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may be involved in human breast cancer
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Abstract
Background: Our previous study revealed that Vav3 oncogene is overexpressed in human
prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The
current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact
on estrogen receptor a (ERα)-mediated signaling axis.

Methods: Immunohistochemistry analysis was performed in 43 breast cancer specimens and
western blot analysis was used for human breast cancer cell lines to determine the expression level
of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA
knockdown of Vav3 expression. The role of Vav3 in ERα activation was examined in luciferase
reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the
functional domain involved in ERα activation. Finally, the interaction of Vav3 and ERα was assessed
by GST pull-down analysis.

Results: We found that Vav3 was overexpressed in 81% of human breast cancer specimens,
particularly in poorly differentiated lesions. Vav3 activated ERα partially via PI3K-Akt signaling and
stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and
ERα activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERα.
Consistent with its function for AR, the DH domain of Vav3 was essential for ERα activation.

Conclusion: Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERα
and enhances ERα activity. These findings suggest that Vav3 overexpression may aberrantly
enhance ERα-mediated signaling axis and play a role in breast cancer development and/or
progression.

Background
Vav3 oncogene, a quanine nucleotide exchange factor
(GEF) for Rho family GTPases, belongs to Vav family pro-

teins. The three mammalian Vav proteins (Vav1, Vav2,
and Vav3) differ in their tissue distribution. Vav1 is prima-
rily expressed in hematopoietic cells, while Vav2 and Vav3
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are more ubiquitously expressed [1,2]. Vav proteins con-
tain multiple function motifs and are involved in various
cellular signaling processes, including cytoskeleton organ-
ization, calcium influx, phagocytosis, and cell transforma-
tion [3]. Vav proteins share a common structure,
including a N-terminal calponin homology (CH) domain
involved in Ca+2 mobilization and transforming activity,
an acidic domain (AD) containing three regulatory tyro-
sines, a Dbl homology (DH) domain with a conserved
region that promotes the exchange of GDP for GTP on
Rac/Rho GTPases, a pleckstrin homology (PH) domain
binding to PIP3 that enables its movement to the inner
face of the plasma membrane, two Src-homology 3 (SH3)
domains interacting with proteins containing proline-rich
sequences, and a Src-homology 2 (SH2) domain interact-
ing with proteins containing phosphorylated tyrosines
[4,5]. Tyrosine phosphorylation by receptor protein tyro-
sine kinase or cytoplasmic protein tyrosine kinase is
required for Vav protein activation. In the non-phosphor-
ylation state, Vav is folded, which is achieved by binding
of the tyrosines in the AD domain to the DH domain and
binding of the CH domain to the C1 region. Upon phos-
phorylation of the tyrosines in the AD domain, the fold-
ing is opened and the DH domain is exposed. Thus, Vav
protein is activated and interacts with substrate proteins,
and the PH domain is exposed for PIP3 binding [6].

Breast cancer is the most common malignant disease
worldwide and the number one cause of cancer-related
death among non-smoking women in the US. The major
problem in breast cancer therapy is development of estro-
gen-insensitive growth after hormonal therapy. Aberrant
ERα activation by various mechanisms contributes to
breast cancer development and estrogen-resistant diseases
[7-9]. This ERα hypersensitivity can be achieved by estro-
gen-independent mechanisms, such as ERα phosphoryla-
tion by crosstalking with signal transduction pathways
and overexpression of nuclear receptor coactivator SRC3
[10,11]. Numerous studies have shown that EGFR/HER2-
elicited signaling is involved in human breast cancer [9].
In addition, elevated PI3K-Akt signaling, mediated by
PTEN deletion and/or mutation and PI3K subunit p110a
(PI3KCA) mutation, upregulates ERα activity and is corre-
lated with the breast cancer development and anti-estro-
gen resistance [12-15]. Activation of PI3K has been
implicated in part because the downstream PI3K target,
Akt, phosphorylates and promotes ligand-independent
ERα activation [16,17]. Transgenic breast cancer mouse
models have confirmed that elevated signaling in the
EGFR/HER2-PI3K-Akt pathway either by targeted Akt
overexpression or HER2 overexpression in breast epithe-
lial cells induces breast cancer development [18-20].
These signaling pathways have been the targets for breast
cancer therapy [7-9].

The classical ERα is a ligand-dependent transcription fac-
tor that activates transcription of its target genes in
nucleus, which is known as genomic ERα activity. Recent
findings revealed that the classical steroid hormone recep-
tors also associate with cell membrane and mediate cell
signaling through kinase cascade, defined as nongenomic
activity [21,22]. Nongenomic ERα resides in multiprotein
complexes with molecules, such as MNAR/PELP1 and src,
in the cytoplasm and signals through the PI3K-Akt and
MAPK pathways in breast cancer cells [23,24]. Nong-
enomic ERα signaling has been shown to contribute to
estrogen-independent growth in breast cancer.

