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Abstract
Background: c-Met is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and both c-Met and
its ligand are expressed in a variety of tissues. C-Met/HGF/SF signaling is essential for normal embryogenesis, organogenesis, and
tissue regeneration. Abnormal c-Met/HGF/SF signaling has been demonstrated in different tumors and linked to aggressive and
metastatic tumor phenotypes. In vitro and in vivo studies have demonstrated inhibition of c-Met/HGF/SF signaling by the small-
molecule inhibitor PHA665752. This study investigated c-Met and HGF expression in two neuroblastoma (NBL) cell lines and
tumor tissue from patients with NBL, as well as the effects of PHA665752 on growth and motility of NBL cell lines. The effect
of the tumor suppressor protein PTEN on migration and proliferation of tumor cells treated with PHA665752 was also
evaluated.

Methods: Expression of c-Met and HGF in NBL cell lines SH-EP and SH-SY5Y and primary tumor tissue was assessed by
immunohistochemistry and quantitative RT-PCR. The effect of PHA665752 on c-Met/HGF signaling involved in NBL cell
proliferation and migration was evaluated in c-Met-positive cells and c-Met-transfected cells. The transwell chemotaxis assay and
the MTT assay were used to measure migration and proliferation/cell-survival of tumor cells, respectively. The PPAR-γ agonist
rosiglitazone was used to assess the effect of PTEN on PHA665752-induced inhibition of NBL cell proliferation/cell-survival and
migration

Results: High c-Met expression was detected in SH-EP cells and primary tumors from patients with advanced-stage disease. C-
Met/HGF signaling induced both migration and proliferation of SH-EP cells. Migration and proliferation/cell-survival were
inhibited by PHA665752 in a dose-dependent manner. We also found that induced overexpression of PTEN following treatment
with rosiglitazone significantly enhanced the inhibitory effect of PHA665752 on NBL-cell migration and proliferation.

Conclusion: c-Met is highly expressed in most tumors from patients with advanced-stage, metastatic NBL. Furthermore, using
the NBL cell line SH-EP as a model, PHA665752 was shown to inhibit cMet/HGF/SF signaling in vitro, suggesting c-Met inhibitors
may have efficacy for blocking local progression and/or metastatic spread of c-Met-positive NBL in vivo. These are novel findings
for this disease and suggest that further studies of agents targeting the c-Met/HGF axis in NBL are warranted
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Background
Children with metastatic neuroblastoma (NBL) who are
older than 12 months at diagnosis typically have a poor
outcome despite modern multimodal therapy. In most of
these patients, the tumor has unfavorable biological char-
acteristics such as MYCN oncogene amplification, dele-
tions of the short arm of chromosome 1, deletions of 11q,
expression of the TrkB neurotrophin receptor and its lig-
and, and/or other cytogenetic and molecular abnormali-
ties [1]. However, recurrent disease and poor outcome
may also occur in children with tumors lacking these
adverse biological features. This suggests that other as yet
undefined factors contribute to an aggressive neuroblast-
oma phenotype.

C-Met is a tyrosine-kinase receptor for hepatocyte growth
factor/scatter factor (HGF/SF), and both receptor and lig-
and are expressed in a number of different tissues [2,3].
Binding of activated HGF/SF to the extracellular domain
of c-Met causes multimerization of the receptor and phos-
phorylation of tyrosine residues at the juxtamembrane
and cytoplasmic regions. This is followed by recruitment
and phosphorylation of multiple adaptor proteins, i.e.
Grb2, Gab1, SHC, and c-Cbl, as well as activation of sign-
aling molecules such as phosphatidylinositol-3-OH
kinase (PI3-K), PLC-γ, STAT3, phospholipase C-γ, Erk 1
and 2, and FAK [4-8]. PI3-K and Erk are necessary not only
for c-Met-mediated regulation of cell motility, adhesion,
and invasion, but also for control of cell survival (via the
Akt pathway) and mitogenesis [9].

