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Abstract

Background: An imbalance between proliferation and apoptosis is one of the main features of carcinogenesis.
TRAIL (TNF-related apoptosis-inducing ligand) induces apoptosis upon binding to the TRAIL death receptors, TRAIL
receptor 1 (TRAIL-RT) and TRAIL-R2, whereas binding to TRAIL-R3 and TRAIL-R4 might promote cell survival and
proliferation. The anti-tumor activity of TRAIL-R1 and TRAIL-R2 agonists is currently investigated in clinical trials. To
gain further insight into the regulation of apoptosis in hepatocellular carcinoma (HCC), we investigated the TRAIL
pathway and the regulators of apoptosis caspase-8, Bcl-xL and Mcl-1 in patients with HCC regarding patient survival.

Methods: We analyzed 157 hepatocellular carcinoma patients who underwent partial liver resection or orthotopic
liver transplantation and healthy control liver tissue using immunohistochemistry on tissue microarrays for the
expression of TRAIL-R1 to TRAIL-R4, caspase-8, Bcl-xL and Mcl-1. Immunohistochemical data were evaluated for
potential associations with clinico-pathological parameters and survival.

Results: Whereas TRAIL-R1T was downregulated in HCC in comparison to normal liver tissue, TRAIL-R2 and —R4 were
upregulated in HCC, especially in G2 and G3 tumors. TRAIL-R1 downregulation and upregulation of TRAIL-R2 and
TRAIL-R4 correlated with tumor dedifferentiation (G2/G3). TRAIL-R3, Bcl-xL and Mcl-1 showed no differential
expression in tumor tissue compared to normal tissue. The expression levels of TRAIL receptors did not correlate with
patient survival after partial hepatectomy. Interestingly, in tumor tissue, but not in normal hepatocytes, caspase-8
showed a strong nuclear staining. Low cytosolic and high nuclear staining intensity of caspase-8 significantly
correlated with impaired survival after partial hepatectomy, which, for cytosolic caspase-8, was independent from
tumor grade.

Conclusions: Assessment of TRAIL-receptor expression patterns may have therapeutic implications for the use of
TRAIL receptor agonists in HCC therapy. Tumor-specific nuclear localisation of caspase-8 in HCC suggests an
apoptosis-independent function of caspase-8 and correlates with patient survival.
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Background

Hepatocellular carcinoma (HCC) is the main type of pri-
mary liver cancer and the fifth most common malignant
cancer worldwide. Its poor prognosis makes it the third
leading cause of cancer-related mortality [1-3]. Only
about 30% of patients are eligible for curative therapies
(e.g. resection and transplantation) and the disease re-
curs frequently following liver resection [4]. Sorafenib,
an oral multikinase inhibitor, is effective in the treatment
of advanced HCC [5]. However, sorafenib therapy is lim-
ited by side effects and lack of long-term efficacy.

The tumor necrosis factor (TNF)-related apoptosis
inducing-ligand (TRAIL) is a member of the TNF cytokine
family. TRAIL is currently in clinical development as a po-
tential novel anticancer therapeutic because it selectively in-
duces apoptosis in cancer cells [6-11]. After TRAIL-binding
TRAIL-RI, also called Death Receptor 4 (DR4), [12] and
TRAIL-R2 (DR5) [13,14] initiate apoptosis following forma-
tion of the death-inducing signaling complex (DISC):
trimerization of TRAIL-R1 and/or TRAIL-R2 leads to re-
cruitment of FADD and cytoplasmic caspase-8 to the
intracellular death domain (DD) of both receptors.
Caspase-8 recruitment to the DISC activates this prote-
ase, which triggers a caspase cascade and, ultimately,
apoptotic death of susceptible cells. Two other recep-
tors, TRAIL-R3 and TRAIL-R4, do not induce apoptosis;
they lack a functional intracellular death domain [15-17]
and have been suggested to inhibit TRAIL-induced
apoptosis by competing with TRAIL-R1 and TRAIL-R2
for TRAIL-binding. TRAIL-R4 has also been shown to
inhibit apoptosis through ligand-independent associ-
ation with TRAIL-R2 via the preligand assembly domain
(PLAD) [18] or by NF-«B activation upon TRAIL-R4
overexpression [17]. The fifth TRAIL-receptor, osteopro-
tegerin, is a soluble receptor and is mainly involved in
the regulation of bone metabolism [19,20].