Recently, we and others found that Vav3 oncogene is over-
expressed in androgen-independent prostate cancer cells,
enhances androgen receptor (AR) activity, and stimulates
androgen-independent growth in prostate cancer cells
[25,26]. We further showed that Vav3, as a signal trans-
ducer, upregulates AR activity partially via PI3K-Akt sign-
aling [25]. The DH domain of Vav3 is responsible for AR
activation. Vav3 also potentiates EGF activity for cell
growth and AR activation in prostate cancer cells. More
importantly, Vav3 is overexpressed in 32% of human
prostate cancer. These findings suggest that Vav3 overex-
pression may be involved in prostate cancer.

The purpose of this study is to determine the role of Vav3
in breast cancer. We found that Vav3 is overexpressed in
human breast cancer specimens and cell lines. Vav3 stim-
ulates growth of breast cancer cells and activates ERα par-
tially via PI3K-Akt signaling. Vav3 potentiates EGF activity
for cell growth and ERα activation in breast cancer cells.
These data suggest that Vav3 impacts on ERα signaling
axis and its overexpression may be involved in breast can-
cer.

Methods
Reagents
RPMI 1640 medium was purchased from Invitrogen
(Gaithersburg, MD). Fetal bovine serum (FBS) and char-
coal/dextran-treated FBS were purchased from HyClone
Laboratories (Logan, UT). Human Vav3-specific Stealth™
Select RNAi (siVav3-247: 5'-CCCAGTTTCTCTGTTTGAA-
GAACAT-3') and its control (control-247: 5'-CCCT-
TCTCTGTTTGTAAAGAGACAT-3') were designed by a
software in Invitrogen website and we purchased both oli-
gos from Invitrogen as described before [25]. The transfec-
tion reagent Lipofectamine™ 2000 was from Invitrogen.
Anti-Vav3 and anti-ERα antibodies were obtained from
Upstate Biotechnology (Charlottesville, VA).

Cell culture
The human breast cancer cell lines MCF7 and T47D, and
cervical carcinoma cell line Hela were obtained from
ATCC (Rockville, MD) and maintained in RPMI-1640
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medium supplemented with 10% FBS (complete
medium) at 37°C in 5% CO2. Nontumoral breast epithe-
lial MCF-10A cells were obtained from ATCC. Transient
transfection experiments were performed in RPMI-1640
medium supplemented with 10% charcoal/dextran-
treated FBS (stripped medium).

Plasmids
Plasmids pBEF-Vav3, pHEF-Vav3*, pHEF-Vav3*-ΔDH,
pHEF-Vav3*-ΔSH, and control vector pHEF were detailed
in our previous studies [25]. pS2-Luc is a gift from Dr.
Sohaib Khan, Department of Cell Biology, University of
Cincinnati College of Medicine. ERα and ERE-Luc are gifts
from Dr. Zafar Nawaz, Braman Breast Cancer Institute,
University of Miami Miller School of Medicine.

For generation of GST-Vav3-DH+PH construct, we
designed upper primer 5' CGAGAATTCAAGGCAGAG-
GAAGCACATCAG containing Eco RI site and lower
primer 5' TCTGCGGCCGCTGTTTAGGAGTTCTTCGCAG
containing Not I site flanking both the DH and PH
domains of Vav3 gene. The PCR product by amplification
of the DH and PH domains using this pair of primers was
subcloned into pGEX-4T-1 vector (GE Healthcare Bio-Sci-
ences Corp. Piscataway, NJ) in frame by Eco RI and Not I
sites.

Cell growth assay
Tumor cell growth was estimated by MTT assay as previ-
ously described [27]. Briefly, breast cancer cells were
seeded into 96-well cell culture plates at a density of 2.5 ×
103 cells/well in stripped medium. After incubation in 5%
CO2 at 37°C overnight, the cells were transfected with
Vav3 siRNA and control siRNA using Lipofectamine 2000
and then cultured in stripped medium without or with E2
(10-9M) for 5 days. At the end of incubation, 20 ul of MTT
(2.5 mg/ml in PBS) was added to each well, and the cells
were further incubated for one hour at 37°C to allow
complete reaction between the dye and the enzyme mito-
chondrial dehydrogenase in the viable cells. After removal
of the residual dye and medium, 100 ul of dimethylsul-
foxide was added to each well, and the absorbance at 570
nm was measured using BMG microplate Reader (BMG
Labtech, Inc., Durham, NC).

