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Abstract

Background: Numerous genome-wide gene expression studies of bipolar disorder (BP) have been carried out.
These studies are heterogeneous, underpowered and use overlapping samples. We conducted a systematic review
of these studies to synthesize the current findings.

Methods: We identified all genome-wide gene expression studies on BP in humans. We then carried out a
quantitative mega-analysis of studies done with post-mortem brain tissue. We obtained raw data from each study
and used standardized procedures to process and analyze the data. We then combined the data and conducted
three separate mega-analyses on samples from 1) any region of the brain (9 studies); 2) the prefrontal cortex (PFC)
(6 studies); and 3) the hippocampus (2 studies). To minimize heterogeneity across studies, we focused primarily on
the most numerous, recent and comprehensive studies.

Results: A total of 30 genome-wide gene expression studies of BP done with blood or brain tissue were identified.
We included 10 studies with data on 211 microarrays on 57 unique BP cases and 229 microarrays on 60 unique
controls in the quantitative mega-analysis. A total of 382 genes were identified as significantly differentially
expressed by the three analyses. Eleven genes survived correction for multiple testing with a q-value < 0.05 in the
PFC. Among these were FKBP5 and WFS1, which have been previously implicated in mood disorders. Pathway
analyses suggested a role for metallothionein proteins, MAP Kinase phosphotases, and neuropeptides.

Conclusion: We provided an up-to-date summary of results from gene expression studies of the brain in BP. Our
analyses focused on the highest quality data available and provided results by brain region so that similarities and
differences can be examined relative to disease status. The results are available for closer inspection on-line at
Metamoodics [http://metamoodics.igm.jhmi.edu/], where investigators can look up any genes of interest and view
the current results in their genomic context and in relation to leading findings from other genomic experiments in
bipolar disorder.
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Background
Bipolar disorder (BP) is a serious mental illness with
considerable public health implications. It affects 1-2%
of the general population [1], and costs the United States
approximately $78.6 billion dollars annually in direct
and indirect costs [2]. It is clear from family, twin and
adoption studies that genetic factors play an important
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role in BP. Family studies show that compared to the
general population the risk of disease is 5–10 times
greater in first-degree relatives of a proband with bipolar
disorder, and estimates of its heritability from twin stud-
ies range from 80-90% [3]. Yet, despite the overwhelm-
ing evidence, the genetic causes of BP remain largely
unknown. This is likely due to the fact that the etiology
of BP is complex and probably involves multiple inde-
pendent and interacting genetic factors [4].
Microarray technology provides a powerful tool for

studying the genetic contribution to complex disorders
[5]. It allows for the measurement of gene expression
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levels genome-wide in a range of tissues and across dis-
ease conditions. A number of studies have used this
technology to examine expression differences in BP ver-
sus unaffected controls with the goal of identifying genes
or pathways of genes that are up or down regulated in
the disorder [6,7]. These studies have typically used
RNA samples from either peripheral blood or brain tis-
sue [8]. The advantage of the former is that it is rela-
tively easy to collect from participants. However, it may
not be the relevant tissue for psychiatric disorders, that
presumably have origins in the brain, and there may be
constitutive differences in gene expression between
blood and the brain. By contrast, the brain is the rele-
vant tissue to study for BP. The disadvantage of brain
tissue is that it can only be collected after the participant
is deceased, which may limit the ability to collect suffi-
ciently large samples. Additionally, because of the rela-
tive instability of RNA, post mortem factors (for e.g.
brain tissue pH, coma, respiratory arrest, hypoxia, sei-
zures, dehydration, multiple organ failure, and head in-
jury) may confound the relationship between measured
expression levels and disease status [9,10]. As a result,
findings from studies using brain tissue have largely been
inconsistent.
In order to synthesize the current findings to increase

accuracy, we carried out a systematic review of existing
gene expression studies of BP in humans. Motivated by
the consideration that studies with brain would be the
most informative for the etio-pathogenesis of BP, we
conducted a quantitative mega-analysis of those studies
carried out with this tissue. By combining data across
studies to increase the sample size and using consistent
procedures to process and analyze the data, we sought to
summarize the findings from these studies and clarify
their relevance for BP. The findings from this analysis are
made available on Metamoodics (http://metamoodics.igm.
jhmi.edu), a bioinformatics resource that synthesizes the
results from genomic experiments in mood disorders and
displays them within their genomic context.

