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Abstract

blot analysis.

Background: Soy phytoestrogens, such as daidzein and its metabolite equol, have been proposed to be
responsible for the low breast cancer rate in Asian women. Since the majority of estrogen receptor positive breast
cancer patients are treated with tamoxifen, the basic objective of this study is to determine whether equol
enhances tamoxifen’s anti-tumor effect, and to identify the molecular mechanisms involved.

Methods: For this purpose, we examined the individual and combined effects of equol and tamoxifen on the
estrogen-dependent MCF-7 breast cancer cells using viability assays, annexin-V/PI staining, cell cycle and western

Results: We found that equol (>50 pM) and 4-hydroxy-tamoxifen (4-OHT; >100 nM) significantly reduced the
MCF-7 cell viability. Furthermore, the combination of equol (100 uM) and 4-OHT (10 uM) induced apoptosis more
effectively than each compound alone. Subsequent treatment of MCF-7 cells with the pan-caspase inhibitor Z-VAD-
FMK inhibited equol- and 4-OHT-mediated apoptosis, which was accompanied by PARP and a-fodrin cleavage,
indicating that apoptosis is mainly caspase-mediated. These compounds also induced a marked reduction in the
bcl-2:bax ratio, which was accompanied by caspase-9 and caspase-7 activation and cytochrome-c release to the
cytosol. Taken together, these data support the notion that the combination of equol and tamoxifen activates the
intrinsic apoptotic pathway more efficiently than each compound alone.

Conclusions: Consequently, equol may be used therapeutically in combination treatments and clinical studies to
enhance tamoxifen’s effect by providing additional protection against estrogen-responsive breast cancers.
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Background

Evidence from epidemiological studies suggest that
nutrition plays an important role in the development of
breast cancer, which remains the most common malig-
nancy and the second most lethal cancer in women
worldwide [1-4]. It was observed that the incidence
of breast cancer is much lower in Asian women com-
pared to Western women, and this was attributed to the
daily consumption of soy products by Asian women,
which contain phytoestrogens [5]. Equol (7-hydroxy-
3-(4'-hydroxyphenyl)-chroman) is the bioactive meta-
bolite of daidzein, a major phytoestrogen found in soy
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products. Recent studies suggest that equol has the
greatest in vitro bioactivity and anti-oxidant activity
when compared to soy isoflavones [6-8]. As known, 30-
50% of the adult population cannot metabolize daidzein
to equol and, interestingly, clinical response is usually
limited to people who are “equol producers” [9,10].
Equol is reported to bind to both estrogen receptors
ERa and ERP, with a higher binding affinity for ERp,
which has been implicated in the inhibition of prolifera-
tion and induction of apoptosis in breast cancer cells
[8,11-13]. Previous studies suggest that equol induces
apoptosis in the ER negative breast cancer cells [14,15],
while it seems to have a biphasic effect in ER-positive
breast cancer cells enhancing cell proliferation at low
concentrations (< 10 pM) [15-18] and possibly exerting
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an inhibitory effect at high concentrations (50-100 pM)
[14]. As the role of equol in relation to breast cancer re-
mains unclear, this study was designed to delineate the ef-
fect of equol on estrogen-dependent breast cancer cells
using MCEF-7 cells as a model system. This is particularly
important as the controversy of results obtained in the soy
isoflavone human intervention studies and the inability to
establish the beneficial effects of soy isoflavones could be
attributed to the failure to distinguish between “equol pro-
ducers” and “non-equol producers” [10,19]. Therefore, the
significance of evaluating the therapeutic potential of
equol becomes more evident and may facilitate the design
and implementation of future equol intervention studies
for cancer.

Several reports suggest that equol and daidzein induce
cell cycle arrest and apoptosis in breast cancer cells
[2,8,14,20-25]. More specifically, it has been recently
shown that daidzein induces MCF-7 breast cancer
cell apoptosis via the intrinsic (mitochondrial) caspase-
dependent apoptotic pathway [2]. However, the bio-
logical effects of equol have not been investigated as
well as those of daidzein. Therefore, the aim of this
study is to thoroughly explore the mechanism of equol-
mediated apoptosis.

