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Abstract

Background: Elective patient admission and assignment planning is an important task of the strategic and
operational management of a hospital and early on became a central topic of clinical operations research. The
management of hospital beds is an important subtask. Various approaches have been proposed, involving the
computation of efficient assignments with regard to the patients’ condition, the necessity of the treatment, and the
patients’ preferences. However, these approaches are mostly based on static, unadaptable estimates of the length of
stay and, thus, do not take into account the uncertainty of the patient’s recovery. Furthermore, the effect of
aggregated bed capacities have not been investigated in this context. Computer supported bed management,
combining an adaptable length of stay estimation with the treatment of shared resources (aggregated bed
capacities) has not yet been sufficiently investigated. The aim of our work is: 1) to define a cost function for patient
admission taking into account adaptable length of stay estimations and aggregated resources, 2) to define a
mathematical program formally modeling the assignment problem and an architecture for decision support, 3) to
investigate four algorithmic methodologies addressing the assignment problem and one base-line approach, and 4)
to evaluate these methodologies w.r.t. cost outcome, performance, and dismissal ratio.

Methods: The expected free ward capacity is calculated based on individual length of stay estimates, introducing
Bernoulli distributed random variables for the ward occupation states and approximating the probability densities.
The assignment problem is represented as a binary integer program. Four strategies for solving the problem are
applied and compared: an exact approach, using the mixed integer programming solver SCIP; and three heuristic
strategies, namely the longest expected processing time, the shortest expected processing time, and random choice.
A baseline approach serves to compare these optimization strategies with a simple model of the status quo. All the
approaches are evaluated by a realistic discrete event simulation: the outcomes are the ratio of successful
assignments and dismissals, the computation time, and the model’s cost factors.

Results: A discrete event simulation of 226,000 cases shows a reduction of the dismissal rate compared to the
baseline by more than 30 percentage points (from a mean dismissal ratio of 74.7% to 40.06% comparing the status
quo with the optimization strategies). Each of the optimization strategies leads to an improved assignment. The exact
approach has only a marginal advantage over the heuristic strategies in the model’s cost factors (≤ 3%). Moreover,this
marginal advantage was only achieved at the price of a computational time fifty times that of the heuristic models (an
average computing time of 141 s using the exact method, vs. 2.6 s for the heuristic strategy).
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Conclusions: In terms of its performance and the quality of its solution, the heuristic strategy RAND is the preferred
method for bed assignment in the case of shared resources. Future research is needed to investigate whether an
equally marked improvement can be achieved in a large scale clinical application study, ideally one comprising all the
departments involved in admission and assignment planning.

Background
Bed capacity is a crucial but limited hospital resource.
Therefore, professional bed management aims at an opti-
mal allocation of beds, one involving short waiting periods
for the patients and a low rate of canceled admissions, yet
with a high occupancy rate. Optimal allocation is ham-
pered by the inherent uncertainty of the patients’ actual
length of stay. Furthermore, the bed capacity of a ward
tends to be increasingly shared by different clinical units.
Bed management is often part of the more general effort
at improving patient treatment and maintaining a con-
stant throughput of patients. Currently, many hospitals
have formed teams of case and bed managers dedicated to
these tasks [1,2].

Bedmanagement—the current situation in German
hospitals
Since 2003, drastic organizational changes have taken
place in German hospitals. These were triggered by the
ending of payments to the hospital for individual treat-
ments and instead a lump sum compensation based on
the internationally established classification of Diagnosis
Related Groups (DRG) [3] has been introduced. The cur-
rent compensation scheme calculates the costs of treat-
ment based on the average length of stay (LoS) of a patient
according to the assigned DRG. Therefore, a marked eco-
nomic loss for the hospital could be the result if the
actual LoS exceeds the average. Furthermore, only the
number of actually treated cases matters, solely providing
the clinical infrastructure is no longer rewarded. Due to
these changes, the traditional one-to-one link between a
ward and a specific clinic was abandoned. Today, patients
treated by different clinical units may be assigned to
the same ward, provided that there are no medical rea-
sons not to do so. The rate of elective patients varies
between 30% and 80%, depending on the clinical unit [4].
Up to 80% of a surgical unit’s patients are elective, and
their admission could thus be planned in advance. Patient
admission planning and assignment in German hospitals
are often performed by the Case Management and Stan-
dard Care departments. The patient admission planning
decision process of case managers has been reported to
be a complex process, heavily influenced by a multitude of
factors [5].
In the course of this work, a comprehensive require-

ments analysis based on five semi-structured interviews

with several representatives of the Standard Care (SC),
Case Management (CM), and IT departments of the local
hospital RWTH University Hospital Aachen, Germany
(UK Aachen) has been performed. The CM depart-
ment has been established at the hospital to improve
all processes concerning the treatment, nursing, and
after-treatment of the patients. Preliminary investiga-
tions revealed an incremental shift of the tasks of patient
admission planning, from clinics to case managers. Thus,
the CM department could be regarded as a centralized
unit, responsible for admission planning. The SC depart-
ment was established as an interdisciplinary department
responsible for nursing the patients who are treated in
different clinics. The SC department is currently facing
manifold challenges concerning bed management, e.g.,
assigning patients so that the spatial distance to the treat-
ing clinic is minimized. The IT department has to provide
all necessary data for resource planning and an IT infras-
tructure for decision support.
The interviewees of the SC and CM departments

are primarily involved in bed and case management at
UK Aachen. All interviews were prepared in advance,
recorded, and analyzed afterwards. The interviews lasted
approximately 30 to 90 minutes each. The interview pro-
tocols were transcribed immediately after the interviews.
The interviews aimed at:

1. The elicitation of information about the
departments, the responsibilities, and the daily
challenges of the persons in charge concerning
admission planning and assignment.

2. The identification of those aspects that must be
respected in the development of the Decision
Support System (DSS).

Results of the interviews
According to the interviews, bed management has gained
increasing attention in Germany since the establishment
of the new financial compensation model for hospitals
(based on Diagnosis Related Groups). There is a great
need for computer-based decision support in this context,
due to the high complexity of the planning problem.
Bed management aims at finding a suitable admis-

sion date with respect to the preferences of the patient
and the bed capacities available. The increasing respon-
sibility of the hospital’s case managers for the patient
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admission planning tasks has been reported to have
resulted in a more centralized planning process and in
reducing the inherent organizational complexity of a
decentralized planning scenario. Current approaches to
bed management using multi-agent systems [6-8] involve
decentralized planning processes and thus were not fur-
ther considered. Futhermore, the interviewees reported
an inherent uncertainty in the LoS and in the duration
of the specific treatment steps, which results in uncer-
tainty of the bed capacity available at a given time. Only
a fraction of the admissions are planned in advance.
Acute patients must be assigned immediately. The pos-
sible planning time frame of a patient depends on the
individual case of the patient. It was suggested by the
interviewees that patients may be categorized into prior-
ity classes, taking their individual treatment needs into
account. The grouping of patients with respect to their
treatment needs has recently been considered by Wang
et al. [9] as well, who categorize patients into different
priority classes with respect to their state of illness. The
interviewees reported that the planning time frame can
be between a day and several months. In general, patients
are scheduled within two months. In practice, patients
are categorized into priority groups with respect to their
planning time frame. Three priority groups have been
depicted by the interviewees: priority 1 patients must
be scheduled within 24 hours, priority 2 patients within
one week, and priority 3 patients may be scheduled fairly
long-term. Restrictions exist even for admissions which
can be planned in advance: e.g., treatments may have to
be started before or after a given date, for medical or
personal reasons. Additional restrictions involve the pre-
ferred, allowed, or excluded combinations of patients in
the same room or a patient’s demand for a bed in a single
room. Furthermore, an increasing relaxation of the former
tight linkage between clinics and wards has been reported.
Interdisciplinary units, such as the Standard Care depart-
ment, were established with the main objective of nursing
patients treated by different clinics. However, clinics may
prefer special wards for their patients for medical or
organizational reasons. Lists are used for structuring the
planning task. The overall planning collective on a list
does not exceed 100 patients in general. Further aspects
and statements from the interviews are summarized in
Table 1.
The new challenges concerning bed management in