C-Met/HGF/SF signaling is essential for normal cell prolif-
eration, migration, angiogenesis, embryogenesis, organo-
genesis, and tissue regeneration. Additionally, there is
now considerable evidence suggesting that aberrant c-
Met/HGF/SF signaling, resulting from mutation or overex-
pression of the c-Met proto-oncogene and/or its ligand,
plays a major role in tumorigenesis, invasion, and meta-
static spread in many human tumors [10,11]. Tumor lines
with mutated c-Met or overexpressed c-Met and/or HGF/
SF [12-14] are tumorigenic in vitro and in vivo; and tumor
cells transfected with c-Met and HGF/SF are capable of
forming tumors with an invasive and metastatic pheno-
type in the nude mice [15]. HGF/SF transgenic mice
develop a wide array of mesenchymal- and epithelial-
derived tumors which overexpress HGF/SF and c-Met
[16]. Similarly, transgenic mice carrying the TPR-MET
gene (coding for an oncogenic TPR-MET fusion protein)
develop Met-driven T-cell lymphomas [17]. Expression of
c-Met and/or HGF has been detected in cell lines estab-
lished from pediatric tumors including rhabdomyosar-
coma, osteogenic sarcoma, and neuroblastoma
[12,18,19]. Furthermore, abnormal c-Met/HGF/SF signal-
ing has been noted in different types of malignant solid
tumors and correlates with advanced stages and poor

prognosis [20,21]. More recently, overepression of c-Met
and HGF has also been observed in hematopoietic malig-
nancies, i.e. multiple myeloma and adult T- cell leukemia
[22,23].

Given the oncogenic role of aberrant c-Met/HGF/SF sign-
aling, c-Met has become an attractive therapeutic target
[2,24]. One way to effectively block c-Met signaling is by
inhibiting its catalytic activity with small-molecule inhib-
itors. One such inhibitor is PHA665752, a highly selective
c-Met inhibitor which competitively inhibits binding of
ATP to the tyrosine kinase domain of c-Met. In vitro,
PHA665752 inhibits constitutive and HGF/SF-stimulated
c-Met phosphorylation, cell growth, motility, and migra-
tion of different tumor cell lines [22,25-27]. At nanomo-
lar concentrations, it induces massive apoptosis of gastric
carcinoma cells with amplified c-Met [28]. In vivo, daily
administration of PHA665752 into athymic mice blocked
c-Met phosphorylation and caused growth inhibition of
tumor xenografts [14,27].

Phosphatase and tensin homologue (PTEN) is a tumor
suppressor protein that modulates several cell functions
including proliferation, survival, migration, and tumor-
induced angiogenesis mainly by antagonizing PI3K-Akt
signaling [29-31]. Mutation or loss of PTEN function has
been observed in some cases of NBL and other solid
tumors and results in a more aggressive tumor phenotype
[32]. In contrast, upregulation of PTEN inhibits prolifera-
tion of malignant solid tumor cells in vitro [33,34].

Studies of the expression and role of c-Met expression in
NBL have thus far been limited to cell lines (12, 18,19).
We here report for the first time that c-Met is expressed at
high levels in advanced-stage, primary NBL tumor tissue.
Furthermore, we describe the effects of a small-molecule
c-Met inhibitor, PHA665752, on HGF-induced migration
and proliferation of NBL cells. We also report the effect of
augmented PTEN expression on PHA665752-mediated
inhibition of c-Met-HGF/SF signaling in this tumor.

Methods
Cell lines and tumor tissue
The human NBL lines SH-EP and SH-SY5Y were used to
determine HGF and c-Met gene expression and to assess
the effects of PHA665752 (Pfizer) on Met/HGF-induced
proliferation and migration of tumor cells. Both cell lines
have a single copy of the MYCN oncogene [35]. These
cells lines were also chosen because SH-EP expresses c-
Met, whereas SH-SY5Y is c-Met negative [19]. Addition-
ally, SH-EP cells show significant proliferative and migra-
tory responses to HGF. SKN-AS served as positive control
for HGF expression in qRT-PCR and immunoblot assays.
Cells were grown in Dulbecco's modified Eagle medium
supplemented with 10% fetal bovine serum (FBS) and 1%
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penicillin/streptomycin (Sigma Chemical Co., St. Louis,
Mo.). Primary tumor samples were obtained during diag-
nostic surgery from patients treated at Children's Health-
care of Atlanta hospitals following parental informed
consent and Emory University IRB approval. RNA was
extracted for quantitative RT-PCR studies of c-Met expres-
sion as described below.

Transfection experiments
SH-SY5Y cells were plated in 6-well plates and transiently
transfected with increasing concentrations of full-length
human c-Met cDNA in a pMOG vector or vector alone (a
kind gift from G. Vande Woude, Van Andel Research Insti-
tute, Grand Rapids, MI) using Lipofectamine Plus (Invit-
rogen, Carlsbad, CA). At 48 hours, cells were washed once
with PBS and harvested.