Apart from representing potential therapeutic targets
for novel, TRAIL-based therapies, the two TRAIL recep-
tors and their expression pattern may be both prognostic
and predictive for patient survival. However, the cur-
rently available data is controversial in this regard. For
instance, in renal cell carcinoma high TRAIL-R2 and
low TRAIL-R4 expression correlated with poorer overall
survival [21]. In breast cancer, expression of TRAIL-R2
was associated with TRAIL-R4 positivity and correlated
with poorer survival [22]. In contrast, in colorectal can-
cer Ullenhag et al. could not detect any correlation of
TRAIL-R1 and TRAIL-R2 expression status with pa-
tients survival [23].

Caspase-8 is crucial for triggering apoptosis by death
receptors since its recruitment to and activation at the
DISC is the decisive step for the initiation of the caspase
cascade [24]. Besides apoptosis induction non-apoptotic
functions of caspase-8 have been discussed, although
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these non-apoptotic signaling pathways and molecular
targets have not been defined yet [25]. Bcl-xL and Mcl-1
belong to the anti-apoptotic B-cell lymphoma-2 (Bcl-2)
family of proteins [26]. High expression of Bcl-XL has
been associated with more aggressive tumor biology and/
or drug resistance to various chemotherapeutic agents in
hematologic and solid malignancies [26]. Inhibition of
Bcl-xL induces apoptosis and suppresses growth of
hepatoma cells in combination with sorafenib [27]. Mcl-1
is overexpressed in about 50% of HCC tissues [28] but on
the other hand deletion of Mcl-1 triggers hepatocarcino-
genesis in mice [29]. Recent studies have demonstrated
that TRAIL expression is altered in HCC in comparison
to normal liver tissue, but there are contradictory data
about the expression of the different TRAIL receptors in
HCC cells and tissues [30-34]. Thus, we analyzed TRAIL
receptors and the apoptosis regulatory proteins caspase-
8, Bcl-xL and Mcl-1 in correlation with HCC grading
and survival.

Methods

Patient characteristics

To analyze the expression of TRAIL receptors, caspase-8,
Bcl-xL and Mcl-1 HCC tumor samples were obtained
from patients with HCC (n = 157) who underwent ortho-
topic liver transplantation (OLT, n =82, 52%) or partial
resection (PR, n=75, 48%) between 1997 and 2005.
Median age of the patients was 58 years. 27% suffered
from alcohol-induced liver disease, 40% had chronic viral
hepatitis. 41 (55%) of the patients undergoing partial liver
resection suffered from cirrhosis. Detailed patient charac-
teristics are shown in Table 1.

Survival analysis was carried out in 49 patients who
underwent partial resection. Of the 75 patients who
underwent partial resection, seven were excluded from
the survival analysis because they died within the first
month after surgery, not related to HCC; 19 patients
were lost during follow up. OLT patients were excluded
from survival analysis since survival after OLT is mainly
influenced by non-tumor-related factors.