Methods
Literature search and data collection
We identified genome-wide gene expression array stud-
ies in BP by conducting a broadly cast literature search
of the PubMed database through November 6, 2012 with
the following keyword algorithm: (bipolar depression OR
bipolar disorder OR mood disorder OR affective disorder
OR major depression) and (gene expression OR micro-
array). A total of 1,387 articles were returned. These
were manually reviewed by looking at their titles, ab-
stracts, keywords, and full text as needed to identify
those that reported on a genome-wide study in BP in
humans. We further searched the references of these
articles to identify any other articles that were potentially
missed by the initial PubMed search. In addition to the
literature search, we also queried public microarray re-
positories including Gene Expression Omnibus (GEO)
(http://www.ncbi.nlm.nih.gov/geo/) [11] and Array Ex-
press (http://www.ebi.ac.uk/arrayexpress/) [12]. We also
consulted with clinicians and researchers in the field to
identify other unpublished data sources.
For inclusion in the review, the study had to be a

case–control genome-wide gene expression array study
in BP in humans. For the quantitative mega-analysis, we
included only those gene expression array studies carried
out with Affymetrix GeneChip Human Genome Arrays
(http://www.affymetrix.com/estore/browse/products.jsp?
productId=131453#1_1). The overwhelming majority of
studies were carried out with this popular platform, and
this allowed us to more efficiently standardize the pre-
processing algorithm, the analyses, the significance
thresholds and annotation builds across all studies [13].
We completed an evidence table with the following in-

formation extracted from each of the included studies:
(i) principal investigator/corresponding author; (ii) disor-
ders included; (iii) sources of samples; (iv) total number
of samples assayed; (v) brain region/RNA source; (vi)
microarray platform; and (vii) PubMed ID.
We sought to obtain the raw gene expression array

data by scanning the literature to identify GEO accession
identifiers (ID) or links for downloadable feature-level
extraction output (FLEO) files such as CEL files. If the
main text did not contain an accession ID or a link to
any FLEO files, we searched existing repositories and the
research group’s laboratory web pages. If unsuccessful,
we wrote to the authors. If multiple publications used
overlapping data, we identified the most comprehensive
dataset available.

Data processing
In order to consistently handle all datasets and eliminate
bias introduced by relying on different algorithms used
in the original studies, we obtained the raw data and
converted these into analysis-ready gene expression data
matrices (GEDM) by processing each study individually
using a single analysis pipeline as illustrated in Figure 1.
The processed GEDM’s for each study were then com-
bined for the mega-analysis.

Step 1: Normalization and background correction using
Frozen Robust Multi-array Analysis (fRMA)
CEL files obtained from each study (where each CEL file
contained raw intensity values for thousands of probes/
features from a single array hybridized to an individual
sample) were pre-processed by applying normalization
and background correction to the data. There are several
established statistical methods for pre-processing raw
gene expression array data. These can be categorized as
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Figure 1 Workflow for data processing and analysis.
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multi-array, which require multiple samples/arrays to be
analyzed simultaneously (e.g., MAS5 [14], RMA [15],
gcRMA [16], MBEI [17], PLIER [18]), or single-array
(e.g., fRMA [19]). Here, we used fRMA, which is a
single-array preprocessing method that retains the
`advantage of multi-array preprocessing. Briefly, fRMA
uses publicly available gene expression array data on a
specific array platform to create vectors or parameter es-
timates that are frozen. The basic idea is that the frozen
parameter estimates are created from gene expression
array datasets on diverse biological samples from a range
of tissues and, therefore, capture the vast heterogeneity
within and between samples/arrays. The frozen vectors
are then used to pre-process (scale) a new gene expres-
sion array from the same platform. Because fRMA is
specific to a single platform, a separate frozen vector
must be created for each of the different platforms. For
studies carried out with the Affymetrix U133A and
U133 Plus 2.0 platforms, we used previously generated
frozen vectors available as part of the frma package in R
[20,21]. For studies carried out with the U95AV2 plat-
form, we generated our own frozen vectors. We did this
by downloading from GEO all gene expression array
studies done on the U95AV2 platform using GEO
Platform Accession: [GEO: GPL8300]. A total of 5,175
samples/arrays were returned on this platform. After fil-
tering for Homo sapiens and querying the GEO database
for the individual CEL files, a total of 2,633 samples/
arrays were retained. These were grouped into experi-
ments/batches based on their GEO Series ID. There
were a total of 110 unique experiments/batches from di-
verse tissues ranging from 2–233 arrays/samples per ex-
periment/batch. We retained all experiments/batches
with greater than or equal to 5 samples/arrays, and used
the frmaTools package [22] to build a frozen/fixed
parameter vector with the makeVectorPackage.
After pre-processing each study using fRMA a matrix

of normalized and background corrected (log2) inten-
sities were obtained for each sample/array. These were
aggregated for each study yielding an m x n study-
specific matrix with m probesets and n samples/arrays.