Antibodies and reagents
C-Met inhibitor PHA665752 (Pfizer, Inc., La Jolla, CA)
was dissolved in DMSO. LY294002 (in DMSO; Calbio-
chem) and PD98059 (aqueous solution; Calbiochem)
were used at the concentrations described below. Anti-
bodies to c-terminus of c-Met (C-12) and Erk (C-16) were
from Santa Cruz Biotechnology (Santa Cruz, CA); p-Erk 1
and 2 (p44/42), p-Akt (Ser473), Akt and phosphospecific
c-Met (Tyr 1234/1235) were from Cell Signaling Technology
(Beverly, MA); mouse polyclonal HGF antibody was from
R&D Systems (Minneapolis, MN). Rosiglitazone, a PPAR-
γ agonist and inducer of PTEN, was obtained from Cay-
man Chemical (Ann Arbor, MI) [34]. Recombinant
human HGF was from PeproTech (Rocky Hill, NJ).

Reverse transcription and quantitative real-time 
polymerase chain reaction (qRT-PCR)
qRT-PCR was used to assay for c-Met and HGF mRNA
expression in cell lines, conditioned media, and tumor tis-
sue. Briefly, total RNA from neuroblastoma lines was
extracted using the RNAeasy kit (Qiagen, Valencia, CA).
The corresponding cDNAs were synthesized by Quant-
itech Reverse Transcription kit (Qiagen). Quantitative RT-
PCR assays for c-Met and HGF were set up with gene spe-
cific primers using Quantitect SYBR-Green PCR kit (Qia-
gen) and executed on a 7500 Real-Time PCR instrument
(Applied Biosystems, Foster City, CA). Mean expression
values for each mRNA sample were normalized against its
GAPDH mRNA level. The c-MET and GAPDH primers
were purchased as proprietary SYBR-Green validated
primer sets (Qiagen).

The HGF primers were designed by us and synthesized by
the Microchemical Facility, Emory University, using the
following sequences:

HGF (forward): 5'CTAGATCTTTCCAGTTAAT-
CACACAAC 3'

HGF (reverse): 5'TTCGGAGTCAGTGCCTAAAAGAG
3'

PCR cycling conditions consisted of an initial enzyme
activation step at 95° for 15 min followed by a total of 40
cycles including denaturation at 94°C for 15 sec, anneal-
ing at 55°C for 30 sec. and final extension at 72°C for 34
sec. The extension step served for fluorescence detection.
Detection of gene specific amplicons was verified by dis-
sociation curve analyses. The SH-SY5Y line was designated
as the calibrator to quantitate both HGF and c-MET
mRNA expression levels.

Proliferation/cell-survival assay
Cells were plated at 1-104 cells/well in 96-well plates and
grown in presence of factors described below. After 72
hours of growth, cells were washed once with PBS and
analyzed by the MTT proliferation/viability assay (Invitro-
gen, Carlsbad, CA). Effects on cell viability were further
confirmed by trypan-blue assay. Student's t-test was used
to determine significant differences among means for
independent proliferation/cell-survival assays performed
in triplicate, as well as to evaluate the significance of dif-
ferences in c-Met expression between stage 3-4 vs stage 1-
2 primary tumors.

Migration assay
Cell-migration was assessed using a trans-well chemotaxis
assay as previously described [36,37]. In brief, bottom
membranes of transwell chambers of diameter 6.5 mm, 8
um pore size (Costar Corp., Cambridge, MA) were coated
with vitronectin (Sigma Chemical Co., St. Louis, Mo) at
10 ug/ml for 1 hour and inserted in 12-well plates. Cells
were treated with specific inhibitor (PHA66572 or other
inhibitor) for 60 minutes and then washed. Treated cells
were plated in equal numbers at 1-2 × 105 in the upper
chamber and allowed to migrate across the membrane
toward 200 ng/ml HGF (bottom chamber) for 6 hours at
37°C, 5% humidified CO2. Migration was quantified
either with 1% crystal violet and manual counting or by
automated counting of nuclear-stained cells. Student's t-
test was used to determine significant differences among
means for independent migration experiments performed
in triplicate.