Histopathological data

Normal liver tissue was obtained from liver resections
from patients without underlying liver disease who
underwent resection for other reasons than HCC, i.e.
liver metastasis. All specimens were resected at the
Dept. of General and Transplant Surgery, University of
Heidelberg. Histopathological data were obtained from
the Institute of Pathology, University Hospital of
Heidelberg and were reviewed by at least two board-
certified pathologists experienced in liver pathology. A
total of 157 human liver tissue samples were evaluated
by tissue microarrays (TMAs). TMAs contained two
representative areas of hepatocellular carcinoma of each
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Table 1 Patient’s characteristics
Type of surgery OLT PR Cohort A Cohort B
all PR for survival analysis
n=157 82 (52%) 75 (48%) 157 49
Median age 576 64.1
Male 68 (83%) 63 (84%) 131 (83%) 42 (86%)
Female 14 (17%) 12 (16%) 26 (17%) 7 (14%)
Cirrhosis (histologically confirmed) 70 (85%) 41 (55%) 111 (71%) 24 (49%)
Etiology:
- Alcohol-induced liver disease 29 (35.4%) 13 (17.3%) 42 (27%) 8 (16%)
- Viral disease 38 (46%) 19 (25%) 63 (40%) 9 (18%)
1 HBV 15 (18.3%) 9 (12%) 24 (15.2%) 5 (10%)
m HCV 26 (31.7) 7 (9.3%) 33 (21%) 5 (10%)
B HBV + HCV 3 (3.7%) 3 (4%) 6 (3.8) 1 (2%)
- Others (cryptogenic, hemochromatosis, AlH, PBC) 9 (11%) 43 (57%) 52 (33%) 21 (43%)
TNM
pT1 11 (13%) 13 (17%) 24 (15%) 10 (20%)
pT2 30 (37%) 34 (45%) 64 (41%) 23 (47%)
pT3 11 (13%) 17 (23%) 28 (18%) 9 (18%)
pT4 17 (21%) 5 (7%) 22 (14%) 3 (6%)
pTx 13 (16%) 6 (8%) 19 (12%) 4 (8%)
pNO 40 (49%) 27 (36%) 67 (43%) 20 (41%)
pNx 40 (49%) 47 (63%) 87 (55%) 28 (57%)
pN1 2 (2%) 1 (1%) 3 (2%) 1 (2%)
pMO/Mx 80 (98%) 72 (96%) 152 (97%) 48 (98%)
pM1 2 (2%) 3 (4%) 5 (3%) 1 (2%)
Grading
G1 9 (11%) 6 (8%) 15 (10%) 6 (12%)
G2 45 (55%) 42 (56%) 87 (55%) 27 (55%)
G3 28 (34%) 26 (35%) 54 (34%) 16 (33%)
G4 - 1 (1%) 1 (1%)

patient or normal liver (punch cylinder diameter:
0.6 mm). All specimens were fixed in 4% formalin
(pH 7.4) and embedded in paraffin. Grading was deter-
mined based on the AFIP system [35]. The study was ap-
proved by the ethics committee of the medical faculty of
Heidelberg University (206/2005).

Antibodies and reagents

For specific immunohistochemical detection of TRAIL re-
ceptors we used the following mouse IgG antibodies as de-
scribed before [22]: TR1.02 (TRAIL-R1; mIgG2b), TR2.21
(TRAIL-R2; mlIgG1), TR3.06 (TRAIL-R3; mlIgG1l) and
TR4.18 (TRAIL-R4; mIgG1). The antibody C-15 (caspase-
8, mIgG2b) was kindly provided by P.H. Krammer (DKFZ,
Heidelberg). Furthermore, the following antibodies were
used: 2H212 (Bcl-xL, mIgG2a, Zytomed, Berlin, Germany),
S-19 (Mcl-1, rabbit polyclonal IgG, Santa Cruz, Santa Cruz,