German hospitals can be summarized as follows:

1. Wards must be considered to be partially shared and
central resources.

2. Patients treated by different clinical units may be
assigned to the same ward.

3. There are special limitations due to medical,
insurance, or social reasons, which restrict the

sharing of the same room or even ward by different
patients (e.g., the exclusion of mixed gender rooms).

4. The planning process has to cope with the inherent
uncertainty of the outcome of the single treatment
steps and the overall duration of the patient’s stay.

5. Patients may be planned in advanced and categorized
into priority groups reflecting the urgency of
the treatment.

Related work
The challenges of bed management without computer
assistance leading to special training programs for the
persons in charge have been analyzed intensively by
Proudlove et al. [10,11]. Bed management has to solve
optimization problems in a context with a high level of
uncertainty: the outcome of a treatment cannot be pre-
dicted fully, and emergency patients need to be treated
immediately.
Case Management as described above has been

reported to potentially improve the treatment and care
trajectory of cancer patients and is increasingly being
implemented in the organizational structure of hospitals
[12]. The challenges for case managers are more com-
plex than those for bed managers in terms of resource
allocation planning, since case managers need to con-
sider the entire clinical pathway. Due to interdependencies
between resources, the decision making process concern-
ing resource allocation was reported to be highly sophis-
ticated [5]. Besides the complex interdependencies, the
variability in the usage of resources plays an important
role [13]. Gallivan et al. investigate the variability of the
patients’ LoS in intensive care after cardiac surgery [13].
Their results indicate that this variability has a consider-
able impact on the intensive care capacity requirements.
They conclude that a booking admission system should
be treated with caution regarding inpatient admissions if
there is a high variability in the LoS.
Mathematical approaches and computer-based assis-

tance designed to solve the optimization tasks described
above were early on proposed and developed. Queuing
Theory and Compartmental Flow Models have been suc-
cessfully applied in a clinical context: McClean reports
on a Decision Support System (DSS) based on a com-
partmental flow model [14]. Fomundam and Herrmann
give an overview of the application of queuing the-
ory approaches in the health care sector [15]. A recent
review of queuing models applied to clinical problems
especially addresses patient planning approaches [16].
Approaches based on queuing theory have also been fre-
quently combined with simulation models. For example,
Cochran and Bharti describe a multistage methodology
to balance inpatient bed utilization in a hospital [17].
The approach combines a queuing model and a discrete
event simulation in order to achieve flow-maximization
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Table 1 Summary of aspects and statements from the requirements interviews

Aspect Statement

Are patient admissions plannable? The majority of admissions are plannable, although with different deadlines.

How do you perform the planning
task?

We use lists for planning and categorize patients into three priority groups.

What are the characteristics of the
priority groups?

The priority is mainly characterized by the length of the planning period.Admissionwithin:

Priority 1 24 hours
Priority 2 a week
Priority 3 long term, in general within two months

How many patients are on a list? Up to 100.

What planning aspects do you con-
sider?

We consider:

• Treatment priority
• Dependencies with respect to the patient’s treatment process
• Availability of the required resources
• Patient’s preferences with respect to the patient’s condition and health insurance
• Uniform resource utilization

How do you use the clinical IT sys-
tem?

We use the clinical information system for:

• Reviewing resources
• Communication
• Booking of resources

Is decision support provided by IT? No, not directly. Indirect support is provided by outlining the planned resources.

What are your demands on a DSS? Modifications of the LoS, treatment, and care plans must be considered as early as
possible. Furthermore, the DSS must pay regard to:

• Patient’s treatment priority
• Patient’s preferences
• Utilization of the wards
• Provision and utilization of emergency beds
• Easy and interactive usage, allowing user modifications and providing

re-computation

Dependencies within the patient’s treatment process shall be considered early. Further-
more, there shall be supported:

• Periodically occurring treatments
• Patient preferences shall be modifiable

in the system. However, queuing theory approaches are
unsuitable for providing decision support on the opera-
tional level in the presence of frequent revisions of LoS
estimates, since the inherently highly variable dynam-
ics resulting from the revisions would not be sufficiently
taken into account. In the related field of operation room
planning, Discrete Event Simulation has been applied
to situations where queuing models cannot be used
accurately [18].
Stochastic scheduling approaches have already been

proposed for admission planning tasks as well. Connors
describes a stochastic scheduling algorithm employ-
ing deterministic and stochastic constraints [19]. The
patient’s characteristics and requirements as well as the
hospital’s status are considered by the algorithm. The

patient’s LoS is modeled stochastically, reflecting the
probability of the LoS. A gamma density function is used
to model the patient’s LoS. The aggregation of similar
resources with predefined characteristics is not consid-
ered. The LoS estimates cannot be modified after the
patient is admitted and are thus static.
Stochastic scheduling has been applied to the task

of maximizing operating room utilization, which bears
considerable similarity to the bed assignment prob-
lem: Arnaout developed and evaluated an approach [20]
based on the Longest Expected Processing Time first
(LEPT) strategy [21]. The LEPT strategy is a stochas-
tic scheduling strategy that processes jobs in decreas-
ing order with respect to the expected processing time.
Similarly, the Shortest Expected Processing Time (SEPT)
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strategy processes jobs in increasing order. Both strategies
are stochastic extensions of the deterministic strategies,
Longest Processing Time (LPT) and Shortest Processing
Time (SPT). Variants of the LEPT and LPT strategies
have been applied in the context of surgery planning as
well [22-24]. Hans et al. consider a robust surgery load-
ing problem with the subject of surgery assignment to
operating room day schedules [22]. A part of their algo-
rithm contains a dispatching rule which is based on the
LEPT strategy. The LPT and SPT strategies are consid-
ered by Lamiri et al. as a constructive heuristic in order
to calculate a basic solution of the planning problem [23].
The LEPT and SEPT strategies are used to compute an
approximate solution of the mathematical model within
this work as well.
Mathematical Programming approaches have also been