Step 2: Removing outliers using Principal Component
Analysis (PCA)
In this step, each m x n study matrix from the previous
step was analyzed to identify and remove any poor qual-
ity samples/arrays. PCA and hierarchical clustering were
used to visualize the relationship between samples/arrays
and determine if any were outliers. The boxplot, cor,
sample covariance vs. sample means, prcomp, and hclust
packages in R [23] were used for sample/array quality
control and visualization.

Step 3: Filtering probesets using Presence Absence Calls
with Negative Probesets (PANP)
Here, individual probesets were filtered based on
present/absent calls estimated using an algorithm de-
noted as PANP (Presence Absence Calls with Negative
Probesets) [24]. Unlike present/absent calling algorithms
such as MAS5 [14] which require both perfect match
(PM) and mismatch (MM) probe data, the PANP algo-
rithm was designed to analyze preprocessed data from
PM probes only, such as was the case with our data.
PANP takes advantage of so-called Negative Strand
Matching Probesets (NSMPs), which are found on arrays
when the Expressed Sequence Tag (EST) [25] data from
which probeset sequences are created is conflicting, and
probesets in both directions at the locus are included on
the array. The NSMPs do not hybridize to any target,
and thus provide a good proxy as a per-sample control
for non-specific hybridization. Using Affymetrix annota-
tion tables [26], we identified all probesets labeled as
NSMPs that were not characterized with “cross hyb,” in-
dicating the probeset may match to another gene. We
then mapped the NSMPs to the ENSEMBL [27] tran-
script database version GRCh37. p8 and classified the
NSMPs into four categories [28]: (i) probesets that did
not map to a transcript at all; (ii) probesets that detected
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sense transcripts; (iii) probesets that detected antisense
transcripts; and (iv) probesets that detected a sense tran-
script that overlaps with an antisense transcript.
For each gene expression m x n study matrix, we plot-

ted the probability distribution of intensities using all
probesets for visualization and quality control purposes.
As expected, the NSMPs that did not map to a tran-
script at all were generally on the lower end of the inten-
sity distribution. We used these confirmed NSMPs as
input to the panp package in R [29]. Briefly, PANP uses
the cumulative probability distribution of signal inten-
sities calculated from the NSMPs relative to the
remaining probesets to help define intensity cut-offs for
calling a probeset as absent (A), marginal (M) or present
(P). The thresholds for making these calls were selected
to yield a false positive rate of 20% of calling a probeset
as present when it is indeed absent. If a probeset was
called as A for all subjects in an individual study, then
that probeset was declared as absent from that study.
We chose liberal cutoffs for filtering the probesets, be-
cause we wanted to maximize the number of probesets
in each gene expression array study available for down-
stream analysis.

Step 4: Removing batch effects using Surrogate Variable
Analysis (SVA)
SVA was carried out with each study to identify and re-
move systematic measured and unmeasured sources of
variability other than case/control status, such as tech-
nical, genetic, environmental, or demographic factors
[30-32]. These sources of heterogeneity are common in
genome-wide gene expression studies, and failing to ac-
count for them in the analysis can obscure results. The
SVA algorithm is performed in three steps: 1) the signal
due to the primary variables of interest is removed and a
residual expression matrix is obtained; 2) the subsets of
genes driving signatures of expression heterogeneity
remaining in the residuals are identified; and 3) surro-
gate variables for each subset of genes are generated.
We performed SVA on the m x n gene expression

matrix from each study using the default iteratively re-
weighted algorithm, and identified all significant surro-
gate variables. We then used these surrogate variables in
a linear regression of each probeset intensity value and
retained the residuals from this regression to generate a
new (m - μ) x n matrix, where (m - μ) are the residual
probeset intensities obtained for the n samples/arrays
after removing the extraneous sources of heterogeneity.
The final matrix of residuals was then used in the down-
stream steps.

