycol chitosan and
carboxymethyl chitosan) at pH 4.0 and 15°C for 1 h.
The amount of reducing sugars produced was esti-
mated by using the DNS method as described above.
The kinetic parameters (K, Vimao Keao and keo/Kpy) of
the purified enzyme were studied. Different substrate
(colloidal chitin, swollen chitin and carboxymethyl
chitosan) concentrations were used, ranging from 2.0
to 10.0 mg ml". The reaction rate versus substrate
concentration was plotted to determine whether the
enzyme obeys Michaelis-Menten kinetics. The Michae-
lis-Menten constant (K,,) and maximum velocity of
substrate hydrolysis (V,.x) were determined from the
Lineweaver-Burk plots.
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