successfully applied to health care related problems:
Zhang et al. used a Mixed Integer Program (MIP) to opti-
mize the capacity allocation of operating rooms to special-
ties [25]. MIPs and Binary Integer Programs (BIPs) belong
to the complexity class of NP-hard problems and are thus
in general challenging [26]. Several approximation and
heuristic strategies have been developed to compute a
solution in reasonable time, which, however, cannot be
guaranteed to be optimal [27-30]. Heuristic approaches
differ from approximate ones in that they include an
unforeseeable error in the approximate solution. Hans
et al. describe optimization models for surgery planning:
their approach tries to maximize the capacity utilization,
minimize the risk of overtime, and minimize the num-
ber of canceled admissions [22,31]. That approach allows
operating room capacity to be freed up for additional surg-
eries. Lamiri et al. propose several approaches to improve
the scheduling of surgeries [23,32,33]. Surgery times as
well as operating room capacities were modeled by ran-
dom variables in order to represent their inherent stochas-
tic variability. Belien et al. proposed and evaluated models
for generating surgery schedules with leveled resulting
bed occupancy [34]. However, the existing approaches in
general focus on the rooms or clinical staff. Hospital beds
and ward capacities are usually regarded as an auxiliary
condition—if considered at all.
Chow et al. describe a combination of a mixed inte-

ger optimization model and a Monte Carlo simulation
method in order to improve scheduling practices of
operating room use and the resulting downstream bed
utilization [35]. Surgical schedules are simulated with
reference to historical case records and the resulting
bed requirements are predicted accordingly. The mixed
integer optimization model allows scheduling both sur-
geon blocks and patient types. The simulation allows
predicting the impact of the scheduling rules.
Demeester describes a patient admission schedul-

ing algorithm considering hospital beds and supporting

operational decisions concerning hospital bed assign-
ments [36]. That approach assigns patients to individual
rooms and hospital beds for exact dates. The hospital
beds and hospital rooms are considered a single, individ-
ual resource and it does not contemplate a suitable variety
of hospital beds and rooms in a ward.

Aim
This paper addresses the feasibility of a computer-
supported bed management taking into account aggre-
gated bed capacities (shared resources) and LoS estimates
that can be individually updated during the patients’
treatment. This study aims at answering the question
of how to choose and combine modeling and opti-
mization approaches in order to fulfill the following
requirements (which were identified by the preliminary
investigation):

1. The treatment priority of the patients must be the
major concern and must, thus, be considered with
rights to appeal.

2. The approach should address the bed capacity of a
ward by aggregating beds into groups, instead of
focusing on the assignment of patients to individual
beds. In these groups, beds are equivalent with
respect to the limitations mentioned above.

3. The planning process should be based on LoS
estimates and representational means of uncertainty,
namely appropriate probability distributions for the
LoS adjusted to the variance of the empirical data.

4. It should be possible to dynamically adapt a plan to
changing estimates.

The approach to be presented in this paper aims at
improving the efficiency and effectiveness of the bed
and case management process. This approach, fulfill-
ing the above criteria, should enable a decision pro-
cess that respects the patients’ treatment priorities and
individual preferences (e.g., gender, private or double
room, diagnosis), relies on ward capacities, deals with
the inherent uncertainty of the patients’ recoveries, and
allows a dynamic adjustment to changing LoS estimates.
Due to the complexity of this optimization task, dif-
ferent types of algorithmic approaches (e.g., exact solu-
tion vs. heuristic strategies) needed to be evaluated with
respect to their performance and the quality of their
results.
As far as we know, none of the published approaches

fulfills all these requirements.

Methods
Rationale of the approach
As found by the requirements analysis, the LoS is an
important factor in estimating the capacity utilization.
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Therefore, an adequate decision support should rely on a
system architecture which supports an interactive adjust-
ment of the estimated LoS by the users. The adjustment
of the LoS estimates yields a more precise estimate of
the ward’s usage rate, since the usage rate can be calcu-
lated using the up to date LoS estimates. Our approach
focuses on the assignment of patients to bed contingents
respecting the given patient preferences, in contrast to
an assignment of patients to individual beds as carried
out, for instance, by Demeester et al. [36]. The LoS is
treated as a stochastic variable, hence, optimization has
to be based on expected values. Different optimization
strategies will be compared, including the exact solution
and three heuristic approaches.

Software architecture
Figure 1 shows the software architecture of the DSS devel-
oped. The ward staff in charge of a patient may submit a
patient LoS estimate at any time. An initial LoS estimate
may be ascertained using data from the clinical infor-
mation system (gray). A special user interface, Figure 2,
supports the LoS estimate submission with an interactive
diagram.
The persons in charge of admission planning and

assignments may submit queries to the system. Such
queries specify a set of patients, whose admission dates
and assignments have to be planned. The decision support
module calculates an optimal admission date and assign-
ment for each patient. The implemented prototype user
interface is shown in Figure 3.

Optimization model
Length of stay estimation
The LoS of patient i is modeled by a log-normally
distributed random variable Di, representing the LoS

estimate. The density P(Di = t) represents the prob-
ability that patient i is assigned to a ward at time t.
The cumulative distribution P(Di ≥ t) = 1 − P(Di <

t) = pit represents the probability that patient i is
assigned to a ward at least until time t. This event can
be regarded as a Bernoulli trial with success probability
pit . In general, the distribution may be chosen arbitrar-
ily. Nonetheless, Marazzi et al. [37] and Ruffieux et al.
[38] showed that the log-normal distribution is superior
to other closed-form distributions in the context of LoS
modeling.
The persons in charge submit their estimates of the

expected date of discharge and specify their uncertainty
by defining a time interval for the patient’s discharge.
The system interprets the submitted parameters as the
expectation value μ and the variance σ of the log-normal
distribution.

Expected ward capacity
The expected free capacity of a ward at a given time
is calculated based on the LoS estimates of the patients
assigned to the ward in question within the time frame
being considered. The expected free capacity can be
updated dynamically based on revised LoS estimates.
Let j be the ward in question with a total capacity of

nj beds, and let mj be the number of patients assigned to
the ward. In order to derive the probability distribution of
the ward’s usage rate, a Bernoulli distributed random vari-
able Xit is introduced. The event Xit = 1 represents the
event that patient i is still assigned to the ward in ques-
tion at time t with the corresponding probability P(Xit =
1) = pit . The probability distribution of the use of ward
j at time t can now be calculated with the random vari-

able Sjt =
mj∑
i=1

Xit . The densities P(Sjt = k), k = 0, . . . , pj
may be approximated through a reduction to the normal

Figure 1 Architecture of the DSS. The architecture of the DSS consists of two interfaces: one for LoS submission and another one for query
submission. The LoS estimate can be submitted at any time and is immediately considered in the decision support. An initial LoS estimate may be
derived from the clinical information system (KIS). An admission planning query can be submitted at any time as well. The DSS calculates an optimal
admission date and assignment for the patient group.
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Figure 2 Length of stay submission interface. The expected LoS as well as an uncertainty factor may be entered. Visual feedback is provided by
presenting the resulting cumulative distribution function (CDF) and highlighting the assignment probability in red.

distribution, according to the central limit theorem. How-
ever, the expected use E[ Sjt] of the ward j at time t can be

calculated directly, since E[ Sjt]= E[
mj∑
i=1

Xit]=
mj∑
i=1

E[Xit]=
mj∑
i=1

pit . The expected free capacity is, thus, nj − E[ Sjt]. The

expected usage rate is E[Sjt]
nj =: cjt .