Step 5: Mapping probesets to genes using JetSet
For each study, probesets were assigned to RefSeq genes
using manufacturer annotation files confirmed as needed
by mapping probe sequences to the human reference
genome. The Affymetrix U133A, U133 Plus 2.0 and
U95AV2 arrays have different design criteria that may
lead to the creation of multiple probesets for the same
gene [33]. To facilitate the synthesis of data across stud-
ies, we sought to assign the most representative probeset
to each gene using a method implemented in JetSet [34].
JetSet considers three criteria for selecting the most rep-
resentative probeset for each gene: 1) the specificity of
probes in a probeset hybridizing to the target gene and
not to other genes; 2) the extent to which the probeset
covers different splice isoforms of the target gene; and 3)
the distance of the probeset to the 3’ end of target tran-
scripts as those that are closer to the 3’ end generally
have stronger signal intensities due the initiation of tran-
scription at the poly-A tail and are also more robust
against transcript degradation. After resolving the map-
ping of maximally representative probesets to each gene,
we ended up with a G x n matrix that contains G gene
level residual intensities for n samples/arrays for each
study.

Data analysis
We combined the data for each study into a single large
matrix and conducted a mega-analysis. We refer to this
as a mega-analysis because the individual level data from
each study were analyzed together instead of having
been done separately by study and then having been
summarized across studies as in a meta-analysis. Because
of the challenges in obtaining brain samples, many stud-
ies used samples from the same brain collection. The
mega-analysis approach allowed us to more efficiently
address the overlap in samples by using mixed effects
linear regression with crossed random effects for study
and subject to account for both within study and within
subject correlations [35]. We used the lmer function
from the lme4 package [36] in R with default parameters
to fit the mixed-effects models. The primary fixed effect
of interested was a dichotomous variable for case–
control status. Since the SVA was carried out to address
measured and unmeasured confounding, we did not
include other fixed effects covariates in the models. We
fit separate models for each gene. Summary fold changes
(FC) by case–control status, standard errors, 95% confi-
dence intervals, p-values and false discovery rate q-
values [37] for each gene were stored as output from
each of the models. Volcano plots of the full results were
graphed to visualize the significance of each gene with
respect to pooled effect size/fold change. We identified
significant differentially expressed genes as those with a
regression beta estimate = ±0.1, which was equivalent to
FC < −1.07 (down-regulated) or FC > 1.07 (up-regulated),
and with p-values < 0.05. We used this relatively liberal
threshold to maximize the inclusion of true differentially
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expressed genes in BP that may not always be among
the most significant findings, at the risk of including
some false positive associations.
Because gene expression studies in BP have been

carried out with samples from several different brain
regions, we conducted three separate mega-analyses of
studies on: 1) any region of the brain; 2) the prefrontal
cortex (PFC); and 3) the hippocampus. For the first two
we included only studies done with the U133A and
U133 Plus 2.0 platforms to minimize heterogeneity
across studies and maximize the consistency of results
using the most recent and comprehensive array data
available, while for the hippocampus we included the
one study done with the older U95AV2 array in order to
have sufficient numbers for a combined analysis. We ex-
cluded one of the eligible studies carried out on the
U133A platform because the results from it were widely
and unaccountably divergent from the others as quanti-
tatively shown in [38].
We used the program DAVID [39,40] to determine if

there was an enrichment of common pathway annotations
among the significant differentially expressed genes in
the three mega-analyses (191 in any brain region, 160 in
the PFC and 118 in the hippocampus). We used the
default options and uploaded gene lists from each
analysis separately as RefSeq gene symbols. Pathways in-
cluded were the Biological Biochemical Image Database
(BBID) [41], BIOCARTA and KEGG_PATHWAY [42].
Other annotation categories included were Gene
Ontology [43] specifically GOTERM_BP_FAT which is
the summarized version of biological processes in the
Gene Ontology.

Results
Qualitative review
Additional file 1 lists all the genome-wide gene expres-
sion array studies on BP identified in our literature
search. We found 30 genome-wide gene expression array
case–control studies of BP [10,38,44-64]. Of these, only
five examined just BP versus controls. The remaining 25
also included comparisons for cases with major depres-
sion, schizophrenia, and/or suicide. The 30 expression
studies of BP examined tissue mainly from peripheral
blood (n = 5) or brain (n = 25). The 25 studies of the
brain used samples from a variety of regions in-
cluding: the cerebellum (n = 3), frontal cortex (n = 15),
orbitofrontal cortex (n = 1), primary visual cortex (n = 1),
cingulate cortex (n = 1), parietal cortex (n = 1), anterior
cingulate cortex (n = 2), locus coeruleus (n = 1), nucleus
accumbens (n = 1), hippocampus (n = 4), and thalamus
(n = 1). These numbers do not add to 25, because several
studies examined tissue from multiple brain regions.
The majority of these studies were done with samples
obtained from one of four brain banks/resources: 1) the
Stanley Medical Research Institute/Stanley Foundation
(SMRI), which included samples from two different col-
lections referred to as the Array Collection – SMRI (A)
and Neuropathology Collection – SMRI (C) (data avail-
able at: https://www.stanleygenomics.org/); 2) the Har-
vard Brain Tissue Resource Center (McLean Hospital,
Belmont, Massachusetts) (HBTRC) (data available at:
http://national_databank.mclean.harvard.edu/brainbank/
Main); 3) the Pritzker Neuropsychiatric Disorders
Research Consortium (http://www.pritzkerneuropsych.
org/); and 4) the Quebec Suicide Brain Bank (QSBB)
(http://www.douglas.qc.ca/page/brain-bank). Raw ex-
pression data from the Pritzker Consortium and QSBB
were not publically available and could not be obtained
from the investigators. The overwhelming majority of
the 25 studies on the brain were carried out with
Affymetrix array platforms. Thirteen were carried out
with the U133A or U133 Plus 2.0, seven on U95AV2,
three on cDNA, one on Codelink, and one on Agilent
arrays.