Tamoxifen, on the other hand, is an ERa antagonist clas-
sified as a non-steroidal selective estrogen receptor modu-
lator (SERM), widely used in cancer chemoprevention and
chemotherapy to prevent primary breast tumors or the de-
velopment of recurrences, respectively [26-28]. Tamoxifen,
and its bioactive metabolite 4-hydroxy-tamoxifen (4-OHT),
inhibit proliferation and induce apoptosis in several types
of ER-positive and ER-negative breast cancer cells, rat
mammary tumors and other cancer types [29-34]. How-
ever, the anti-tumor mechanism of tamoxifen is not yet
completely understood.

Accumulating experimental evidence from in vivo
studies is beginning to support the possibility that soy
components may enhance tamoxifen’s anti-tumor effect,
by providing stronger protection against mammary car-
cinogenesis than tamoxifen alone [35,36]. Moreover, we
have previously identified daidzein as the soy ingredient
enhancing tamoxifen’s ability to prevent rat mammary
tumor formation [37]. Since equol is the bioactive me-
tabolite of daidzein [38,39], these findings support the
premise that equol may potentiate tamoxifen’s efficacy
against mammary carcinogenesis. We are reporting here
the mechanism by which this daidzein metabolite en-
hances tamoxifen’s anti-tumor activity in ER positive
breast cancer cells.

Methods
Cell culture
MCE-7 breast cancer cell line (obtained from ATCC)
was cultured in MEM supplemented with 10% fetal
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bovine serum (FBS), 1% antibiotic-antimycotic, 1 mM
sodium pyruvate, 1% non-essential aminoacids (MEM-
NEAA), 2 mM L-glutamine (Gibco, Life Technologies,
Paisley, UK) and 0.06 pg/ml insulin (Sigma, St. Louis,
MI, USA). They were incubated at 37°C in a humidified
incubator with 5% CO,. For estrogen deprivation, three
days before treatment with equol or tamoxifen, cells
were cultured in phenol-red free MEM supplemented
with 10% dextran-coated charcoal (DCC) - treated FBS,
1% antibiotic-antimycotic, 1% non-essential aminoacids,
2 mM L-glutamine, 1 mM sodium pyruvate and 0.06 pg/
ml insulin [40].

Antibodies and reagents

Equol and 4-OHT were purchased from LC laboratories
(Woburn, MA, USA) and Alexis Biochemicals (Enzo Life
Sciences, Lausen, Switzerland), respectively. Reagents
also included the pan-caspase inhibitor Z-VAD-FMK
(Calbiochem, Nottingham, UK) and the MTT reagent
(Sigma, St. Louis, MI, USA). The bcl-2, bax, glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) and cyclo-
oxygenase-4 (COX-4) antibodies were purchased from
Santa Cruz Biotechnology (Heidelberg, Germany) whereas
the poly-(ADP ribose)-polymerase-1 (PARP-1), a-fodrin,
caspase-9, caspase-8, caspase-7, caspase-6, cytochrome-c,
and a-tubulin antibodies were purchased from Cell Signal-
ing Technology (Danvers, MA, USA).

MTT assay

The effect of equol, 4-OHT and their combination on
MCE-7 viability was examined using the MTT (mono-
tetrazolium) assay [41]. The cells were plated in 96-well
plates (3x10° cells/well) and treated with different con-
centrations of equol and 4-OHT for 24, 48 and 72 h.
The MTT reagent was subsequently added (1:10 dilu-
tion) for 4 h at 37°C. The media were then removed and
DMSO (150 pL/well) was added for 20 min. The ab-
sorbance, measured at 570 nm, was proportional to the
number of viable cells per well.

Mitochondrial/cytosolic extract preparation

Cells were cultured in 150-mm Petri dishes and treated
for 48 h with vehicle control (DMSO and ethanol), equol
(100 uM), 4-OHT (10 uM) or their combination. Mito-
chondrial and cytosolic extracts were prepared using the
mitochondrial/cytosol fractionation kit (Abcam, UK).