Affinity between clinics andwards
A patient cannot be assigned to an arbitrary ward in the
hospital. In general, only a subset of the wards is suit-
able for a given patient. This subset depends on the clinic
responsible for the treatment of the patient. Furthermore,
usually there exists a ranking between suitable wards. The
suitability (and ranking) of wards with respect to a clinic is
modeled by a corresponding mapping (affinity), assigning
a value α ∈[ 0, 1] to each pair of a ward and a clinic.

Cost factors
Aspects of an assignment benefit are represented by cost
factors: affinity costs, ward occupancy, change of ward
occupancy, and assignment delay.

Affinity costs: The affinity α ∈[ 0, 1] introduced above
represents a cost factor which has to be defined by the

administrator of the DSS for each pair of ward and clinic
in advance. A high affinity (close to 1) represents a high
preference of the ward for nursing a patient treated in the
corresponding clinic. If α = 0, patients treated in the
corresponding clinic cannot be assigned to the ward in
question. This cost factor is referred to as the α cost factor.
Ward occupancy: As solely providing a clinical infrastruc-
ture is no longer rewarded by the DRG-based compensa-
tion scheme, the use of the ward’s capacity is an important
factor in the hospital’s economic status. Wards should
have a high average rate of use. Therefore, the optimiza-
tion approach needs to consider the estimated ward usage
as a cost factor (which will be referred to as the β cost fac-
tor). The β cost factor is defined for each patient i, ward j,

and admission date t:
E[Di]∑
m=t

cjm.

Change of ward occupancy: Frequent changes of the ward
during a clinical stay exposes the patients and the nursing
staff to additional stress and should therefore be avoided.
The corresponding measure is referred to as the γ cost
factor, and is defined for patient i, ward j, and admission

date t by
E[Di]∑
m=t

|cj(m+1) − cjm|.
Assignment delay: The δ cost factor weights the delay
until the patient’s assignment by their treatment priority
in order to reduce the waiting time and to provide a timely
start for urgent treatments.
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Figure 3 Query interface for admission and assignment planning. Each Row contains a patient dataset. The columns labeled with green
contain the data that has to be entered in advance. The red labeled columns contain the result set of the DSS. The dropdown menu allows
choosing the optimization strategy (EXACT, RAND, LEPT, SEPT) to be used.

Mathematical program
The formal description of the admission planning and
assignment problem is given by a Binary Integer Program
(BIP) [27].

Parameters
b = 1, . . . , x = |B| index of patient preferences
i = 1, . . . , n = |P| index of patients
j = 1, . . . ,m = |S| index of wards
t = 1, . . . , k = |T | index of allowed days of admissions
Ujtb random variable representing the number of used
beds of ward j, fulfilling the patient preference b at
date t
Vi random variable representing the LoS of patient i
E(Ujtb) expected number of used beds on ward j at date t,
fulfilling the patient preference b
E(Vi) expected LoS of patient i
Kjb overall bed capacity of ward j, fulfilling the patient
preference b

cjtb = E(Ujtb)
Kjb

cost resulting from an assignment to ward j
at date t by a patient with preferences b
Ci treating clinic of patient i
mα affinity weight factor
mβ ward usage weight factor
mγ ward usage change weight factor
mδ admission delay weight factor

Mappings
• AFF : S × K →[ 0, 1], Mapping of the affinities

between wards and clinics
• Cons : P × B → P , Mapping of patients who

demand the preference b ∈ B
• Cons : S × B → S , Mapping of wards satisfying the

patient preference b ∈ B
• Lmax : P → T , Mapping of the maximal LoS of a

patient within the set P
• Prio : P → {0, 1, 2, 3}, Mapping of patients to their

treatment priority
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Decision variable

• xijt =
{
1, iff patient i is admitted to ward j at time t
0, else

Objective function

min
{ ∑

b∈B

∑
i∈Cons(P ,b)

∑
j∈Cons(S ,b)

∑
t∈T

xijt· (1)

(
mα · AFF(Ci, j)+ (2)

mβ ·
⎛
⎝�E(Vi)�∑

m=t
cj,m,b

⎞
⎠ + (3)

mγ ·
⎛
⎝�E(Vi)�∑

m=t
|cj,(m+1),b − cj,m,b|

⎞
⎠ + (4)

mδ · 1
1 + Prio(i)

·
(
1 − 1

1 + √
t

) )}
(5)

Constraints
• ∀b ∈ B : (

∑
i∈Cons(P ,b)

∑
j∈S

∑
t∈T

xijt = |Cons(P , b)|)
The above restriction represents the requirement
that an admission date and a ward shall be derived for
every patient. The set of patients is partitioned
according to the patient preferences.
In order to ensure the solvability of the BIP, a dummy
ward with high capacity has been modeled. Patient’s
assignment to the dummy ward is accompanied by an
enormous penalty cost and is interpreted as a
dismissal.

• ∀b ∈ B : (∀i ∈ Cons(P , b) : (
∑
j∈S

∑
t∈T

xijt ≤ 1))

The above restriction implements the requirement
that no more than one admission date and one ward
is calculated for a given patient, thus preventing
multiple assignments.

• ∀b ∈ B : (∀j ∈ Cons(S , b) : (∀t ∈ T :

(
∑

i∈Cons(P ,b)

t∑
t1=max(0,t−Lmax)

xijt1 ≤ Kjb − E(Ujtb)))

The capacity of a ward shall never be exceeded. To
prevent exceeding the capacity of the ward, all
assignments of previous admission dates must be
considered. The expression Kjb − E(Ujtb) represents
the expected number of free beds that fulfill the
patient’s preference b at date t of ward j. Exceeding
the ward’s bed capacity can find its cause in the
following scenarios:

1. Earlier patient assignments to ward j have led to
the excess the ward’s capacity.

2. The current patient assignment exceeds the
ward’s capacity.

To prevent both cases of incorrect assignment, a
time-window is defined. The time-window is defined
by the expression of the inner sum:

t∑
t1=max(0,t−Lmax)

.

The variable Lmax represents the maximum LoS of
the considered set of patients.

The BIP is tackled by the software tool SCIP [39] within
the EXACT approach.

Optimization methods
The admission planning and assignment problem has
been described as a BIP in the previous section.

Exact solution
The exact solution represents the mathematically exact
and optimal solution of the BIP. Several software tools
have been developed to provide methods to solve
such problems.
The software tool SCIPa [39], currently the most pow-

erful non-commercial software tool to solve BIPsb, is used
in this project. The exact approach to solve the program
is referred to as the EXACT approach. Notably, dismissals
are modeled as assignments of patients to a residual cate-
gory of beds (at a maximal cost) in order to guarantee the
solvability of the assignment problem. Due to the com-
plexity of the exact algorithm, a timeout has to be defined.
If the algorithm fails to reach a solution in time, it is
stopped without creating an assignment. Thus, a timeout
results in dismissals.