Quantitative results
Table 1 lists the 10 genome-wide gene expression micro-
array studies that were included in the quantitative
mega-analyses. We decided to focus on studies of the
brain because this is arguably the most relevant tissue
for a psychiatric disorder like BP. We carried out separ-
ate mega-analyses for three partially overlapping sets of
studies done with samples from different regions of the
brain in order to compare and contrast region-specific
differences that may be relevant to disease. The three
overlapping sets of studies included those on: 1) any
brain region (n = 9); 2) the PFC (n = 6); and 3) the hippo-
campus (n = 2). The mega-analysis of any brain region
included all studies on the PFC, one study on the hippo-
campus, and two additional studies on the anterior cin-
gulate and thalamus. The mega-analyses of the PFC and
the hippocampus were carried out with non-overlapping
studies.
Among the included studies, there were a total of 211

microarrays on 57 unique BP cases and 229 microarrays
on 60 unique controls. On average, studies with the
U133A and U133 Plus 2.0 arrays had data on 22,283 and
54,675 probesets, respectively, while those with U95AV2
had data on 12,625 probesets. After data processing
there were on average 9,075 and 13,945 probesets for
studies on U133A and U133 Plus 2.0, respectively, and
8,438 probesets for studies on U95AV2 that mapped to
unique RefSeq genes.
Figure 2 shows volcano plots for the results of the

mega-analyses of studies on any brain region, the PFC,
and the hippocampus. The red and green points repre-
sent the significant differentially expressed genes. The
Venn diagram [65] in Figure 3 shows the overlap of the
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Table 1 Genome-wide gene expression studies of bipolar disorder with brain tissue samples included in the mega-analysis

Study Disorder Source
of

samples

BP CTRL Brain region/
RNA source

Genome-
wide
array

platform

Total
probesets

Probesets
after P/A
filter

After
gene

mapping

Included in mega-analysis

Any brain region Prefrontal cortex Hippocampus

aAltar A. et al. BP, SCZ SMRI(A) 32 34 FrontalBA46 hgu133a 22283 15023 8962 YES YES -

Bahn et al. BP SMRI(A) 32 33 FrontalBA46 hgu133a 22283 15595 9214 YES YES -
bT. Kato et al. BP, SCZ SMRI(A) 33 34 FrontalBA46 hgu133a 22283 15972 9418 YES YES -
cDobrin et al. BP, SCZ SMRI(A) 27 25 FrontalBA46 hgu133p 54675 40605 15995 YES YES -

Laeng et al. BP, SCZ SMRI(A) 20 21 Hippocampus CA1 hgu133p 54675 29854 13459 YES - YES

Chen et al. BP, SCZ SMRI(C) 14 13 FrontalBA46 hgu133p 54675 29854 12864 YES YES -
dKemether et al. BP, MD, SCZ SMRI(C) 11 12 Thalamus MD hgu133p 54675 30201 13464 YES - -

Harvard_collection BP, SCZ HBTRC 19 26 Frontal McL66 hgu133a 22283 15105 9021 YES YES -

Harvard_collection BP, SCZ HBTRC 15 21 Cingulate Cortex hgu133a 22283 15264 8993 YES - -

Harvard_collection BP, SCZ HBTRC 8 10 Hippocampus hgu95av2 12625 no filter 8438 - - YES