Western blot analysis

MCE-7 cells were treated with equol (100 uM), 4-OHT
(10 uM) and their combination for 48 h, with or without
Z-VAD-FMK (20 uM), and whole cell or mitochondrial/
cytosolic extracts were prepared as previously described
[42]. Protein content in the extracts was quantified using
a bicinchoninic acid (BCA) protein assay kit (Pierce,
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Figure 1 (See legend on next page.)
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Figure 1 Comparison of the effect of equol and 4-OHT on MCF-7 cell viability. (A) Cells (3 x 10%/well) were plated in 96-well plates and
treated with different concentrations of equol and 4-OHT, individually or combined. After 24, 48 and 72 h, cell viability was evaluated using the
MTT assay. The OD reading at 570 nm was proportional to cell viability. * P < 0.05, ** P < 0.005 and *** P <0.0005. Pequor (100 u) vs contro= 0.003;
Pa-or110 sty vs control = 0.002; Pleguor (100 un+4-011(10 umy) vs control = 0.0003. Dose response curves for equol (B) or 4-OHT (C) effect on MCF-7 cell
viability. Cells (3 x 10%/well) were seeded in 96-well plates and treated with different concentrations of equol (B) or 4-OHT (C). After 72 h, cell

correspond to the standard error of mean (SEM).

viability was evaluated using the MTT assay. The data are expressed as percentage change in viability in comparison to the vehicle treated
control group. Each experimental group was repeated in quadruplicates and data are representative of three individual experiments. Bars

Germany). Equal amounts of proteins (40 pg/lane) were
separated on SDS-PAGE and electrotransferred to 0.45 um
nitrocellulose membranes. The membranes were then
blocked with 5% non-fat dry milk in TBST (Tris buffered
saline supplemented with 0.1% Tween-20) and probed with
antibodies against PARP-1 (1:1000 dilution), a-fodrin (1:500
dilution), caspase-9 (1:500 dilution), caspase-8 (1:500 dilu-
tion), caspase-7 (1:500 dilution), caspase-6 (1:500 dilution),
GAPDH (1:1000 dilution), bcl-2 (1:500 dilution), bax (1:500
dilution), COX-4 (1:250 dilution), cytochrome-c (1:250 di-
lution), and a-tubulin (1:1000 dilution) followed by HRP-
conjugated anti-rabbit or anti-mouse immunoglobulin-G
(IgG; 1:2000 dilution). Protein bands were detected by
chemiluminescence using the Luminol substrate (Santa
Cruz) according to the manufacturer’s protocol and ana-
lyzed using the UVP bioimaging system (Cambridge, UK).

Cell death ELISA (Enzyme-linked immunosorbent assay)
MCE-7 cells were plated in 96-well plates in quadrupli-
cates at a concentration of 3 x 10* cells/ml (100 ul/well).
Cells were treated with equol (100 pM), 4-OHT (10 pM)
and their combination and lysed after 72 h. Lysates were
analyzed for the presence of nucleosomes using the Cell
Death Detection ELISA Plus kit (Roche Diagnostics,
Mannheim, Germany). Absorbance, measured at 405 nm,
was proportional to cell death.

Tali™ apoptosis kit

Cells were plated in 60-mm plates and treated with equol
(100 uM), 4-OHT (10 pM) and their combination, with or
without Z-VAD-FMK (20 uM). Cells were harvested 72 h
post-treatment and stained using annexin-V Alexa Fluor®
488/PI (propidium iodide), as described by the Tali™
apoptosis kit (Life Technologies). Cell viability, death and
apoptosis were evaluated using the Tali™ Image-based
Cytometer (Life Technologies). The annexin-V positive/PI
negative cells were recognized as apoptotic cells by the
cytometer software whereas the annexin V positive/PI
positive cells were identified as dead cells. Similarly, the
annexin V-negative/PI negative cells were identified as
viable cells.

Cell cycle analysis

Cells were plated in 100-mm plates and treated with
equol (100 uM), 4-OHT (10 uM), and their combination
for 6, 12, 24, 48 and 72 h. They were harvested, fixed in
70% ethanol, incubated with the PI staining solution
(containing 1 mg/ml PI and 100 pg/ml RNase) for
15 min at 37°C and analyzed for DNA content using the
Guava EasyCyte™ flow cytometer and the GuavaSoft ana-
lysis software (Millipore, Watford,UK).

Statistical analysis

Values are presented as the mean + SEM. Statistical sig-
nificance was evaluated using student’s t-test for paired
comparison. P<0.05 was considered statistically signifi-
cant. Data are representative of three individual expe-
riments. Each experimental group was repeated in
triplicates or quadruplicates, as described in the Figure
Legends section.