Western blot analysis
Western blot analysis was performed as previously
described [27]. Briefly, aliquots of samples with the same
amount of protein, determined using the Bradford assay
(BioRad, Hercules, CA), were mixed with loading buffer
(final concentrations of 62.5 mM Tris-HCl, pH 6.8, 2.3%
SDS, 100 mM dithiothreitol, and 0.005% bromophenol
blue), boiled, fractionated in a SDS-PAGE, and transferred
onto a 0.45-um nitrocellulose membrane (BioRad). The
filters were blocked with 2% fat-free milk in PBS, and

probed with first antibody in PBS containing 0.1% Tween
20 (PBST) and 1% fat-free milk. The membranes were
then washed four times in PBST and incubated with
horseradish peroxidase-conjugated secondary antibody
(BioRad) in PBST containing 1% fat-free milk. After wash-
ing four times in PBST, the membranes were visualized
using the ECL Western blotting detection system (Amer-
sham Co., Arlington Height, IL). For western blot analysis
of Vav3 expression, the first antibody was incubated over-
night at 4°C.

Reporter assay
Cells (105/well) were seeded in 12 well tissue culture
plates. Next day, Optifect-mediated transfection was used
for the transient transfection assay according to the proto-
col provided by Invitrogen/Life Technologies, Inc. The
cells were then treated with hormone or drugs in stripped
medium for 24 hours. Subsequently, the cell extracts were
prepared and luciferase activity was assessed in a Berthold
Detection System (Pforzheim, Germany) using a kit
(Promega, Madison, WI) following the manufacture's
instruction. For each assay, cell extract (20 ul) was used
and the reaction was started by injection of 50 ul of luci-
ferase substrate. Each reaction was measured for 10 sec-
onds in the Luminometer. Luciferase activity was defined
as light units/mg protein.

GST pull down
GST-Vav3-DH+PH and control GST vectors were trans-
formed into BL21 bacteria, respectively (Protein Express,
Inc. Cincinnati, OH). The transformed bacteria were cul-
tured in L-Broth with addition of 100 uM of IPTG to
induce GST-fusion protein expression. Then, the bacteria
were harvested and subjected to GST fusion protein puri-
fication by Sonication and using Glutathione Sepharose
4B (Amersham Bioscience).

For pull down reaction, 5~10 ug of GST or GST-Vav3-
DH+PH was incubated with 1 mg of cell extracts from
MCF7 cells in a binding buffer [20 mM of Tris.CL, PH. 7.9;
300 mM of KCL; 0.05% of NP-40; 0.2 mM of EDTA; 20%
of Glycerol; 1 mM of Dithiothritol; 1 mM of phenylmeth-
ylsulfonyl fluoride (PMSF), 1× of protease inhibitor cock-
tail (Roche Diagnostics)] for overnight [28,29]. Then, the
beads were washed for five times in a washing buffer (20
mM of Tris.CL, PH. 7.9; 300 mM of NaCL; 0.01% of NP-
40; 0.2 mM of EDTA; 20% of Glycerol; 0.5 mM of Dithi-
othritol) and boiled in 1 × SDS loading buffer. The pro-
teins in the supernatant were subjected for SDS-PAGE,
which was visualized by Coomassie Blue staining. The
samples were also subjected to western blot analysis for
ERα.
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Immunohistochemistry (IHC) staining
IHC staining was performed as detailed in our previous
studies [25]. Briefly, paraffin-embedded section of breast
cancer tissue array (US Biomax, Rockville, MD) was
deparaffinized in xylene, rehydrated in graded alcohol,
and transferred to PBS. The slides were treated with a citric
acid-based antigen-retrieval buffer (DAKO Co., Carpinte-
ria, CA), followed by 3% H2O2 in methanol, incubated in
blocking buffer (5% BSA and 5% horse serum in PBS) and
then in the blocking buffer containing antibodies against
human Vav3 (Upstate Biotechnology Inc.). After washing,
the slide was incubated with a biotinylated secondary
antibody (BioGenex Laboratories, San Ramon, CA), fol-
lowed by washing and incubation with the streptavidin-
conjugated peroxidase (BioGenex). A positive reaction
was visualized by incubating the slides with stable diami-
nobenzidine and counterstaining with Gill's hematoxylin
(BioGenex) and mounted with Universal Mount mount-
ing medium (Fisher Scientific, Pittsburgh, PA). The inten-
sity and extent of cytoplasm-positive labeling for Vav3 in
tissue arrays were assessed semiquantitatively and scored
as 0 (no staining), 1+ (weak and focal staining in <25% of
tissue), 2+ (moderate intensity in 25–50% of tissue), and
3+ (moderate intensity in >50% of tissue), and 4+ (strong
and diffused staining in >50% of tissue).