Number of outlier samples excluded from each study, a = 5, b = 2, c = 8, d = 1.
HBTRC – Harvard Brain Tissue Resource Center (McLean Hospital, Belmont, Massachusetts).
SMRI (A/C) - Stanley Medical Research Institute/Stanley Foundation (Array Collection/Neuropathology Collection).
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Figure 2 Volcano plots showing effect size estimates by significance of each gene for the three mega-analyses. Effect sizes captured as
log2(FC) are shown on the X-axis, and significance levels measured as –log10(p-value) are shown on the Y-axis. Each dot represents an individual
gene. Red dots represent significantly up-regulated genes with log2(FC) > 0.1 (FC > 1.07) at p-value < 0.05, while green dots represent significantly
down-regulated genes with log2(FC) < -0.1 (FC < -1.07) at p-value < 0.05.
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significant differentially expressed genes between the
three mega-analyses. A total of 382 genes were identi-
fied: 191 in any brain region, 160 in the PFC, and 118 in
the hippocampus; 80 of these were identified in more
than one mega-analysis. Additional file 2 provides details
of these 382 genes.
None of the genes identified as differentially expressed

in any brain region or the hippocampus survived correc-
tion for multiple testing at a q-value threshold of 0.05.
However, 11 genes had a q-value < 0.05 in the analysis of
the PFC. Details of these 11 genes are highlighted in
Table 2. Among these were two genes that have been
previously implicated in mood disorders by numerous
studies: FKBP5 and WSF1. Figure 4 shows Forest plots
for these two genes of interest. Although not as signifi-
cant, there were a number of other notable candidate
genes for mood disorders identified among the set of
382 differentially expressed genes. These included, for
example: DUSP6, CRH, NPY, NR4A2, SST, GRIK2, S100B
and CACNA1C. Several gene categories were identified



Figure 3 Venn diagram showing the concordance of 382
significant differentially expressed genes with a regression
beta estimate = ±0.1, equivalent to fold change (FC) > 1.07
(up-regulated) or FC < −1.07 (down-regulated) with p-value
< 0.05 from the three mega-analyses.
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with a Bonferroni corrected p-value < 0.05 across the
three mega-analyses as shown in Additional file 3. For
analyses of any brain and PFC regions, the most signifi-
cant categories were related to metallothionein and
metal-ion binding proteins. These findings were driven
by a small collection of metallothionein genes, including
predominantly MT2A, MT1E, MT1H, MT1G, and
MT1X. Also among the top findings were MAP kinase
phosphatase genes in the PFC, including the aforemen-
tioned DUSP6, and neuropeptide genes, including the
aforementioned NPY and SST, in any brain, PFC and
Table 2 Summary results of 11 significant differentially expre
q-value < 0.05

Genes Fold change 95% CI

ALDH1L1 1.11 [1.06,1.16]

DCP2 1.1 [1.06,1.14]

DZIP1 1.12 [1.06,1.18]

ETS2 −1.09 [−1.13,-1.04]

EVI2B −1.1 [−1.16,-1.05]

FERMT2 1.09 [1.05,1.14]

FKBP5 1.17 [1.08,1.26]

LPIN1 1.08 [1.04,1.12]

TUFT1 1.09 [1.05,1.13]

UGT8 −1.14 [−1.22,-1.07]

WFS1 1.1 [1.05,1.14]
hippocampus. Interestingly, none of the metallothionein
gene categories were identified in the analyses of the
hippocampus samples.

Discussion and conclusion
We report here the results of systematic review of gene
expression studies in BP. BP is a complex disorder with
a considerable genetic component that has been challen-
ging to resolve. Gene expression studies may help to
identify genes or sets of genes that are up or down regu-
lated in the disorder and thereby provide clues about its
genetic underpinnings. At least 30 studies using modern
array-based technology to assay gene expression
genome-wide have been published on BP. Most of these
have studied expression in either blood or brain tissue
samples. Although blood samples are easier to collect,
brain samples provide more direct access to changes in
the tissue most relevant to psychiatric disorders. We,
therefore, conducted a quantitative mega-analysis of the
most recent and robust of studies on the brain in BP in
order to synthesize the findings and provide a compre-
hensive overview of what is currently known from these
efforts.
The most significant findings were observed in the

analysis of the PFC. This may reflect the central role the
prefrontal cortex is thought to play in mood disorders,
especially bipolar disorder [66]. However, it may also be
due to the fact that the PFC was the focus of more stud-
ies than any other brain region. Although the analysis of
any brain regions included more studies, these studies
covered several different brain regions including the
PFC, which may have introduced heterogeneity and di-
luted the findings. The analysis of the hippocampus only
included two studies and was, therefore, relatively
underpowered to detect differentially expressed genes.
In the PFC, there were 11 genes with a q-value < 0.05.