Results

Equol and 4-OHT reduce MCF-7 viability

To examine the ability of equol and 4-OHT to inhibit
MCE-7 cell growth, their individual and combined ef-
fects on cell viability were observed. Equol (> 50 pM)
and 4-OHT (>100 nM) provoked a marked reduction in
MCE-7 viability in a dose- and time-dependent manner
(Figure 1A-C). In contrast, lower concentrations of
equol (1 nM- 1 puM) did not exert a significant effect on
cell growth (data not shown). Futhermore, the combination
of equol (100 uM) and 4-OHT (10 uM) reduced cell viabil-
ity in an additive manner (72 h; Figure 1A), suggesting that
equol enhances tamoxifen’s anti-proliferative effect in
MCEF-7 cells.

Equol and 4-OHT induce MCF-7 cell death via apoptosis
We began evaluating the mechanism implicated in the
reduction of MCF-7 cell viability by determining cell
death following treatment with equol and 4-OHT. These
compounds induced MCF-7 death after 72 h of treat-
ment (Figure 2A). Interestingly, their combination en-
hanced cell death in an additive manner (P /zzu0144-01717
vs. 4-0HT = 0.028; P [rauorva-0HT] vs. Equot =0.023).
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Figure 2 Effect of equol and 4-OHT on cell death (A), apoptosis (B) and cell cycle distribution (C). For the determination of cell death (A),
MCF-7 cells were seeded in 96-well plates (3 X 10° cells/well). Upon attachment cells were treated with equol (100 uM) and/or 4-OHT (100 uM).
After 72 hours, cell death was evaluated using the Cell Death ELISA. The OD reading at 405 nm was proportional to the number of nucleosomes
released in the cell lysates of the cells. The data are expressed as OD (405 nm) in comparison to the vehicle- treated control group. Each group
P4.oHT vs control = 0.032;*
488/P! staining. Cells were plated in 60-mm plates and treated with equol (100 uM) and
4-OHT (10 uM) for 72 h. Cell viability, death and apoptosis were evaluated using the Tali™
Each experimental group was repeated in triplicate. Bars correspond to the standard error of mean (SEM). *
** Piequol + 4-011] vs contro = 0.013. (C) Effect of equol and 4-OHT on cell cycle distribution using Pl staining. MCF-7 cells were treated with equol (100 pM)
and 4-OHT (10 uM) for 72 h. Cell cycle distribution was evaluated using Pl staining for 15 min at 37°C. Sample analysis was performed using the Guava
EasyCyte™ flow cytometer and the GuavaSoft analysis software. Each experimental group was repeated in triplicate. Bars correspond to the standard error
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G2/M

Pl quol+4-0HT] vs control = 0.016. (B) Effect of equol and 4-OHT
apoptosis kit and the Tali™ Image-based Cytometer.

PEquo/ vs control =0.032;™* Pyopr vs control =0.011;

To examine whether cell death was mediated through
apoptosis, cells were stained with annexin-V/PI following
treatment with equol and 4-OHT. Each compound pro-
duced a substantial increase in the percentage of apoptotic
cells (Figure 2B). The combination of equol and 4-OHT

had an additive effect on cell apoptosis (P /zguor+4-0mT] vs.
2-011=0.028; P [£4u01+4-OHT] vs. Equot = 0.018).

The effects of equol and tamoxifen on cell cycle pro-
gression were also determined using flow cytometry.
Even though no substantial changes were evident in cell
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cycle distribution from 6-48 h of treatment (data not
shown), significant increase in the sub-G; phase, which
is indicative of apoptosis, was observed at 72 h, accom-
panied by a marked reduction in the percentage of cells
in the Go/Gj, S and G,/M phases (Figure 2C). These re-
sults show that 68.9+3.6% of the cells treated with the
equol/4-OHT combination were in the sub-G; phase,
which is significantly higher than the corresponding
percentage of equol-treated cells (32.1+0.5%), 4-OHT-
treated cells (52.1+4.2%) or vehicle control treated cells
(7.8£1.1%) (P = 0.0037; Figure 2C). Taken together, these
results indicate that these agents do not induce cell cycle
arrest, and that their combination is more effective in
activating apoptosis than each compound alone. This is
consistent with our previous data, demonstrating that
equol and 4-OHT do not increase p53 and p21 expres-
sion, which is up-regulated in cells undergoing G; arrest
(data not shown).