Results
Expression analysis of Vav3 in human breast cancer 
specimens
To determine a potential role of Vav3 in breast cancer, we
evaluated Vav3 expression in surgical specimens of
human breast cancer by IHC analysis using anti-Vav3 anti-
body. No significant Vav3 immunoreactivity was detected
in all normal breast tissue sections (0/8) (Table 1and Fig-
ure 1). In contrast, Vav3 staining, detected in both cyto-
plasm and nucleus of the epithelial cells but not in stroma
of breast tissues, was found in 35 out of 43 tumor tissue
sections (35/43, 81%, p < 0.0001). Among the tumor sec-
tions, Vav3 staining was found in approximately 67%
(27/35) of the specimens with well to moderately differ-
entiated tumors and 100% (8/8) of those with poorly dif-

ferentiated tumors, respectively. The statistical analysis of
association of Vav3 overexpression with poorly differenti-
ated breast tumors failed (p > 0.05), possibly due to the
small number of poorly differentiated tumor specimens.
The proportion of sections with higher intensity of Vav3
staining, however, was significantly elevated in the speci-
mens with poorly differentiated tumors (p < 0.01). As
shown in Figure 1, for moderately and poorly differentia-
tion breast cancer cells, the nuclei are significantly
enlarged, hyperchromatic with coarse clumping of chro-
matin, prominent nucleoli, and irregular nuclear mem-
brane.

Immunoblotting analysis also revealed that Vav3 expres-
sion was elevated in MCF-7 and T47D breast cancer cells
in comparison with that in nontumoral breast epithelial
MCF-10A cells (Figure 2A). ERα was detected in the two
breast cancer cell lines, but not at the very low level in
nontumoral MCF-10A cells.

Vav3 is involved in growth of breast cancer cells
To determine a potential role of Vav3 in growth of breast
cancer cells, we determined the role of Vav3 on estrogen-
independent growth in breast cancer cells. Control and
Vav3-transfected MCF7 cells were incubated in stripped
medium in the presence of increasing concentrations of
EGF. We found that Vav3 overexpression stimulated
MCF7 cell growth in the absence of EGF and also signifi-
cantly potentiated the cell growth in response to EGF
treatment in a dose-dependent manner (Figure 2B. Ele-
vated expression of Vav3 upon transient transfection of
Vav3 expression vector was confirmed by western blot
analysis in these cells (Figure 2C).

We then determined whether knockdown expression of
Vav3 inhibits growth of these breast cancer cells using
Vav3 siRNA that has been characterized previously [25].
Lipofectamine 2000 used for transfection of siRNA has
been shown to knock down more than 80% activity of the
endogenous gene in a panel of cells tested (Invitrogen).
We confirmed a reduced level of Vav3 upon transfection
of Vav3 siRNA by protein expression analysis relative to
the control (Figure 2D). A growth stimulatory effect in
response to estrogen stimulation was observed in T47D
and MCF7 cells (Figure 2Eand 2F). We found that knock-
down expression of Vav3 significantly inhibited both
estrogen-dependent and -independent growth in these
breast cancer cells (Figure 2Eand 2F). At 1.2 pM of siRNA,
the growth of T47D and MCF7 cells was inhibited by 64%
and 68% in the absence of estrogen and 46% and 77% in
the presence of estrogen relative to their respective con-
trols. These data suggest that Vav3 is involved in both
estrogen-dependent and -independent growth in breast
cancer cells.

Table 1: IHC analysis of Vav3 expression in breast cancer 
specimens.

Differentiation Staining intensity Intensity (>1)

Negative 1–2 3–4

Well to moderate 8 22 5 27/35
Poor 0 2 6 8/8
Normal breast tissue 8 0 0 0/8
Normal vs. tumor p < 0.0001
Well to moderate vs poor differentiation p > 0.05

Differences in the IHC staining of surgical specimens of human breast 
cancer were analyzed with the chi-square test.
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Vav3 upregulates ERα activity
Previous studies have revealed that Vav3*, a Vav3 mutant
with N-terminal domain deletion including the AD
domain containing three tyrosine residues, is a constitu-
tive active form and has much stronger oncogenic effect
relative to that by wild type Vav3 [30]. Structure analysis
of Vav protein suggested that in the non-phosphorylation
state, Vav protein is folded, which is achieved by binding
of tyrosines in the AD domain to the DH domain and
binding of the CH domain to the C1 region [6]. Phospho-
rylation of the tyrosines in the AD domain results in

unfolding of Vav protein and exposure of the DH domain
for interacting with substrate proteins. Consistently, we
found that the constitutive active Vav3* shows a much
stronger activity in upregulation of AR activity than that
by Vav3 [25].