Among these were two genes of great interest in mood
ssed genes in bipolar disorder with a false discovery rate

P-value Q-value Brain region

3.10E-05 0.03726 PFC

4.23E-06 0.01056 PFC

5.97E-05 0.03726 PFC

5.36E-05 0.03726 PFC

5.92E-05 0.03726 PFC

3.82E-05 0.03726 PFC

8.27E-05 0.04424 PFC

4.30E-05 0.03726 PFC

2.82E-06 0.01056 PFC

7.96E-05 0.04424 PFC

1.26E-05 0.02359 PFC



WFS1 

FKBP5 

Figure 4 Forest Plots of two genes of interest in mood disorders (q-value < 0.05) showing the estimated fold change (FC) of gene
expression comparing BP cases and controls and 95% confidence interval for each study. Summary estimates are provided for any brain
regions, prefrontal cortex and hippocampus.
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disorders: FKBP5 and WFS1. Mutations in WFS1 are
known to cause Wolfram syndrome, a disorder charac-
terized by insulin deficiencies leading to high blood
sugar levels and progressive vision loss, and which often
co-occurs with psychiatric disturbances such as mood
disorders. Several studies have directly implicated WFS1
in the etio-pathogenesis of bipolar disorder [67]. FKBP5,
on the other hand, encodes for FK506 binding protein
5, a co-chaperone of the glucocorticoid receptor hetero-
complex, which mediates downstream effects of cortisol.
The role of FKBP5 and cortisol dynamics have been the
focus of intense investigations in mood disorders [68,69]
and response to antidepressant treatment [70,71]. Interes-
tingly, CRH (corticotrophin releasing hormone) [72,73],
another key gene underlying cortisol action, was identified
as differentially expressed in the analysis of PFC. Several
other notable candidate genes for mood disorders were im-
plicated in the current analyses, including DUSP6 (dual-
specificity phosphatase 6) [74-76], NPY (neuropeptide Y),
NR4A2 (nuclear receptor subfamily 4, group A, member 2),
SST (somatastatin), GRIK2 (glutamate receptor ionotropic
kainate 2 isoform precursor) [77-79], S100B (S100 calcium
binding protein B) [80,81] and CACNA1C (calcium chan-
nel, voltage-dependent, L type, alpha 1C subunit). Perhaps
of greatest interest among these is CACNA1C, which has
emerged from recent genome-wide association studies as
one of the leading candidate genes for bipolar disorder
[82,83]. The MAPK gene, DUSP6, and neuropeptides, NYP
and SST, are discussed further below.
Among the top findings from our pathway analyses were

the up-regulation of metallothionein genes across any brain
region and specifically in the PFC. This collection of genes
was highlighted as significantly differentially expressed in
several previous studies, including a weighted gene co-
expression network analysis of BP and schizophrenia [84]
and two previous meta-analyses of BP and psychosis using
gene expression studies from SMRI [6,85]. The two meta-
analyses included several studies that we excluded due to
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quality control measures, and we included one study on a
unique set of brain samples that was not included in theirs.
In addition, we used an entirely different approach for pro-
cessing and analyzing the data. The fact that the results
for the metallothionein proteins were sustained in mul-
tiple analyses lends support to the conclusion that the
findings are real. Interestingly, studies with animal models
have suggested the involvement of metallothioneins in
neurocognitive function [86,87], and particularly in
protecting the central nervous system against degeneration
caused by various types of brain injury [88,89].
Also implicated in the pathway analysis were the

mitogen-activated protein (MAP) kinase phosphotases.
These are members of the dual specificity phosphatase
(DUSP) family, which are known to negatively regulate
members of the MAP kinase superfamily. MAP kinases
have been shown to play a role in neuronal differentiation,
neuronal survival, and long term neuroplasticity, and it
has been suggested that lithium and valproate may exert
therapeutic effects in BP by activating MAPK/ERK sig-
naling cascades [90]. One of the key genes in the path-
way identified by our current analysis was DUSP6,
which was found to be significantly down-regulated in
BP. DUSP6 is known to bind to and inactivate ERK1 and
ERK2 [91], and previous studies have suggested a genetic
association between DUSP6 and both schizophrenia and
BP [74,75].
Another notable finding from our pathway analyses