Heuristic strategies
Several heuristic strategies have been proposed to com-
pute solutions in reasonable time. Pinedo [21] provides an
overview of the common heuristic approaches. In heuris-
tic strategies, the assignment problem is usually simplified
by a reduction to an online problem instance. An online
algorithm tackles a given problem instance in a sequen-
tial piece-by-piece manner, whereas an offline algorithm
approaches the problem at hand as a whole, considering
the relevant interdependencies of its parts [40].
Heuristic strategies involve two parameters: the assign-

ment order of the patients and a cost criterion. The cost
criterion represents the individual assignment cost of the
current patient, date, and ward.
The assignment order of the patients is determined by

the following strategies:

Longest Expected Processing Time (LEPT): The LEPT ap-
proach sorts the patients in descending order solely
according to their expected LoS. Afterwards, it assigns
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them to the wards sequentially following a greedyminimal
cost strategy.
Shortest Expected Processing Time (SEPT): The SEPT ap-
proach is similar to the LEPT strategy. The only difference
is that patients are sorted in ascending order with respect
to their expected LoS.
Random choice (RAND): The patients to be assigned are
randomly chosen. The RAND strategy has been imple-
mented as a baseline in order to analyze the effect of
sorting.

All heuristic strategies use a minimal cost strategy for the
final assignment by checking all possible assignments for
the patient under consideration and greedily selecting the
one with minimal cost.
The worst case complexity of the heuristic approaches

is O(|P| · log(|P|) + |S| · |T | · Lmax) for LEPT and SEPT
(due to the sorting procedure) and O(|S| · |T | · Lmax) for
RAND, where |P| is the number of patients to be assigned,
|S| is the number of wards to be considered, |T | is the
number of days in the planning time frame, and Lmax is
the maximal LoS.

Status Quo approach
In order to allow a comparison between the aforemen-
tioned optimization methods (heuristic strategies and
optimal solution) and the status quo proceeding as carried
out by the human bedmanagers, the STATQUO approach
was defined. STATQUO neglects those cost factors that
are usually neglected by the human decision making as
well. Therefore, only the affinity factor (α factor) and
the ward occupancy (β cost factor) are considered. The
assignment order of patients corresponds to the RAND
strategy.

Simulation
All of the above specified planning strategies were evalu-
ated and compared in a Discrete Event Simulation (DES)
[41] study. A virtual hospital environment containing
wards and clinics was designed to represent the system.
An event represents a new admission and assignment
planning task for a group of patients, referred to as the
planning collective, of random size. Each event occurs at
a point in time and affects the state of the system: the
occupancy rate of the wards.
In order to allow a detailed analysis, the states before

and after the event are logged as well as the computed
assignment of the patients and the computation time. The
general proceeding of the simulation is depicted in detail
in Figure 4.

Simulation environment
A highly configurable simulation environment was devel-
oped, allowing a close to reality simulation, based on

Figure 4 Activity diagram of the simulation flow.
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a realistic hospital model. In each run of the simula-
tion, a group of patients with random configurations is
generated, and then at the point of each admission, an
assignment strategy was applied to this group. Charac-
teristics such as the detailed assignment costs, the wards’
states before and after the assignment, and the computa-
tion time, were logged for further analysis. A simulation
is specified in general by the following four constants: 1)
PPY: the total number of patients to be considered over
one year (the basic time interval of a simulation run), 2)
MXP: the maximal number of patients to be assigned to
beds in one single assignment cycle (the actual number is
randomly chosen from the interval between zero and this
maximum), 3) CPD: The number of assignment cycles per
day 4) SPF: the shift of the planning frame, (in days), when
all CPD assignment cycles have been accomplished.

Hospital simulationmodel
The modeling framework allows to specify a hospital by
defining the available clinical units and wards. Different
bed capacities can be set up for each ward by giving the
number of available beds with specific features (e.g., single
vs. double room bed). For each pair of ward and clinical
unit, the affinity quantifies whether (i.e., to what degree) it
makes sense to assign a patient treated in the clinical unit
to a bed of the respective ward.

Patient simulationmodel
Furthermore, the modeling environment is able to gen-
erate data sets of patient groups with individual patient
characteristics: treatment priority, gender, treating clinic,
initial LoS estimate, and individual preferences (sin-
gle vs. double room, etc.). Valid admission dates are
derived from the treatment priority. An exemplary data
set for one patient would be: (TreatmentPriority=2,

Gender=male, TreatingClinic=Urology, LoS=5, Prefer-
ence=SingleRoom).
The individual characteristics of the patients are ran-

domly generated based on given statistical distributions:
the LoS distribution is based on publicly available, offi-
cial data of the German DRG statisticsc (LoS mean values,
upper and lower LoS bounds for the different groups
according to the DRG classification system, and preva-
lence data). See Figure 5. The statistical distributions
of treatment priority, gender, treating clinic, and patient
preferences must be defined accordingly in order to per-
form the simulation.

Statistical analysis
The simulation data as well as the simulation results
are analyzed by descriptive statistics. The mean, median,
standard deviation, first and third quartile are calculated
and presented in boxplot diagrams.

Ethics approval and informed consent
Neither institutional ethics approval nor written consent
from participants were required to perform this study,
since all patients were virtually generated according to
publicly available statistical data.
Informed consent was provided by the case manage-

ment and bed management department.

Hard- and software platform
The DSS was developed and evaluated on a Lenovo
Thinkpad R61, Intel Core 2 Duo CPU 2.0 GHz and 2048
MB RAM.
The operating system was Ubuntu 10.04 GNU/Linux

i686 running a 2.6.28 Kernel. The major part of the DSS
was developed in Java version 6. The software tool SCIP
[39] was used to solve the BIP.
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Table 2 Case distribution of UK Aachen clinics during the
year 2008

Clinic Inpatient cases Avg. LoS

Absolute Relative Freq.

Ophthalmic clinic 2040 4,65% 4,1

Surgical clinic 2704 6,15% 8,9

Gynecological clinic (Breast) 183 0,42% 7,3

Gynecological clinic 88 0,2% 3,8

(Endocrinology)

Gynecological clinic 2458 5,59% 5,4

Dermatology 1234 2,81% 6,6

Vascular surgery 661 1,5% 9,6

Otolaryngology 2093 4,76% 5,9

Pediatrics 4674 10,63% 5,5

Pediatric psychology 408 0,93% 31,2

Child cardiology 403 0,92% 6,5

Nuclear medicine 237 0,54 % 3,4

Orthopedics 1515 3,45% 9,0

Accident surgery 1160 2,64% 10,1

Palliative medicine 212 0,48% 12,6

Plastic surgery 901 2,05% 11,6

Psychiatry 1693 3,85% 18,4

Radiation therapy 782 1,78% 13,8

Cardiac surgery 1296 2,95% 18,4

Med. Clinic I 7040 16,02% 6,3

Med. Clinic II 1453 3,31% 11,9

Med. Clinic III 3116 7,09% 8,0

Med. Clinic IV 1677 3,82% 7,6

Neurosurgery 1227 2,79% 12,5

Neurology 2697 6,14% 8,6

Urology 1323 3,01% 7,7

Facial surgery 676 1,54% 6,4

Absolute and relative frequencies of inpatient cases and average LoS divided by
clinic of UK Aachen in the year 2008.

Results
Simulation data
The general parameters were set as follows: PPY:= 45,000,
MXP:= 110, CPD:= 5, SPF:=1.