To determine whether Vav3 regulates ERα activity, we
used both Vav3 and Vav3* for the reporter assay. Hela
cells were transiently cotransfected with a luciferase
reporter driven by the estrogen response element (ERE),
ERα expression vector, and either Vav3 or Vav3* expres-

Overexpression of Vav3 in human breast cancerFigure 1
Overexpression of Vav3 in human breast cancer. (A) The normal breast epithelial cells reveal negative immunoreactivity 
for Vav3 (200× magnification). Breast adenocarcinomas with well-differentiation (B), moderately differentiation(C), and poorly 
differentiation (D) show positive immunoreactivity (brown staining) for Vav3 in both nucleus and cytoplasm. Arrows indicate 
the breast epithelial and cancer cells. The microphotographs indicate nucleus feature of the breast epithelial and breast cancer 
cells (400× magnification). For moderately and poorly differentiation breast cancer cells, the nuclei are significantly enlarged 
and hyperchromatic with coarse clumping of chromatin, prominent nucleoli, and irregular nuclear membrane.
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Vav3 is involved in growth of breast cancer cellsFigure 2
Vav3 is involved in growth of breast cancer cells. (A) Expression analysis of Vav3 and ERα in breast cancer MCF7 and 
T47D cells and nontumoral breast epithelial MCF-10A cells. The cell extracts were prepared from T47D, MCF7, and MCF-10A 
cells and subjected to western blot analysis for Vav3 and ERα. β-actin was served as loading control. (B) MCF7 cells were tran-
siently transfected with Vav3 expression vector or control empty vector and then cultured in stripped medium in the absence 
or presence of EGF for 5 days, followed by MTT assay. The data was presented as absorbance at OD 570 nM. (C) MCF7 cells 
were transiently transfected with Vav3 expression vector or empty pHEF vector for 3 days, followed by cell extracts prepara-
tion and western blot analysis for Vav3. β-actin was served as loading control. (D) Knock down expression of Vav3 upon trans-
fection of Vav3 siRNA. T47D cells were transfected with 5 pM/well of siVav3-247 or control-247 in 6-well plate for 3 days. The 
cell extracts were prepared and subjected to western blot analysis for Vav3. β-actin was served as loading control. (E and F) 
MCF7 cells and T47D cells (2500 cells/well in 96-well plate) were transiently transfected with siVav3-247 or control-247 at the 
concentrations of 0, 0.15, 0.3, 0.6, 1.2, 2.5, 5.0 pM/well using Lipofectamine 2000 for overnight. Then, the cells were cultured in 
stripped medium without or with E2 (10-9 M) for 5 days, followed by MTT assay. The data was presented as absorbance at OD 
570 nM.
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sion vector. Overexpression of Vav3, and Vav3* with a
greater effect relative to the empty vector pHEF, enhanced
both basal and estrogen-stimulated ERα activity (Figure
3A). Furthermore, we found that both estrogen-stimu-
lated and Vav3-activated ERα activities were blocked by
ER antagonist Tamoxifen (Figure 3A). The inhibitory

effect for ERα by Tamoxifen was compromised with Vav3
overexpression. Upregulation of the endogenous ERα
activity by Vav3 relative to the empty vector pHEF was also
confirmed in MCF7 cells by stimulation of luciferase
reporter expression driven by ERE (Figure 3B) and natural
promoter of ERα target gene pS2 (Figure 3C). Vav3 also

Vav3 enhances ERα activityFigure 3
Vav3 enhances ERα activity. (A) Hela cells (105 cells/well in 12-well plate) were cotransfected with ERE-Luc (0.5 ug), 
expression vectors for Vav3, Vav3*, or empty vector pHEF (200 ng) and ERα (50 ng), respectively. Then, the cells were treated 
without or with E2 (10-9 M) and without or with Tamoxifen. (B and C) MCF7 cells (105 cells/well in 12-well plate) were 
cotransfected with ERE-Luc (0.5 ug) (B) or pS2-Luc (0.5 ug) (C), and expression vector (0.25 ug) for Vav3*, or empty vector 
pHEF, respectively. Then, the cells were treated with E2. All transfection and drug treatment are in stripped medium for 24 
hours, followed by luciferase assay. Renilla luciferase as an internal control was used to normalize the data. Data are presented 
as the mean (± SD) of duplicate values of a representative experiment that was independently repeated for five times.
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significantly enhanced ERα activity stimulated by sub-
physiological concentrations of estrogen (10-11 and 10-10

M) (Figure 3B). These data suggest that Vav3 overexpres-
sion confers ERα hypersensitivity.