CA, USA), C92-605 (active caspase-3, BD Biosciences, San
Jose, USA), 18C8 (active caspase-8, Cell Signalling,
Danvers, MA, USA). Super-Sensitive Detection Kit from
BioGenex (Fremont, CA, USA) was used for detection.
The specificity of immunohistochemical stainings of the
different anti-TRAIL-R mAbs was determined by staining
of sections of formalin-fixed, paraffin-embedded pellets of
CV1 cells transfected with pCDNA3.1-based expression
vectors for TRAIL-R1 to TRAIL-R4 as described previ-
ously [22]. For TRAIL-R1 staining with TR1.02, a high
temperature antigen retrieval step was performed by incu-
bating in 10 mM citrate buffer (Target Retrieval Solution,
S1699 DakoCytomation, Glostrup, Denmark) at pH 6.0
at 89°C for 15 min. For paraffin sections stained for
TRAIL-R2 with TR2.21, TRAIL-R3 with TR3.06 and
TRAIL-R4 with TR4.18, antigen retrieval was achieved by
incubation in 10 mM citrate buffer (pH 6.0) at 99°C for
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25 min. For Bcl-xL antigen demasking was performed by
incubation in EDTA (1 mM, pH 8.0) at 99°C for 15 min.
For staining with the other antibodies antigen demask-
ing was performed in 10 mM citrate buffer (pH 6.0) at
99°C for 25 min. To block non-specific antibody bind-
ing, sections were incubated with blocking solution 1
(PBS, BSA 20 mg/ml (Serva, Heidelberg, Germany), hu-
man IgG 1 mg/ml Gamma-Venin, (Aventis Behring,
Marburg, Deutschland)) for 20 min. Sections were then
incubated in the presence of the first antibody at room
temperature for one hour (caspase-8: 10 pg/ml, Bcl-xL:
7 pg/ml, Mcl-1: 0,5 pg/ml) or at 4°C in blocking solution
overnight (TRAIL-R1: 20 pg/ml, TRAIL-R2: 5 pg/ml,
TRAIL-R3: 10 pg/ml, TRAIL-R4: 5 pg/ml) or isotype-
matched antibodies (IgGl or IgG2b) at the same
concentration, both obtained from DakoCytomation.
Sections were washed twice in PBS and incubated with
blocking solution 2 (20% normal goat serum from Jackson
ImmunoResearch, West Grove, PA, USA) for 20 min.
After blocking, sections were incubated with secondary bi-
otinylated antibody at room temperature for 30 min,
rinsed twice for 5 min in PBS and incubated for 30 min
with streptavidin-alkaline phosphatase [Super-Sensitive
Detection Kit, BioGenex]. Thereafter, sections were rinsed
twice in PBS, incubated with fast red substrate (Fast Red
Substrate System, DakoCytomation) and counterstained
with haematoxylin (DakoCytomation).

Histopathological scoring and statistics
A two-dimensional scoring system was applied to semi-
quantitatively assess the expression of the respective pro-
tein. The percentage of positive cells was estimated by
two independent investigators on a scale from 0 to 100%
and categorised from 0-4 (0=0, 1 =up to 1%, 2 = 1-10%,
3 =10-50%, 4 = more than 50%). Intensity of staining (in-
tensity score) was judged on an arbitrary scale of 0 to 4:
no staining (0), weak positive staining (1), moderate posi-
tive staining (2), strong positive staining (3) and very
strong positive staining (4) as described by Zhuang et al.
[36] and applied to tumor tissue arrays [22]. The immu-
noreactive score (IRS) was calculated by multiplying the
percentage of positive cells (0-4, according to the cate-
gorised percentages of positive cells) with staining inten-
sity (0—4, according to the category of staining intensity).
For instance, a tumor sample with 60% of positive tumor
cells (=category 4 for “percentage of positive cells”) with a
very strong staining (=category 4 for “staining intensity”)
will result in an IRS of 4 x 4 =16, which represents the
maximum IRS. From each tumor, two samples were spot-
ted and analyzed on the tissue microarray (TMA). The
final IRS of each patient was calculated as the mean of
the two investigator’s analyses of both tumor samples.
Statistical analysis was performed using SAS software
(Release 9.1, SAS Institute, Cary, NC). The nonparametric
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Mann—Whitney U-test was used to compare the immuno-
histochemical score of TRAIL receptors and key proteins
between tumor and normal liver tissue and graphically
represented in Box plots. Comparisons of the immunohis-
tochemical score between more than two subgroups were
performed using the Kruskal-Wallis test. Linear correlation
between nuclear/cytosolic caspase-8 expression and Ki67/
apoptosis rate was performed using the Spearman correl-
ation coefficient and the corresponding p-value. Overall
survival was defined as the time from the date of tumor sta-
ging to either death from any cause or last follow-up.
Patients alive at the last follow-up were censored. Survival
curves were constructed by using the Kaplan-Meier esti-
mate. The 1-, 2-, 5-, and 10-year survival rates and the
median survival time are presented. Differences between
survival curves of subgroups of patients were analyzed by
the log-rank test. The immunohistochemical scores for
TRAIL-R1 to TRAIL-R4 and caspase-8 were dichotomized
for survival analysis according to the quartiles and the
median of the distribution of the score values to ensure a
sufficient number of patients in the resulting subgroups.
The Cox proportional hazards regression analysis was used
to analyze the correlation of survival and expression of
TRAIL receptors, other key proteins, and histopathological
parameters. Two sided p values were always computed and
p values < 0.05 were considered statistically significant.