Hospital environment
The model configuration for this study was derived from
the actual situation at UK Aachen using datasets provided
by our local medical controllers. Additional information
was elicited by interviews with the relevant representa-
tives of the UK Aachen. The model contained 27 clinics,
43 wards of 15 different types, and 72 affinities, quan-
tifying the associative strength between a clinic and a
ward based on the results of the interviews within the

Table 3 Ward types of UK Aachen

Beds

Type Overall Single Female Double Male Double

Ward G 30 8 10 12

Ward K 16 2 7 9

Ward SC01 30 4 11 15

Ward SC02 32 8 10 14

Ward SC03 14 2 6 8

Ward SC04 30 8 10 12

Ward SC06 32 8 10 14

Ward SC07 27 6 9 12

Ward SC08 14 2 6 8

Ward SC09 32 8 10 14

Ward SC10 32 8 10 14

Ward SC11 16 2 7 9

Ward SC12 32 8 10 14

Ward SC15 4 2 2 2

DUMMY 1000 300 350 350

Ward types of UK Aachen characterized by the contingent of different bed
classes.

requirements analysis. The data characterizing the clinics
is shown in Table 2 and the data of the wards in Table 3
respectively.

Patient planning collectives
The LoS distribution was derived from the DRG-Browserd
and is portrayed in Figure 5. The distribution of patients
treated by specific clinics over the year (treating clinic)
was inferred from the annual report of UK Aachen [42]
and is summarized in Table 2. The sizes of the planning
collective were uniformly chosen from the set {1, . . . , 110}
according to the interviews of the requirements analysis.
The treatment priority was chosen based on the statis-
tics portrayed in Table 4. The gender distribution was
estimated to be 56% male and 44% female patients. The
distribution of patient preferences reflected the charac-
teristics of the ward types portrayed in Figure 3, e.g., for
“Ward G”: the probability for a single bed is 8/30 and for
a female patient in a double bed room 10/30.

Table 4 Distribution of treatment priorities

Treatment priority Probability

0 0.1

1 0.2

2 0.3

3 0.4

The treatment priorities and their corresponding statistical occurence rates.
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Results of the simulation
Different assignments were calculated and recorded, for
each of the assignment strategies. The results were subse-
quently analyzed considering the following aspects:

• The ratio of successful assignments and dismissals
• The performance of the assignment calculation
• The distribution of the cost factors

Successful assignments vs. dismissals
The boxplot in Figure 6 depicts the statistical aspects
of the patient dismissal ratio for each planning strategy.
The red dot indicates the mean value. The boxplot shows
that there is a great similarity in their statistical aspects
between the heuristic strategies LEPT, SEPT, and RAND
(mean ca. 0.43, median ca. 0.44, first quartile ca. 0.37, third
quartile ca. 0.51). Furthermore, the boxplot shows that the
EXACT strategy has the lowest mean (0.4060) andmedian
(0.4123) dismissal ratio. However, the range between the
lower (0.2571) and upper quartile (0.5696) of about 0.3125
is greater than those of heuristic strategies (ca. 0.14). Thus,
the lower mean and median outcome is accompanied by
a higher variance (0.0455 for the EXACT and ca. 0.027
for the heuristic strategies). The simple status quo pro-
ceeding has a high dismissal ratio, almost 0.7471, and
thus discloses the advantage of using one of the proposed
admission and assignment strategies.
Figure 7 portrays in a boxplot the statistical aspects of

the EXACT strategy with respect to the size of the plan-
ning contingent. The boxplot shows an adjusted mean
value indicated as a blue dot, besides the mean value
highlighted in red. The adjusted mean value represents

Figure 6 Boxplot of dismissal ratios refined by strategy. The
Statistical characteristics of the dismissal ratios refined by planning
strategy are depicted by a boxplot.

Figure 7 Boxplot of the EXACT strategy’s dismissal ratios refined
by planning contingent size. The Statistical characteristics of the
EXACT strategy’s dismissal ratios refined by planning contingent size
are depicted by a boxplot.

the mean dismissal ratio with respect to the planning
contingent size disregarding dismissals resulting from a
penalty timeout of the mathematical program. The com-
putational time limit of the EXACT approach was set
at 300 seconds. The boxplot reveals an increase in the
proportion of dismissals resulting from the penalty time-
out with a growing size of the planning contingent. For
groups of sizes between 81 and 110 patients, 11.63% of
the dismissals were due to the penalty timeout. This phe-
nomenonmay be explained by considering the complexity
of the mathematical program:

• An admission and assignment is computed for a
maximum of 110 patients at once.

• The virtual hospital environment contains 43 wards
in total.

• The maximal planning time frame is limited to 40
days.

• Thus, the size of the mathematical program is up to:

– 110 · 43 · 40 = 189, 200 decision variables,
– 1 + 110 + 43 · 40 = 1831 constraints.

Although the number of variables and constraints does
not by itself allow of reasoning about the computational
complexity in general, MIPs with these characteristics are
usually considered hard to solve. The boxplot portrayed
in Figure 7 shows that the dismissal ratio realized by the
EXACT strategy, neglecting dismissals from the penalty
timeout, has a maximum which is 0.4119 lower than
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those of the heuristic strategies with ca. 0.43 as portrayed
in Figure 8.
Figure 8 shows the dismissal ratio with respect to

the planning contingent size of the RAND strategy in
a boxplot. The statistical characteristics (mean ca. 0.43,
median ca. 0.44, first quartile ca. 0.38, third quartile ca.
0.51) of this aspect are almost the same as those of the
heuristic strategies and are thus only portrayed for the
RAND strategy and not for the LEPT and SEPT strate-
gies. The boxplot reveals that the planning contingent
size has no influence on the dismissal ratio. Interestingly,
the interquartile range is greater for planning contingent
classes of up to 20 patients (ca. 0.27) compared to all other
classes (ca. 0.14) in both the EXACT and the heuristic
strategies.

Performance
Figure 9 depicts the statistical aspects of the computa-
tion time for the different strategies in a boxplot (the
y-axis is base two logarithmically scaled). The boxplot
reveals a drastically longer computation time needed by
the EXACT strategy compared to the heuristic ones. The
EXACT strategy is characterized by a mean value of ca.
141 seconds and a median of ca. 106 seconds, whereas the
heuristic strategies are characterized by a mean value of
ca. 2.6 seconds andmedian value of ca. 2 seconds, thus the
EXACT strategy takes almost fifty times longer than the
heuristic ones.
Furthermore, the boxplot shows a strong similarity in

the statistical aspects (first quartile ca. 842, mean ca.

Figure 8 Boxplot of the RAND strategy’s dismissal ratios refined
by planning contingent size. The statistical characteristics of the
RAND strategy’s dismissal ratios refined by planning contingent size
are depicted by a boxplot.

Figure 9 Boxplot of computation time with respect to strategy.
The statistical characteristics of the computation time of an
assignment, differentiated by strategy, are highlighted by a boxplot.
The y-axis is logarithmically scaled (base two).

2589, median ca. 2006, third quartile ca. 3739) between
the heuristic strategies, which indicates that the sorting
overhead can be neglected.