We next examined the domains of Vav3 required for
upregulation of ERα activity by analyzing both wild type
Vav3 and Vav3 deletion mutants (Figure 4A). We found
that Vav3* demonstrated a much stronger activity for ERα
activation relative to Vav3 as compared with the empty
vector pHEF, supporting the previous observation that
activity of Vav3 is subjected to regulation by phosphoryla-
tion (Figure 4Band Figure 5D) [6]. In addition, deletion of
the DH domain, but not the SH domain or the CH
domain, abolished Vav3 function for ERα activation (Fig-
ure 4B). The truncated Vav3 protein with deletion of both
PH and SH domains failed to activate ERα. Therefore,
consistent with our previous observation of its effect for

AR, the DH domain of Vav3 is also essential for ERα acti-
vation [25].

Vav3 enhances ERα activity partially via the PI3K-Akt 
pathway and potentiates EGF for ERα activation
Elevated PI3K-Akt signaling enhances ERα activity and is
thought to be critical for breast cancer development and
progression [11,31,32]. Since Vav3 is a potential upstream
regulator of the PI3K-Akt pathway [33,34], we investi-
gated whether Vav3 overexpression impacts on PI3K-Akt
signaling-mediated ERα activation. Hela cells were tran-
siently cotransfected with ERE-Luc reporter, and expres-
sion vectors ERα, Vav3*, and p85 (the regulatory subunit
of PI3K) and p110 (the catalytic subunit of PI3K). As
shown in Figure 5A, cotransfection of Vav3* or PI3K rela-
tive to the empty vector pHEF or pCR3.1 stimulated ERα
activity. ERα activity was further enhanced in cells
cotransfected with both Vav3* and PI3K. On the other
hand, cotransfection of a dominant-negative Akt relative
to the empty vector pCR3.1 blocked Vav3*-mediated ERα
activation (Figure 5B). Next, we determined the role of
endogenous PI3K in Vav3-induced ERα activation. Data
in Figure 5C showed that PI3K inhibitor Wortmannin
blocked both basal and Vav3-stimulated ERα activation in
the absence and presence of E2. Similar results were also
noted in cells treated with PI3K inhibitor LY294002 (data
not shown). These data indicate that Vav3 activates ERα at
least partially via PI3K-Akt signaling.

In agreement with its effects on estrogen-independent
growth in breast cancer cells (Figure 2B), overexpression
of Vav3 potentiated EGF-stimulated ERα activation (Fig-
ure 5D). This data suggests that Vav3 overexpression may
mediate EGFR/HER2/neu-elicited signaling leading to
ERα hypersensitivity.

Vav3 complexes with ERα and impacts on ERα signaling 
axis
Recent findings implicate that Vav family proteins also
complex with transcription factors and regulate gene
expression [35,36]. A nuclear localization signal (NLS) in
the PH domain was shown to be solely responsible for the
nucleus localization of Vav1 protein, indicating a role of
Vav family protein as a transcription coregulator. We have
demonstrated that the DH domain of Vav3 is essential for
AR and ERα activation (Figure 4) [25]. We performed
sequence analysis of Vav proteins and found that the DH
domain of Vav3 contains three consensus sequences of
the LXXLL motifs or NR boxes, which have been well char-
acterized and involved in interaction with nuclear recep-
tors (Figure 6A). In addition, homologous analysis of
Vav3 and Vav1 genes identified a conserved NLS in the PH
domain of Vav3 (Figure 6B). These findings suggest that
Vav3 is also localized in nucleus and regulates transcrip-
tion of nuclear receptors.

Determination of the functional domain of Vav3 involved in ERα activationFigure 4
Determination of the functional domain of Vav3 
involved in ERα activation. (A) Deletion constructs of 
Vav3. (B) Hela cells (105 cells/well in 12-well plate) were 
cotransfected with ERE-Luc (0.5 ug) and expression vectors 
(200 ng) for Vav3, Vav3*, Vav3*-ΔDH, Vav3*-ΔSH, or empty 
vector pHEF, as well as expression vector (50 ng) for ERα, 
respectively. All transfection and drug treatment are in 
stripped medium for 24 hours, followed by luciferase assay. 
Renilla luciferase as an internal control was used to normal-
ize the data. Data are presented as the mean (± SD) of dupli-
cate values of a representative experiment that was 
independently repeated for five times.
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We then determined whether Vav3 complexes with ERα.
We performed GST pull down experiment to confirm the
interaction between Vav3 and ERα. A GST fusion protein
including the DH and PH domain of Vav3 (GST-Vav3-
DH+PH) was generated (Figure 7A). Cell extract derived
from MCF7 cells was incubated with immobilized GST-
Vav3-DH+PH fusion protein or GST protein. Then, the

pull down samples were fractionated by SDS-PAGE (Fig-
ure 7B) and subjected to western blot analysis for ERα. We
found that GST-Vav3-DH+PH fusion protein, but GST
protein, interacted with ERα (Figure 7C). In summary, we
found that Vav3 contains NLS in the PH domain and three
LXXLL motifs in the DH domain. The deletion mutation
and functional analysis by luciferase reporter assay