Z-VAD-FMK inhibits equol and 4-OHT mediated apoptosis
To elucidate the precise pathways involved in equol-
and 4-OHT-induced apoptosis, cells were treated with
the pan-caspase inhibitor Z-VAD-FMK in combination
with equol and/or 4-OHT and apoptosis was evaluated
using annexin-V/PI staining. Z-VAD-FMK significantly
inhibited equol- and 4-OHT-induced apoptosis, indicat-
ing activation of the caspase-dependent pathway by
these compounds (Figure 3). However, the inhibition
was not complete, suggesting that caspase-independent
mechanisms may be implicated in addition to the
caspase dependent mechanisms.

Equol and 4-OHT induce PARP and a-fodrin proteolysis
The apoptotic mechanisms involved in the death re-
sponse to equol and 4-OHT were further characterized
by monitoring PARP and o-fodrin expression using
western blotting. PARP and a-fodrin are known sub-
strates cleaved by the effector caspases-3 and -7, which
are activated in apoptotic cells [43,44]. PARP and a-fodrin
proteolysis was evident with equol or 4-OHT treatment
and was significantly enhanced by their combination
(Figure 4A). This effect was prevented to a large extent by
Z-VAD-FMK (Figure 4A), reconfirming that equol- and
4-OHT activate caspase-mediated apoptosis.

Equol and 4-OHT induce apoptosis via the intrinsic
pathway

Based on our previous results suggesting activation of
caspase-dependent apoptosis by equol and 4-OHT, we
examined their effect on caspase expression and activa-
tion. To distinguish between the intrinsic and the extrin-
sic apoptotic pathways, we investigated the effect of
equol and 4-OHT on the initiator caspases -8 and -9
and the effector caspases -6 and -7. Equol and 4-OHT
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Figure 3 Effect of the pan-caspase inhibitor Z-VAD-FMK on
equol and 4-OHT induced MCF-7 cell apoptosis. Cells were
plated in 60-mm plates and treated with equol (100 uM) and 4-OHT
(10 uM) for 72 h. Cell apoptosis was evaluated using annexin-V Alexa
Fluor® 488/P!I staining and the Tali™ Image-based Cytometer. Each
experimental group was repeated in triplicates and data are
representative of three individual experiments. The bars correspond
to the SEM. * P tauol vs (zvap-ruiksequon = 0014 ¥ Py onr us [zvap-emiks
g-orm =0.012; % Prequolsaonts vs z-vap-eviksequol+a-onm =0.017.

induced a pronounced pro-caspase-7 and pro-caspase-9
cleavage and activation, which was greatly enhanced by
their combination (Figure 4B). In contrast, caspase-8
and caspase-6 remained unaffected by these treatments
(Figure 4B), indicating that these compounds act mainly
through the intrinsic apoptotic pathway.

The combination of equol and 4-OHT promotes
cytochrome-c release and reduction of bcl-2 expression
The key event causing caspase-9 cleavage, and thus activa-
tion of the intrinsic apoptotic pathway, is cytochrome-c
release from the mitochondria to the cytosol [45]. There-
fore, we explored the effect of equol and tamoxifen on
cytochrome-c expression and localization. The com-
bination of equol and 4-OHT induced a substantial
cytochrome-c release from the mitochondria to the cyto-
sol of MCEF-7 cells (Figure 5) which was not detected in
cells treated with equol or 4-OHT alone, thus confirming
the activation of the intrinsic apoptotic pathway.

To complete the picture, we investigated the effect of
the two compounds and their combination on the ex-
pression of the anti-apoptotic protein bcl-2 and the pro-
apoptotic protein bax [46]. Bcl-2 and bax are proteins
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that can prevent or facilitate cytochrome-c release
from the mitochondria respectively, thus inhibiting or
promoting apoptosis [47]. The bcl-2:bax ratio is important
in determining whether a cell will undergo apoptosis or
survive [47]. We found that equol and 4-OHT induced a
time-dependent reduction in the total levels of bcl-2 in
MCE-7 cells, whereas they did not affect bax expression
(Figure 6). The combination of equol and tamoxifen had
an additive effect in the reduction of bcl-2 expression,
which was more evident at 72 h (Figure 6). Equol and
4-OHT did not affect bcl-2 or bax expression at 24 h of
treatment (data not shown). Therefore, equol and 4-OHT
induce a time-dependent reduction of the bcl-2:bax ratio,
promoting in this way cytochrome-c release and activation
of the intrinsic apoptotic pathway.