Cost factors
Figure 10 shows statistical aspects of the total cost out-
come of the planning strategies in a boxplot. Dismissals
were not considered in the statistical analysis of the cost
factors, since the dismissal penalties would bias the cost
outcome drastically. The boxplot indicates a slightly lower
mean and median realization for the EXACT strategy
(mean ca. 3.4338, median ca. 2.9049) compared to the
heuristic ones (mean ca. 3.58, median ca. 3.12). Fur-
thermore, the boxplot reveals similar statistical aspects
between the heuristic strategies (mean ca. 3.58, median
ca. 3.12, first quartile ca. 1.72, third quartile ca. 4.80).
Figure 11 shows statistical aspects of the cost factor con-

tribution of the EXACT strategy in a boxplot. The boxplot
shows that the β cost factor (mean ca. 2.369, median ca.
1.92, first quartile ca. 1.019, third quartile ca. 3.093) is
the most influential cost factor on the total outcome. The
second most influential factor is the δ cost factor (mean
ca. 0.56, median ca. 0.456, first quartile ca. 0.305, third
quartile ca. 0.869).
Figure 12 shows statistical aspects of the cost factor con-

tribution of the RAND strategy in a boxplot. The statisti-
cal characteristics with respect to the partial cost factors
were very similar between the heuristic strategies. Hence,
only the statistical characteristics of the RAND strategy
are analyzed further. The boxplot shows that the β cost
factor (mean ca. 2.645, median ca. 2.247, first quartile ca.
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Figure 10 Boxplot of total cost comparison of strategies. The
boxplot shows the statistical characteristics of the total cost outcome
refined by strategy.

1.027, third quartile ca. 3.662) is the most influential cost
factor on the total outcome as well.
Regarding the mean value, the contribution of the β

cost factor to the overall costs was approximately 74%
when using heuristic strategies and 69% in the case of the
EXACT approach. Accordingly, the contribution of the δ

cost factor was 12% for the heuristic strategies and 16%
for the EXACT approach. Thus, considering the EXACT
strategy, the δ cost factor contributes slightly more to the

Figure 11 Boxplot of the EXACT strategy’s cost factors. The
boxplot shows the statistical characteristics of the EXACT strategy
refined by cost factor.

Figure 12 Boxplot of the RAND strategy’s cost factors. The
boxplot shows the statistical characteristics of the RAND strategy
refined by cost factor.

total cost, while the β cost factor contributes less, in con-
trast to the heuristic strategies. The overall lower cost of
the EXACT approach was thus accompanied by a reduc-
tion of the β and an increase of the δ cost factor, compared
to the heuristic strategies. A higher contribution of the
δ cost factor is attributed to a wider use of the planning
time frame. Hence, the planning time frame is used more
broadly by the EXACT strategy compared to the heuris-
tic one and results in an overall lower cost outcome and a
lower dismissal ratio.

Discussion
Prior work, and the interviews conducted for the elic-
itation of the requirements, showed the great potential
of computer aided decision support (CDS) applied to
patient admission planning and assignment. CDS has
been shown to improve the hospital’s resource utilization.
In general, all the resources necessary for the treatment of
each patient must be considered during the planning pro-
cess. In contrast, our work focuses on a single resource:
the bed capacity. Other important and critical resources,
such as the hospital staff or the operating theater, and
their interdependencies, were neglected. Nonetheless, the
case managers must consider these resources during
their planning task as well. Therefore, the improvements
achieved by the optimization approaches may not be
reproduced at the same level in real life. However, bed
capacity is one of the most important resources and con-
siderably affects decisions in patient admission planning.
The availability of intensive care beds has been reported
to be a major bottleneck at UK Aachen, having a direct
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influence on the cancellation of surgeries. Our decision
support approach, based on up to date LoS estimates, is
likely to be more accurate than the static approach which
uses fixed LoS estimates, since changes of resource use are
taken into account by the algorithmic planning method-
ology immediately. Our approach closely follows – often
unpredictable – changes of the real situation and can thus
be assumed to trigger more accurate decisions
Using individual estimates of LoS has specific advan-

tages and drawbacks: on the one hand, changes in the
LoS can be considered immediately in planning, and may
reflect the complex individual conditions of patients. On
the other hand, the individual estimates may be inaccurate
and depend on the staffs’ experience and training. Chow
et al. proposed an alternative, by deriving scheduling
guidelines from recurring patterns of optimized schedules
generated by their simulations: the guidelines are designed
to improve the scheduling decisions without implement-
ing optimization algorithms [35]. Demeester describes a
patient admission scheduling algorithm considering hos-
pital beds and providing operational decision support
concerning the hospital bed assignment task as well [36].
In contrast to our approach, Demeester assumed that the
patient’s admission date and expected LoS are known in
advance [36]. Furthermore, adaptations of the patients’
LoS cannot be carried out, and hence are not consid-
ered by the decision support method. The consolidated
approach proposed by our work may yield an improved
robustness in the reliability of the capacity estimates. Fur-
thermore, our approach can be generalized by considering
universal resource capacities by future investigations. The
evaluation of our approach reveals its principal qualifica-
tion. Further investigations should study the potential of
this developed DSS in clinical practice.
The limitation to a single resource, i.e., hospital beds,

could be relaxed by considering the patients’ clinical path-
ways. Following this approach might further improve this
method of decision support [43,44]. However, the con-
sideration of individual clinical pathways will probably
increase the planning complexity and uncertainty. Fur-
thermore, clinical pathways are neither comprehensively
standardized nor clinically well established.
In addition, the existence of emergency patients which

have to be treated immediately heavily influences the
planning problem. Emergency patients arrive at random
and cannot be scheduled in advance. A common approach
to considering emergency patients in advance is to pro-
vide a contingent of extra beds. However, the provision
of extra beds causes further expenses for the hospital.
The fixing of an extra bed contingent size is a strate-
gic decision to be made by the hospital’s management.
Decisions on the choice of resource capacity can be sup-
ported by queuing theory approaches [15], in combina-
tion with a simulation and flow analysis [45,46], or by

stochastic processes [47] in general. All these approaches
require accurate and detailed annual statistics of all the
relevant planning aspects of emergency patients. The pro-
posed DSS does not take into account the occurrence of
emergency patients, but assumes a sufficient amount of
extra beds reserved for emergency patients. However, an
explicit consideration of emergency patients by the DSS
might further improve this decision support method as
well.
The transfer of patients to other beds is considered

only implicitly. Due to ward abstraction, i.e., bed alloca-
tion irrespective of individual beds, transfers within the
same wards can be ignored. Transfers to different wards
may be interpreted as a discharge from the prior ward
and an assignment to the subsequent ward. Following
this interpretation, transfers are implicitly regarded by the
DSS. However, taking transfers explicitly into account in
advance might also further improve the DSS.
Overall, the DSS might be improved by considering fur-

ther critical resources, the clinical pathway of patients,
emergency patients, algorithmic improvements, and a
weight adaptation of the cost factors.

Requirements analysis
The interviewees reported a classification of patients into
priority groups reflecting their treatment urgency. The
characteristics of the patients in the different priority
groups were not further analyzed. However, an analysis
of the priority groups might reveal interesting patterns
which could be used to improve patient admission plan-
ning as well. For instance, it might happen that certain
clusters of patients appear in the groups, perhaps lead-
ing to the exhaustion of certain resources. Besides, further
analysis of the characteristics of the priority groups might
be interesting in order to adapt the resource availability to
reflect upcoming demand and to avoid congestion.