Immunoblot analysis
Whole cell lysates were prepared by washing cells once
with ice-cold PBS and adding 400 uL of lysis buffer. Pro-
tein was quantitated (Bio-Rad Laboratories, Hercules,
CA), and equal amounts of protein were resolved by SDS-
PAGE and transferred to nitrocellulose. Membranes were
blocked with 5% non-fat milk and probed overnight with
antisera-specific antibodies at 1:500 dilution. Incubation
buffer consisted of either TBST (10 mM Tris [pH 7.6], 50
mM NaCl, and 0.1% Triton X-100) containing 5% non-fat
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milk or 5% bovine serum albumin (for phosphorylated
antibodies). Bound primary antibodies were visualized
after washing and probing with appropriate horseradish
peroxidase-conjugated detection antibodies at 1:2000
dilution for one hour, using signal-enhanced chemilumi-
nescence (SuperSignal Chemiluminescent substrate,
Pierce, Rockford IL). Membranes were stripped and rep-
robed after washing and blocking. Equal loading was
determined by probing for β-actin (Sigma Chemical Co.,
St. Louis, Mo).

Results
c-Met and HGF expression in NBL cell lines
SH-EP cells expressed significantly more c-Met than did
SH-SY5Y cells at both the mRNA and protein level (Figure
1A/B). In contrast, both SH-SY5Y and SH-EP cells were
either very low or negative for HGF mRNA, respectively.
Both lines lacked detectable HGF protein (Figure 1C/D).
Conditioned media from unstimulated and vitronectin-

stimulated SH-EP cells did not contain measurable
amounts of HGF (data not shown).

PHA665752 inhibits HGF-stimulated migration and 
proliferation/cell-survival of c-Met-positive neuroblastoma 
cells
In a semi-quantitative wound-healing assay, we found
that SH-EP cells migrated in response to HGF, and this
response was greater than that observed with low-c-Met
expressing SH-SY5Y cells (data not shown). In the tran-
swell chemotaxis assay, SH-EP cells demonstrated a dose-
dependent migration response to HGF (Figure 2A). Trans-
fection experiments showed that only SH-SY5Y cells trans-
fected with c-Met migrated in response to HGF;
furthermore, response correlated with the amount of
transfected c-Met DNA (Figure 2B). In the MTT-prolifera-
tion assay, SH-EP cells showed a proliferative response to
HGF in both 72-hr (Figure 2D) and 7-day growth assays
(data not shown). PHA665752 inhibited both HGF-medi-
ated migration (Figure 2C) and proliferation/cell-survival

Expression of c-Met and HGF by SH-EP and SH-SY5Y neuroblastoma cell linesFigure 1
Expression of c-Met and HGF by SH-EP and SH-SY5Y neuroblastoma cell lines. Quantitative RT-PCR assay for c-
Met (A) and HGF (C) was performed in triplicate using relative quantification, with expression values normalized against 
GAPDH. Western blots for the 140 kD c-Met beta-chain (B) and 82 kD HGF (D) proteins, with SKN-AS neuroblastoma cell 
line as the positive control for HGF protein expression. β-Actin serves as loading control.
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(Figure 2D) in a dose-dependent manner. IC50 values for
PHA665752-induced inhibition of migration and prolif-
eration ranged from 0.25-0.5 uM.

PHA665752 inhibits c-MET/HGF migration and signaling 
via the MAPK pathway
PHA665752 completely abrogated HGF-mediated activa-
tion of c-Met in SH-EP cells as determined by p-Met(Y1234/

1235) levels (Figure 3A); PHA665752 also completely
blocked HGF-induced phosphorylation of both MAPK
and PI3-K downstream signaling, using p-Erk 1/2 and p-

Akt(ser473) levels as surrogate markers, respectively (Figure
3B). Experiments to further characterize the migration-sig-
naling pathways inhibited by PHA665752 showed that
PD98059, a MAPK inhibitor, suppressed HGF-activated
migration to a similar extent as PHA665752 alone,
whereas LY294002, a PI3-K inhibitor, had no effect on
migration (Figure 3C).