Results
We compared the expression profile of TRAIL-R1 to
TRAIL-R4, caspase-8, Bcl-xL and Mcl-1 in HCC in com-
parison to normal liver tissue. All TRAIL receptors
showed both cytoplasmic and membranous staining, al-
though membrane staining was rather faint and therefore
not quantified. Survival in correlation with the immuno-
histochemical staining result was analyzed in 49 patients
who underwent partial liver resection (see Material and
Methods). Overall survival rates of these patients were
75.5%, 52.6%, 34.7% and 18.1% after one, three, five, and
ten years, respectively. Median survival was 42 months
(Figure 1A). Survival rates were poorer in patients with
G3 tumors compared to G1 and G2 tumors (Figure 1B).
Investigating the expression level of caspase-8, we
found a differential expression of caspase-8 in the cytosol
versus nucleus of tumor cells (examples presented in
Figure 2). Thus, the cytosolic and nuclear expression pat-
terns of caspase-8 were analyzed separately in the subse-
quent investigations.

Expression levels of TRAIL-R1, TRAIL-R2, TRAIL-R4 and
nuclear caspase-8 correlate with the grade of malignancy
of HCCs

To analyse the expression level of important regulators of
TRAIL-induced apoptosis, tumor tissues from explanted
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Figure 1 Survival rates of HCC patients after partial liver resection. A: Survival rates of HCC patients who underwent partial liver resection
using the Kaplan-Meier estimate. B: Survival rates in HCC patients with G3 tumors compared to G1 and G2 tumors.
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livers (OLT) and partial liver resections (PR) were used in
a tissue microarray (cohort A, Table 1, n = 157).

The death-inducing receptors TRAIL-R1 and TRAIL-R2
were differentially expressed in normal liver versus HCC.
TRAIL-R1 showed strong cytoplasmic staining in normal
liver tissue with a mild downregulation in G1 and G2
tumors but a significant downregulation in G3 tumors
compared to normal tissue (p = 0.004), but also compared
to G1 (p=0.01) and G2 (p = 0.003) tumors (Figure 3A). In
contrast, TRAIL-R2 was expressed in normal liver tissue
and significantly upregulated in G2 (p=0.002) and G3
(p=0.001) tumor tissue compared to normal tissue
(Figure 3B). TRAIL-R2 expression did not significantly dif-
fer between G2 and G3 (p = 0.69) or between G1 and G3
(p=0.07) tumors. TRAIL-R3 showed only low expression,

both in normal liver tissue and tumor tissue, which did not
correlate with tumor grade (data not shown). TRAIL-R4
was moderately expressed in normal liver tissue and sig-
nificantly upregulated in G2 (p=0.032) and G3 (p=
0.0003) tumors (Figure 3C). TRAIL-R4 expression in G3
tumors also significantly differed from G1 (p <0.001) and
G2 (p=0.012) tumors. Caspase-8 showed only a low level
expression in the cytoplasm of normal hepatocytes
(Figure 2A), which did not significantly differ from cyto-
solic expression of caspase-8 in HCCs (Figure 3D). Al-
though in normal liver tissue caspase-8 could not be
detected in the nucleus, many HCC samples showed nu-
clear expression of caspase-8 (Figure 2). Nuclear caspase-8
was significantly higher expressed in G1 (p=0.016), G2
(p<0.0001), and G3 (p<0.0001) HCCs compared to

Normal liver
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low cytoplasmatic expression
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Figure 2 Cytosolic and nuclear expression of caspase-8. Immunohistochemical staining of caspase-8 (red staining) in healthy liver and HCC
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normal liver tissue (Figure 3E). G3 tumors also demon-
strated a significantly higher expression of nuclear caspase-
8 compared to G1 (p=0.001) but not compared to G2
(p =0.06) HCC tissues.