suggested there is a down-regulation of neuropeptides
such as neuromedin U (NMU), neuropeptide Y (NPY),
and somatostatin (SST) in BP. SST, in particular, was
reported as significantly down-regulated in the other
meta-analysis referenced earlier as well [84]. It was also
implicated in a combined analysis of gene expression
studies of the dorsolateral prefrontal cortex in schizo-
phrenia [92], and in analysis of studies of the subgenual
anterior cingulate cortex in major depression [93]. Neu-
ropeptides are chemical messengers that are widely dis-
tributed throughout the peripheral and central nervous
system, and they exert diverse effects in serving as hypo-
thalamic releasing factors, neuromodulators, and/or
neurotransmitters. There has been a great deal of inter-
est in the role of neuropeptides such as neuropeptide Y
and somatostatin in mood and anxiety disorders and as
potential therapeutic targets [94].
It is noteworthy that the metallothioneins were not

found to be significantly differentially expressed in the
hippocampus. This may reflect differences in dysregulated
gene expression patterns across different brain regions in
BP, or it may be due to the fact that there were consider-
ably fewer studies of the hippocampus resulting in rela-
tively less power to detect meaningful differences. Clearly,
further expression studies in this important brain region
are needed.
The effort to synthesize findings from existing genome-
wide expression studies of the brain in BP was complicated
by several important challenges. First, there may be con-
cerns about combining results across potentially heteroge-
neous studies. For example, studies of gene expression
in the brain have used a variety of array platforms and
examined different regions of the brain, which might
contribute to the heterogeneity. In order to minimize
such concerns, we included only the most recent and
most comprehensive studies that all used a comparable
array platform, and we obtained the raw data from each
of the studies and analyzed this data using a stan-
dardized pipeline. In addition, we conducted separate
mega-analyses for key regions of the brain.
Second, multiple studies were carried out using over-

lapping brain samples. Because of the challenges in
collecting post-mortem brain tissue, there are limited
such samples. Indeed, available samples have essentially
come from 4 brain banks, and these have been studied
multiple times by different research groups. Unfortu-
nately, data from two of the existing brain banks were
not available. We sought to use whatever data was avail-
able, and we used an analytic approach that appropri-
ately handled the correlation induced within studies and
within samples used across multiple studies.
Third, there may be many factors that confound the

relationship between gene expression levels in post-
mortem brain samples and disease status. Pre-mortem
exposures and treatment histories, especially pharmaco-
logic, may vary between cases and controls and drive dif-
ferences in gene expression observed in brain samples.
Likewise, post-mortem factors such as the agonal state,
post-mortem interval between death and sample extrac-
tion, or sample pH may further degrade potential ex-
pression signals. Many of these factors may or may not
be measured, and thus are difficult to correct [95]. We
used an analytic approach that did not require all of the
factors to be measured to account for this as best as pos-
sible. In particular, we used surrogate variable analysis
which has been shown to be a powerful method for re-
moving unwanted measured and unmeasured sources of
heterogeneity [30]. However, it is possible this approach
did not completely correct for all sources of heterogen-
eity, which may have confounded the findings.
Despite the challenges, our analyses provide an up-to-

date summary of results from expression array data in
BP. These analyses focused on the highest quality non-
redundant data available and provides results by brain
region so that similarities and differences can be sought
that might be relevant to disease status. The results are
available for closer inspection on-line at Metamoodics
[http://metamoodics.igm.jhmi.edu/], a bioinformatics re-
source that we have created to gather results from gen-
omic experiments in mood disorders. Investigators can

http://metamoodics.igm.jhmi.edu/
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look up any genes of interest and view the current re-
sults in their genomic context and in relation to leading
findings from other genomic experiments in bipolar
disorder.

Additional files

Additional file 1: Results of qualitative review. Details of 30 genome-
wide gene expression array case–control studies of BP identified in our
literature search.

Additional file 2: Results of 382 differentially expressed genes.
Details of 382 genes identified as differentially expressed with a
regression beta estimate = ±0.1, equivalent to fold change (FC) > 1.07
(up-regulated) or FC < −1.07 (down-regulated) with p-value < 0.05 from
the three mega-analyses: 191 in any brain region, 160 in the PFC, and
118 in the hippocampus; 80 of these were identified in more than one
mega-analysis.

Additional file 3: Results of DAVID analysis. Results of DAVID analysis
showing an enrichment of common pathway annotations among the
significant differentially expressed genes in the three mega-analyses i.e.
191 in any brain, 160 in the PFC and 118 in the hippocampus. Pathways
and annotation categories included were the biological biochemical
image database (BBID), BIOCARTA, KEGG_PATHWAY and Gene Ontology.
Several gene categories were identified with a Bonferroni corrected p-
value < 0.05 across the three mega-analyses.
We provide two scripts for performing the following analyses on your
own data:1. Gene expression data processing step. 2. Mega-analysis step.
Scripts can be downloaded from: http://psychiatry.igm.jhmi.edu/
geneexpression/.
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