PHA665752 inhibits SH-EP cell migration and proliferation/cell-survivalFigure 2
PHA665752 inhibits SH-EP cell migration and proliferation/cell-survival. (A) Migration of SH-EP cells on vitronectin 
(10 ug/ml) was assessed in the transwell chemotaxis assay with increasing concentration gradients of HGF. (B) Migration of SH-
EP vs. SY5Y was assessed on vitronectin (10 ug/ml) in the transwell chemotaxis assay in the presence of 200 ng/ml HGF either 
with or without pre-incubation with PHA665752. SY5Y cells were transiently transfected with empty pMOG vector or with 
either 0.5 ug or 1 ug of c-Met cDNA; inserts show photomicrographs (20× magnification) of migrated cells under specified 
conditions. (C) HGF-induced migration of SH-EP cells was measured in the transwell chemotaxis assay after either 60 minute 
pre-incubation or during continuous exposure(**) to PHA665752. (D) HGF-induced proliferation/cell-survival of SH-EP cells 
was measured by MTT assay either with or without increasing concentrations of PHA665752 over 72 hrs. Data represent 
mean +/- SD for triplicate independent experiments.
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PTEN induction augments the inhibitory effect of 
PHA66572 on HGF-mediated proliferation and migration
To evaluate PTEN's ability to potentiate the effects of
PHA665752 on c-Met/HGF signaling, we treated SH-EP
cells with rosiglitazone, an inducer of PTEN expression
[34]. To assess rosiglitazone's effect on proliferation, SH-
EP cells were grown in the presence or absence of HGF,
with or without rosiglitazone. Rosiglitazone had no effect
on SH-EP proliferation in the absence of HGF, although it
somewhat reduced HGF-stimulated proliferation (Figure
4A). Importantly, combined PHA665752 and rosiglita-
zone was significantly (p < .01) more inhibitory for HGF-
stimulated SH-EP cell proliferation than was either agent
alone HGF (Figure 4A). Furthermore, migration of
PHA665752-treated SH-EP cells was significantly reduced
when pretreated with rosiglitazone, demonstrating that
rosiglitazone augments the migration-inhibitory effects of

PHA665752, although the magnitude of this effect was
less than that on NBL cell growth (Figure 4B). Rosiglita-
zone's inhibitory effects on HGF-stimulated proliferation/
cell-survival and migration correlated with greater than
two-fold inductionof PTEN protein as shown by immu-
noblotting (Figure 4C).

Expression levels of c-Met mRNA in primary NBL tumor 
tissue correlates with advanced clinical stage
To evaluate the possible clinical significance of c-Met
expression in NBL, we used quantitative RT-PCR to deter-
mine c-Met expression levels in mRNA collected from 20
primary neuroblastoma tumors at different clinical stages.
Seven tumors were stage 4, five were stage 3, two were
stage 2, and six were stage 1. Tumors from patients with
more advanced clinical stages (stages 3 and 4) generally
had higher c-Met expression levels than did tumors from

PHA665752 inhibits HGF-induced migration through blockade of MAPK pathwayFigure 3
PHA665752 inhibits HGF-induced migration through blockade of MAPK pathway. (A) SH-EP cells were pretreated 
for 60 minutes with PHA665752, PD98059 or LY294002 as shown, washed, and analyzed by transwell chemotaxis assay in 
presence of HGF (200 ng/mL). (B, C) SH-EP cells were pretreated with inhibitors for 60 minutes, followed by addition of HGF 
(200 ng/mL for 15 mins) and immunoblotting of cell lysates. (in Figure 3C, # indicates incubation with vitronectin alone without 
HGF; + indicates addition of HGF). Data represent mean +/- SD for triplicate independent experiments.
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patients with stages 1 and 2. Four of six stage-4 tumors
and one of five stage-3 tumors had c-Met values greater
than the corresponding value for SH-EP cells, whereas no
stage-1 or 2 tumors had c-Met values in this range (Figure
5).

Discussion
In this study, we investigated the expression and role of c-
Met in NBL. We found that primary tumor cells from
patients with clinically aggressive, advanced-stage NBL
expressed high-levels of c-Met. Tumor cells from patients
with metastatic tumor (stage 4) or locally advanced tumor
(stage 3) expressed significantly higher c-Met levels than
those from patients with localized disease, i.e. stages 1
and 2. This novel finding strongly suggests that inhibiting
c-Met may have therapeutic value in this disease. Accord-

ingly, we chose to test a c-Met inhibitor (PHA665752)
with high specificity and potency for blocking c-Met func-
tion.

To evaluatethe efficacy of PHA66572 on the migration
and proliferation of c-Met expressing NBL cells, we used a
c-Met-positive NBL line (SH-EP) as an in vitro model. We
found that activation of the c-Met/HGF/SF pathway
resulted in increased migration and proliferation-surviv-
alof SH-EP cells but not of c-Met-negative SH-SY5Y cells.
This is the first report of the effects of specifically blocking
c-Met in NBL cells. Our results agree with those reported
by Hecht et al, who showed that exposure of c-Met-
expressing NBL cell lines to exogenous HGF resulted in c-
Met phosphorylation and induction of migration [19].
These investigators were also able to inhibit migration of