Cytosolic and nuclear caspase-8 expression levels
correlate with survival after partial liver resection
The correlation between survival and protein expression
was analysed in n =49 HCC patients undergoing partial
liver resection, for whom survival data were available
(Table 1, Cohort B). The correlation between TRAIL-

receptor and caspase-8 expression levels and tumor grade
showed identical levels of significance in this smaller
subgroup.

Neither TRAIL-R1, TRAIL-R2 nor TRAIL-R4 expres-
sion scores correlated with patient survival (Figure 4A-C).
However, high cytosolic caspase-8 expression in tumor tis-
sue (IRS >2.8) significantly correlated with better survival
(Figure 4D). Multivariate Cox regression analysis con-
firmed cytosolic caspase-8 to be a survival predictor
independent from tumor grading [G3 versus G1/2: HR =
2.28 (95% CI: 1.14-4.55), p = 0.0196 and cytosolic caspase-
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Figure 4 Protein levels and patient’s survival rates. Overall survival after partial resection for HCC (n=49) according to expression of TRAIL-R1
(A), TRAIL-R2 (B), TRAIL-R4 (C), cytosolic caspase-8 (D), and nuclear caspase-8 (E) was calculated by the Kaplan-Meier estimate. Thresholds for high

8 <2.8 versus 22.8: HR=2.39 (95% CI: 1.16-4.92), p =
0.0182]. In contrast, high nuclear expression of caspase-8
(IRS >10.3) was associated with shorter survival rates in
patients after partial liver resection (Figure 4E). Because of
the strong correlation of nuclear expression of caspase-8
and tumor grading and the low number of patients with
nuclear caspase-8 IRS >10.3, none of the two factors were
significantly associated with survival in a multivariate
Cox regression analysis [G3 vs G1/2: HR =1.72 (95% CIL:
0.85-3.49, p=0.134 and nuclear caspase-8 >10.3 versus
<10.3: HR = 1.80 (95% CI: 0.81-4.01)].

Discussion

In this study we assessed the expression of TRAIL recep-
tors, caspase-8, Bcl-xL and Mcl-1 in 157 patients with
hepatocellular carcinoma and normal liver tissue using
tissue microarrays, and correlated the expression with
clinico-pathological parameters. Survival analysis was
carried out for patients who underwent liver resection.

TRAIL-R1 was significantly downregulated in less differ-
entiated HCC. However, TRAIL-R1 expression did not cor-
relate with patient survival after liver resection. Kriegl et al.
reported a significant membrane staining of TRAIL-R1 in
HCC compared to normal liver tissue and a longer survival
of HCC patients undergoing partial hepatectomy with
TRAIL-R1 membrane positive versus negative tumors [31].
However, our immunohistochemical analysis detected con-
siderable cytoplasmic but not membrane TRAIL-R1 stain-
ing [31,37]. Having established the specificity of our
TRAIL-R1 (and TRAIL-R2) antibodies in TRAIL-R1- (and
TRAIL-R2-) transfected cells, cytoplasmic staining pre-
vailed also in this setting [22]. Using the highly specific anti-
bodies for TRAIL-R1 and TRAIL-R2, HCC cell lines also
displayed strong cytoplasmic, rather than membrane, stain-
ing which was confirmed by flow cytometry (data not
shown). Upon TRAIL death receptor upregulation by che-
motherapeutic drugs, membrane staining of both receptors
could be detected in HCC cell lines which was paralleled by
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enhanced surface receptor as detected by flow cytometry
[10]. These control experiments support the sensitivity
and high specificity of our TRAIL receptor antibodies for
both cytoplasmic and membrane staining. Our data are in
line with reports on strong cytoplasmic rather than mem-
brane staining of both TRAIL-R1 and TRAIL-R2 in pri-
mary HCC tissue [33]. Correlation analyses of TRAIL-R1
expression and survival in other tumor entities revealed
contradictory results. In colorectal cancer both low [38]
and high [39] TRAIL-R1 expression correlated with
poorer survival. Ullenhag et al. found no correlation
between TRAIL-R1 expression level and survival in
colorectal cancer patients [23].