Comparison between the heuristic approaches and the
exact solution
Given the similarity of all the heuristic approaches in their
performance, we argue that it is sufficient to compare
the performance of only one heuristic approach with the
exact solution. The complexity of the heuristic algorithms
(reported in the methods section) justifies this argument:
considering a maximum of 110 patients to be scheduled,
the sorting complexity may well be neglected. The com-
parison of the dismissal ratios is complicated by the fact
that there are two genuinely different types of dismissals
in the case of the EXACT approach: 1) dismissals due to
exhausted bed capacity 2) dismissals due to exceeding the
time limit of the algorithm. The first kind of dismissal
should clearly be minimized by the exact solution of the
optimization problem. Considering the effect of the time-
out, the strong positive correlation between the size of
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the group to be scheduled and the dismissal ratio in the
EXACT case is not surprising.

Comparison with the baseline STATQUO approach
The baseline approach used in our study only pays regard
to a subset of the aspects already considered by the opti-
mization approach. In a real life scenario, further aspects,
such as the operating room capacities and other criti-
cal resource capacities, are usually taken into account by
the persons in charge. Therefore, the STATQUO criteria
might not always guide real life decisions.

Weight adaptation of the cost factors
All weight factors of the partial cost factors were fixed to
1.0. Hence, each cost factor is regarded as having equal
weight. The weight factors can serve to adjust the impact
of the partial cost factors, depending on the aim of the
optimization strategy. A suitable weight combination for
a given strategy needs to be investigated by an additional
study.

Algorithm improvements
Although our approach allows of adaptable LoS estimates
and ward utilization estimates, stochastic variability is
neglected in the final BIP. To enable an exact solution
within an acceptable time, the stochastic mathematical
program was reduced to a deterministic BIP. A stochastic
mathematical program might lead to an improved assign-
ment, due to a more accurate representation of the mod-
eling reality. Discretization of a stochastic program is
usually performed by substituting the random variables by
constant values. The constant values are usually obtained
by adding some slack value, e.g. the standard deviation, to
a constant factor, e.g. the mean outcome of the substituted
random variable. Thus, the resulting program does not
represent the reality as accurate as the stochastic program,
due to neglecting the stochastic variability. However, an
exact stochastic mathematical program of the necessary
complexity will most likely fail to solve the problemwithin
an acceptable time [48].
The bed assignments calculated by the heuristic strate-

gies might be improved by applying meta-heuristic strate-
gies, such as Tabu Search [36], Evolutionary Approaches
[49], or Simulated Annealing [29,50].

Simulation procedure
The simulation conducted to evaluate themodel used data
taken from a real hospital setting. The main characteris-
tics and quantities of the model, namely the capacity and
configuration of the wards, the linkage between the wards
and the clinics, and the distribution of the treating clin-
ics, correspond to the situation at UKAachen. Besides, the
patients’ characteristics were based on the real distribu-
tions as well. The distributions of the planning collective

size, gender, treatment priority, and individual patient
preferences were derived from the interviews. The statis-
tics concerning the number and type of treatments refer
to the annual report of UK Aachen [42]. The LoS distribu-
tion was given by the German national DRG statistics as
provided by theDRG-Browser. In this way, errors resulting
from unrealistic or biased simulation data could be min-
imized. However, the simulation probably still possesses
unrealistic patient datasets, for instance, male gynecology
patients.
The simulation revealed a quite high dismissal ratio, of

approximately 40% realized by the EXACT and heuris-
tic strategies, and approximately 74% realized by the
STATQUO approach. This high ratio may be attributed to
the fact that each patient is considered exactly once for
admission planning. Patients who cannot be planned for
at the planning time point are dismissed and will not be
planned for in the future. In reality, a patient that cannot
be planned for at the planning time point will usually be
considered for planning again during the patient’s plan-
ning period, and is thus not considered as dismissed at
that point in time. A dismissal ratio of 40% may be inter-
preted as meaning that 60% of the patients on the list are
planned successfully, whereas 40% could not be assigned.
The effect of LoS revision was not analyzed within the

simulation study due to the complexity of such an anal-
ysis. In contrast to the LoS estimations (which are based
on the DRG statistics), a reliable data source for a realis-
tic simulation of LoS adaptions was not available. Thus,
we had to postpone a simulation based evaluation of the
effects of LoS adaptations. In the future, the necessary
data can be systematically acquired during the routine use
of the module proposed in this paper; the organizational
prerequisites for the routine use have yet to be provided.
Nonetheless, we could show the feasibility of using a cost-
based patient admission assignment methodology, which
takes into account adaptable length of stay estimations
and aggregated resources. Precisely analyzing LoS adap-
tion effects clearly is an important and valuable topic for
ongoing research.

Conclusion
Our requirements analysis revealed a strong need for
computer-based decision support in the context of case
and bed management.
Our work focused on the implementation of a decision

support system for admission planning and bed assign-
ment, taking into account the availability of suitable hos-
pital beds. Decision support relies on an algorithmic core,
providing the calculation of an optimal admission and
assignment plan for a given group of patients and its
implementation within a software system.
Patient admission and assignment is based on up to

date and adaptable LoS estimates, taking into account the
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aggregated contingents of hospital beds, treatment priori-
ties, patient preferences, and a linkage between clinics and
wards.
The admission planning and assignment problem was

formally described by a BIP. In order to solve the BIP,
two classes of strategies were developed and analyzed: the
first class consisted of an exact approach, and the other
class contained three heuristic strategies. Four partial cost
factors have been introduced in order to represent the
advantage of an assignment: affinity costs, ward occu-
pancy, change of ward occupancy, and assignment delay.
The weighted sum of the partial cost factors results in
the assignment costs. The objective of the BIP is to min-
imize the total assignment costs and is, thus, following a
min-cost strategy.
Discrete event simulation revealed the following facts:

the application of optimization strategies following a min-
cost approach yields a marked reduction in patient dis-
missals compared to a status-quo approach. In theory,
this results in an increase in ward utilization. In addi-
tion, calculating the exact solution with a MIP solver
resulted in only minor advantages with respect to costs
and the dismissal ratio compared to the heuristic strate-
gies. Moreover, calculating an adequate exact solution
requires almost fifty times more computational time
than the heuristic strategies. Our study analyzed and
compared three heuristic strategies: the LEPT, SEPT,
and RAND strategies. LEPT and SEPT did not reveal
considerable advantages over the RAND strategy, and
should thus be omitted because of the computational load
resulting from the sorting procedure. An adequate solu-
tion to the bed assignment problem is calculated much
faster by the heuristic strategies than by the exact opti-
mization. Thus, the RAND strategy utilizing a min-cost
optimization approach can be considered as the pre-
ferred method for bed assignment in the case of shared
resources.
The simulation revealed a promising reduction in the

patient dismissal rate by applying the proposed DSS
strategies and, hence, may present a way to increase the
hospital’s throughput in the future.

Endnote
a http://scip.zib.de/
b http://plato.asu.edu/ftp/milpc.html
c www.g-drg.de
d www.g-drg.de
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6. Zöller A, Braubach L, Pokahr A, Rothlauf F, Paulussen T, Lamersdorf W,
Heinzl A: Evaluation of a Multi-Agent System for Hospital Patient
Scheduling. International Trans Syst Sci Appl 2006, 1:375–380.

7. Hutzschenreuter AK, Bosman PAN, Blonk-Altena I, van Aarle J, La Poutré H:
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