PHA665752-mediated inhibition of proliferation and migration is augmented by PTEN-agonist rosiglitazoneFigure 4
PHA665752-mediated inhibition of proliferation and migration is augmented by PTEN-agonist rosiglitazone. 
(A) SH-EP cells were cultured with HGF (200 ng/ml) and either PHA665752 (0.25 uM), PPAR-γ agonist rosiglitazone (10 uM), 
or both PHA665752 and rosiglitazone for 72 hrs; HGF alone served as a control. Proliferation/cell-survival was analyzed by 
MTT assay. (B) SH-EP cells were exposed to 10 uM rosiglitazone and 0.25 uM PHA665752 overnight, washed, and assessed for 
migration in the presence of 200 ng/ml HGF in the transwell chemotaxis assay (+ indicates addition of HGF). (C) PTEN and p-
Akt expression were measured in lysates of SH-EP cells after exposure to 10 uM rosiglitazone for stated time period. Data 
represent mean +/- SD for triplicate independent experiments.
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NBL cells in Matrigel using an HGF-specific neutralizing
antibody and MAPK/ERK inhibitors such as PD98059,
respectively. Similarly, Hov et al reported that c-Met acti-
vation stimulated both proliferation and migration of
myeloma cells in vitro [22]. A role for c-Met in NBL cell
migration is further suggested by our finding that HGF
triggered migration of SH-SY5Y cells only after transfec-
tion with c-Met.

In our experiments to evaluate the effects of PHA665752,
we found that this small-molecule inhibitor was able to
block HGF-induced phosphorylation of both c-Met and
downstream signaling proteins Akt and Erk 1/2 (p44/42).
Studies of myeloma and carcinoma cells have yielded sim-
ilar results [22,26,27]. However, in the latter studies,
tumor cells were exposed to PHA665752 continuously,
whereas in the present study NBL cells were only briefly
exposed to low concentrations of this agent. This suggests
that NBL cells may be more sensitive to c-Met targeting
than some other c-Met expressing tumors.

We also found that PHA665752 showed a marked dose-
dependent inhibitory effect on the HGF/c-Met pathway of
proliferation and migration in c-Met-expressing NBL cells.
These inhibitory effects appeared to be specific for HGF-
stimulated proliferation/migration, since PHA665752

had no significant effects on these parameters in the
absence of HGF stimulation. Thus, PHA665752 could
potentially inhibit HGF-stimulated tumor proliferation/
migration resulting from either paracrine (i.e. tumor
microenvironment) or autocrine exposure to HGF. Fur-
thermore, brief exposure to PHA665752 completely
blocked downstream signaling via the PI3-K/Akt and
MAPK/Erk pathways, agreeing with results from studies in
several types of carcinoma [25,27]. Additional studies
with MAPK/Erk and PI3-K/Akt pathway-specific inhibi-
tors suggested that PHA665752 can inhibit c-Met/HGF/
SF-stimulated migration and proliferation/survival via the
MAPK/Erk and PI3-K/Akt pathways, respectively.

Since PHA665752 inhibits the PI3-K/Akt pathway, we
hypothesized that its effect might be enhanced by rosigli-
tazone, an inducer of PTEN expression. Indeed, combined
PHA665752 and rosiglitazone induced significantly
greater inhibition of both HGF-stimulated proliferation/
cell-survival and migration in c-Met-expressing NBL cells
than did PHA665752 alone. This finding suggests that the
combination of PTEN-inducing agents with small-mole-
cule inhibitors or drugs that block c-Met/HGF/SF signal-
ing may have an augmented anti-tumor effect.

Although we do not expect PHA665752 will be suitable
for clinical use due to its tendency to form pulmonary pre-
cipitates in animal studies [17], we believe this agent pro-
vides an excellent tool for studying c-Met function in NBL
due to its high specificity and activity. Finally, our study
supports the notion that c-Met blockade, either through
derivatives of PHA665752 with higher bioavailability or
through other agents targeting this receptor, deserves fur-
ther study as a potential therapeutic strategy for NBL.

Conclusion
Elevated c-Met expression is more commonly observed in
primary NBL tumor tissue from patients with metastatic
tumors. Furthermore, the small-molecule inhibitor
PHA665752 is capable of antagonizing HGF-induced
migration and proliferation/survival of c-Met-expressing
NBL cells, an effect which is enhanced by upregulation of
PTEN. These are novel findings in NBL and suggest a ther-
apeutic potential for targeting c-Met in this tumor.
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