In our study both TRAIL-R2 and TRAIL-R4 were up-
regulated in dedifferentiated HCCs. However, for none
of the TRAIL receptors expression correlated with pa-
tient survival. In previous studies high expression of
TRAIL-2 [40] was also associated with less differentiated
tumors and implied poorer survival in breast cancer
[22,41], renal cell carcinoma [21], and NSCLC [40]. In
the report by Kriegl et al.,, TRAIL-R2 membrane staining
correlated with better survival of HCC patients after par-
tial liver resection [31]. However, as stated above, in our
cohort no relevant TRAIL-R2 membrane staining could
be detected in HCC tissues. In summary, TRAIL recep-
tor expression patterns seem to vary between different
tumor entities and, therefore, their correlation with sur-
vival data may depend on tumor type and clinical setting
(adjuvant, curative and palliative treatment).

Downregulation of TRAIL-R2 in vivo may mirror the se-
lection pressure by antitumor immune responses (e.g.
by TRAIL-expressing NK cells). On the other hand,
TRAIL-R2-positive tumor cells may have developed TRAIL
resistance downstream of the receptor level, thereby allow-
ing for tumor cell proliferation despite TRAIL death recep-
tor expression. Nevertheless, many chemotherapeutic drugs
sensitize resistant tumor cells to TRAIL-induced apop-
tosis via enhancement of proapoptotic regulators of the
extrinsic and intrinsic pathway [8,10,42]. Thus, HCCs
with high TRAIL-R2 expression should be eligible for
combinatorial TRAIL-based therapies. Previously, we
could show that TRAIL-R2 expression was highly corre-
lated with TRAIL-R4 positivity in breast cancer [22].
TRAIL-R4 overexpression correlated with poorer sur-
vival in breast [22] and prostate cancer [43]. Applying
TRAIL-R2-specific agonists (e.g. the TRAIL-R2-specific
antibody lexatumumab) may bypass the anti-apoptotic
effects of high TRAIL-R4 expression and allow for effect-
ive tumor treatment [11]. It has been discussed that
therapeutic implications of TRAIL-based therapies might
be limited by toxicity to non-transformed human hepato-
cytes [44,45]. Yet, we previously showed that there is a
large therapeutic window which allows effective TRAIL-
based cancer therapy [10].
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Analysis of the two anti-apoptotic Bcl-2 family mem-
bers Bcl-xL and Mcl-1 revealed low expression of Bcl-xL
in normal liver tissue, which was not-significantly upreg-
ulated in G2 and G3 tumors (data not shown). Expres-
sion of Mcl-1 was also increased in G3 tumors as
compared to G1/2 tumors and normal tissue; however
no correlation with survival could be detected (data not
shown).

As the main initiator caspase of the TRAIL pathway,
caspase-8 is located in the cytosol to be recruited to the
TRAIL DISC after ligand binding to TRAIL-R1/R2. Loss
or downregulation of caspase-8 has been proposed as a
possible mechanism of apoptosis resistance in tumor
cells [46]. In our cohort, high cytosolic caspase-8 expres-
sion correlated with better survival independently from
tumor grade, possibly reflecting the higher apoptotic po-
tential of these tumor cells. Interestingly, we could dem-
onstrate nuclear staining of caspase-8 in HCCs but not in
normal hepatocytes. The staining intensity of nuclear
caspase-8 correlated with grade of malignancy but also
with poorer patient survival. Due to the strong correl-
ation between nuclear expression of caspase-8 and tumor
grading, multivariate Cox regression analysis could not
detect an influence of nuclear caspase-8 on survival inde-
pendent from the tumor grade. However, patient number
with a nuclear caspase-8 score >10.3 might be too small
(n =10) for a multivariate analysis of the two parameters,
high nuclear caspase-8 and tumor grading. Thus, our
data need to be scrutinized in a larger cohort. Although
high nuclear and cytosolic caspase-8 expression have an
opposed effect on patient survival, high nuclear and cyto-
plasmic caspase-8 expression is not mutually exclusive,
since 9 out of 56 patients (16%) and 3 out of 14 patients
(21%) with a high nuclear caspase-8 score of >7 and
>10.3, respectively, had also an equally high cytoplasmic
caspase-8 expression level. Most of these patients had
WHO grade 3 tumors (78% for a score =7, 100% for a
score of >10).