Vav3 activates ERα partially via PI3K-Akt signaling and potentiates EGF for ERα activationFigure 5
Vav3 activates ERα partially via PI3K-Akt signaling and potentiates EGF for ERα activation. (A) Hela cells were 
cotransfected with ERE-Luc (0.25 ug), expression vectors ERα (25 ng), Vav3* or empty vector pHEF (50 ng), p85+p110 or 
empty vector pCR3.1 (50 ng). (B) Hela cells were cotransfected with ERE-Luc reporter (0.25 ug/well in 12-well plate), expres-
sion vectors ERα (25 ng), dominant-negative Akt expression vector or empty vector pCR3.1 (0.1 ug), and Vav3* expression 
vector or empty vector pHEF (0.1 ug), respectively. (C) T47D cells were cotransfected with ERE-Luc (0.5 ug) and expression 
vector for Vav3 or empty vector pHEF (0.25 ug). Then, the cells were treated with Wortmannin (0.5 um). (D) T47D cells were 
cotransfected with pS2-Luc (0.5 ug) and expression vector for Vav3 or empty vector pHEF (0.25 ug). Then, the cells were 
treated with EGF (20 ng/ml). All transfection and drug treatment are in stripped medium for 24 hours, followed by luciferase 
assay. Renilla luciferase as an internal control was used to normalize the data. Data are presented as the mean (± SD) of dupli-
cate values of a representative experiment that was independently repeated for five times.
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showed that the DH domain of Vav3 is essential for
enhancing ERα activity and is involved in complex with
ERα. Our data suggest that Vav3 complexes with ERα and
its overexpression enhances ERα signaling axis in breast
cancer cells.

Discussion
Previous studies from our group have demonstrated that
Vav3 is overexpressed in human prostate cancer and
potentiates AR signaling [25]. Breast cancer and prostate
cancer are steroid-dependent tumors and share a signifi-
cant similarity in their characteristics and treatment. For
instance, growth of these cancer cells, mediated by their
corresponding hormone receptors ERα and AR, is hor-
mone-dependent. Hormone ablation is common therapy
for both cancers. Recurrent diseases develop hormone-
independent growth. Given that steroidal nuclear recep-
tors share many common properties, we hypothesized
that Vav3 may regulate ERα activity and is involved in
human breast cancer. We tested this hypothesis in the
present study by examining the expression of Vav3 in
human breast cancer specimens and cell lines and investi-
gated a potential role of Vav3 in breast cancer cell growth
and ERα signaling. We found that Vav3 was overexpressed
in human breast cancer, particularly in the poorly differ-
entiated lesions and in the two most commonly used
breast cancer cell lines. The knockdown expression of
Vav3 compromised both estrogen-stimulated and -inde-
pendent growth of breast cancer cells. On the other hand,
overexpression of Vav3 enhanced ERα signaling. These
data strongly suggest that Vav3 may play an important
role in breast cancer development and/or progression.

Vav3 is an oncogene identified in cell transformation
experiments [3]. Vav3 is activated upon ligand stimula-
tion of EGF, insulin, Ros, and IGF receptors and physically
associates with a variety of signaling molecules, including
Rac1, Cdc42, PI3K, Grb2, and PLC-γ, leading to alteration
in cell morphology and cell transformation [33]. Overex-
pression of Vav3 leads to PI3K activation and focus forma-
tion in NIH3T3 cells [34]. In contrast, blocking PI3K

Sequence analysis of Vav3 and Vav1 genesFigure 6
Sequence analysis of Vav3 and Vav1 genes. (A) The consensus sequences of LXXLL motifs I, II, and III were identified in 
the DH domain of Vav3 as indicated. Mutation of LLLQELV sequence overlapping with LXXLL motifs II and III has been shown 
to abolish the GEF activity of Vav3. (B) A consensus sequence of the nucleus localization signal (NLS) in Vav3 was localized in 
the PH domain.