Whereas the role of cytosolic caspase-8 as a factor in
triggering apoptosis via death receptors has been well ex-
amined [24,47,48], nuclear translocation of caspase-8 has
so far not been described in HCCs. In contrast, nuclear
localisation of caspase-8 has been found in apoptotic
neurons [49]. Since these cells were undergoing apop-
tosis, caspase-8 was suspected to shuttle to the nucleus
to exert cleavage of the DNA repair enzyme PARP2, a
hallmark of apoptotic cell death. In contrast to apoptotic
neurons, in our study nuclear caspase-8 was detected in
nearly all tumor cells of poorly differentiated HCCs
(Figures 2 and 3E) and nuclear caspase-8 expression did
not correlate with the apoptosis rate (r=0.078, p=
0.420). This may indicate a non-apoptotic function of
caspase-8 in HCCs. Enhancement of tumor cell migra-
tion and inhibition of Fas-induced apoptosis has been
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recently described as a non-apoptotic function of caspase-
8 in different experimental cancer cell lines, which was not
dependent on its catalytic activity but on Src-mediated
phosphorylation of Tyr380 in a linker region between the
small and large caspase-8 subunits [50,51]. Metastasis
formation of non-apoptotic neuroblastoma cells was en-
hanced by recruitment of caspase-8 to the cellular migra-
tion machinery [52]. Interestingly, in our cohort, high
nuclear expression of caspase-8 correlated with a higher
proliferation index of tumor cells (Ki67, r=0.282, p =
0.0004, whereas the cytosolic expression of caspase-8 did
not (r=0.089, p =0.274). A recent study has shown that
caspase-8 can be sumoylated at lysine 156 leading to a
75 kDa isoform (p75) and that sumoylation of caspase-8
by SUMO-1 is associated with nuclear localization of
caspase-8 [53] suggesting that nuclear expression of
caspase-8 in our study might be a result of sumoylation.
Interestingly, SUMO-1 is overexpressed in HCCs [54]
and expression profiling has shown that HCC patients
with shorter survival show higher expression of genes in-
volved in sumoylation [55,56]. Although the physiological
relevance of sumoylated caspase-8 is unclear, recent stud-
ies suggest that sumoylation of caspase-8 does not impair
cytoplasmic caspase-8 activation, but that sumoylated
nuclear caspase-8 (p75) can presumably cleave other, so
far undefined, specific nuclear substrates [53]. However,
using a cleavage-specific antibody for caspase-8, we could
not detect activated caspase-8 in the nuclei of tumor cells
in our cohort.

Conclusions

In conclusion, differential expression of TRAIL-R1,
TRAIL-R2 and TRAIL-R4 may help to histopathologic-
ally identify hepatocellular carcinoma patients who
could benefit from TRAIL-based therapies. Prospective
studies are needed to confirm the predictive role of
TRAIL-receptor expression patterns for TRAIL-based
therapies or TRAIL-dependent mechanisms of other
chemotherapeutic drugs. Furthermore, the prognostic
role of nuclear localisation of caspase-8 needs to be
confirmed in larger trials and other tumor entities.
Identifying the molecular targets and pathophysio-
logical consequences of nuclear caspase-8 may reveal
novel, non-apoptotic functions of this crucial initiator
caspase.
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