Vav3 complexes with ERα by GST pull down analysisFigure 7
Vav3 complexes with ERα by GST pull down analysis. 
(A) GST-Vav3-DH+PH fusion protein. (B) GST-Vav3-
DH+PH fusion protein (lane 3 and 4) and control GST pro-
tein (lane 1 and 2) were subjected to pull down reaction in 
the absence (lane 1 and 3) and presence (land 2 and 4) of cell 
extract derived from MCF7 cells. The samples were fraction-
ated in SDS-PAGE and stained with Coomassie Blue. (C) The 
same samples were subjected to western blot analysis for 
ERα.
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activation by PTEN and LY294002 inhibits Vav3-induced
cell transformation. Furthermore, it has been shown that
Vav3*, a Vav3 mutant with N-terminal domain deletion
including the acidic domain, is a constitutive active form
and has much stronger oncogenic effect compared with
that by Vav3 [30]. Consistently, we found that the aug-
mentation of ERα signaling by Vav3 overexpression was
similarly inhibited by Wortmannin and by overexpression
of a dominant-negative Akt. In addition, Vav3 showed a
lower activity for ERα activation relative to that by Vav3*.
EGF treatment significantly potentiated Vav3 activity for
ERα activation. These data suggest that Vav3 is subjected
to regulation by phosphorylation, most likely at the three
tyrosines in the AD domain, which may cause conforma-
tion change, release the inhibitory effect of the N-terminal
domain, and expose the DH domain for ERα binding.

Many coactivators of steroid hormone receptors have the
LXXLL motifs, where L is leucine and X is any amino acid
[37,38]. These coregulators interact with and upregulate
ERα-mediated signaling in both nucleus and cytoplasm.
For instance, SRC-1 and its related proteins are a family of
coactivators containing the homologous bHLH-PAS
domain and receptor-interacting domain (RID) with mul-
tiple LXXLL motifs and enhance transcription activity of
nuclear receptors [37,38]. PELP1/MNAR containing the
LXXLL motif interacts with and enhances both genomic
and nongenomic ERα activities [21,24]. Recent findings
implicate that Vav family proteins also complex with tran-
scription factors and regulate gene expression. Vav1 was
identified in the component of transcriptionally active
nuclear factor of activated T cells (NFAT)- and nuclear fac-
tor NFkB-like complexes [35,36]. A nuclear localization
signal (NLS) in the PH domain is solely responsible for
nucleus localization of Vav1 protein, indicating a role of
Vav family proteins as a transcription coregulator. We
found that Vav3 contains the LXXLL motifs in the DH
domain and NLS in the PH domain. This finding suggests
that Vav3 is also a nuclear protein.

Previous study has shown that Vav protein can be acti-
vated by receptor tyrosine kinase upon activation of EGFR
[39]. Furthermore, ERα resides in multi-protein com-
plexes with molecules, such as MNAR/PELP1 and src, in
the cytoplasm and signals through the PI3K-Akt and
MAPK pathways in breast cancer cells [23,24]. ERα was
also found localized in lipid rafts and involved in signal-
ing elicited by EGFR and HER2 receptors [40,41]. We
found that Vav3 activates ERα partially via PI3K-Akt sign-
aling and potentiates EGF effect for cell growth and ERα
activation in breast cancer cells. More interestingly, we
found that Vav3 complexes with ERα. These findings sug-
gest that Vav3 enhances ERα signaling axis in breast can-
cer cells. Vav3 overexpression may confer ERα
hypersensitivity and play a role in breast cancer. Given

both nuclear and cytoplasmic localization of Vav3 pro-
tein, our data implicate that Vav3 may impact on both
genomic and nongenomic ERα activity. Furthermore, the
relationship of Vav3 and ERα in the context of EGFR/
HER2 and PI3K-Akt signaling is remained to be deter-
mined.

Our findings support the notion that Vav3 overexpression
may play a role in breast cancer, based on the following
reasons: 1) Vav3 is overexpressed and correlated with
poorly differentiated tumors in human breast cancer; 2)
Vav3 contains the LXXLL motifs and complexes with ERα;
3) Vav3 enhances ERα activity partially via the PI3K-Akt
pathway; 4) Vav3 is a protein with multiple domains and
functions, including the SH2 domain interacting with
receptor protein tyrosine kinase, the PH domain binding
PIP3 involved in association with the cell membrane, and
the DH domain involved in interaction with ERα; 5) Vav3
potentiates EGF for cell growth and ERα activation. Taken
together, these findings suggest that Vav3 overexpression
enhances ERα-mediated signaling axis and may be
involved in breast cancer.

Data presented in this report clearly show that Vav3 is
overexpressed in human breast cancer and is involved in
growth of breast cancer cells and ERα signaling. Whereas
our data showed that Vav3 complexes with ERα, molecu-
lar mechanisms underlying the enhancement of ERα sig-
naling remain to be elucidated. Nevertheless, data
presented here strongly suggest a novel mechanism that
potentially leads to ERα hypersensitivity and breast cancer
development and/or progression.
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