Discussion

In this study, we evaluated the individual and combined
effects of equol and 4-OHT, the bioactive metabolite of
tamoxifen, in the ER positive MCF-7 breast cancer cells.
Our findings show for the first time that equol not only

does not abolish the anti-tumor effects of tamoxifen, but
instead it induces apoptosis and significantly enhances
tamoxifen’s pro-apoptotic effects in these cells (Figure 1A-
C and Figure 2A-C). Moreover, the pan-caspase inhibitor
Z-VAD-FMK significantly inhibited equol- and tamoxifen-
induced apoptosis (Figure 3), suggesting that these com-
pounds activate the caspase-mediated apoptotic pathway.
However, the inhibition was not complete, suggesting that
caspase-independent mechanisms may also be involved in
equol and tamoxifen induced apoptosis. Previous studies
support our findings showing that equol inhibits MCEF-7
proliferation and induces caspase-mediated apoptosis in
ER negative breast cancer cells and rat mammary tumors
[8,48,49]. With respect to tamoxifen, previous studies pro-
vide evidence that tamoxifen induces caspase-dependent
apoptosis in MCF-7 and other types of cancer cells
[30,32,50-53]. Even though high concentrations of equol
(100 pM) were required to activate MCF-7 apoptosis,
which are not physiologically achievable in human plasma
due to metabolic conversion of the active aglycone equol
to the inactive conjugated form [54], our results may find
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applications in targeted immunotherapies, which may en-
able maximal delivery of equol into the cancer cells. This
strategy was previously used successfully for genistein,
which was immunoconjugated with a monoclonal antibody
and targeted to a B cell-specific receptor for treatment of
an animal model of B-cell precursor leukemia [55].

To fully explore the apoptotic pathway activated by
equol and tamoxifen, we investigated their effects on key
proteins involved in apoptosis, such PARP, a-fodrin and
caspases —6, -7, -8 and -9. Caspase-9 is part of the
intrinsic (mitochondrial) apoptotic pathway and is acti-
vated by cytochrome-c release from the mitochondria,
whereas caspase-8 is part of the extrinsic apoptotic path-
way activated by external signals through the death
receptors [45]. Active caspase —9 and caspase-8 in turn in-
duce cleavage and activation of the effector caspases -3, -6
and -7 [43,45,56,57], which subsequently cleave nuclear
and cytosolic targets, such as PARP and «-fodrin, resulting
in cell destruction [43,44]. Since MCEF-7 cells are deficient
of functional caspase-3, the effector caspase-7 is respon-
sible for apoptosis in these cells [58-60]. Our experiments
show that equol and 4-OHT induce PARP and a-fodrin
proteolysis, which was significantly enhanced by their
combination and partially inhibited by the pan-caspase in-
hibitor Z-VAD-FMK (Figure 4A), suggesting that add-
itional proteases besides caspases may be involved in
equol- and tamoxifen-induced apoptosis. Furthermore,

the combination of equol and tamoxifen induced a pro-
nounced caspase-9 and caspase-7 cleavage accompanied
with cytochrome-c release into the cytosol, without affect-
ing caspases-6 and -8 (Figure 4B and Figure 5). Treatment
with either equol or tamoxifen, on the other hand, had a
lesser effect on caspase-9 and caspase-7 cleavage associ-
ated with a trivial effect on cytochrome-c release from the
mitochondria into the cytosol. Consequently, the combin-
ation of equol and tamoxifen is significantly more potent
in inducing MCEF-7 cell apoptosis than each compound
alone. Therefore, our data suggest that equol and tamoxi-
fen activate the intrinsic apoptotic pathway. Previous stud-
ies support our findings as they have shown activation of
the intrinsic apoptotic pathway in MCF-7 cells by tamoxi-
fen and daidzein [2,29-31,51,61,62]. Moreover, equol and
tamoxifen induced a time-dependent reduction in blc-2
expression and hence the bcl-2:bax ratio, which was fur-
ther reduced by the combination of the two compounds
(Figure 6). Decreased bcl-2 expression was observed in
several cancer cell types treated with tamoxifen and daid-
zein [14,63,64] and in equol-induced apoptosis in mam-
mary carcinomas [14,48].

Conclusions

In conclusion, this study suggests that equol induces
MCE-7 cell apoptosis and enhances tamoxifen’s pro-
apoptotic effect via activation of the intrinsic apoptotic
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Figure 6 Effect of equol and 4-OHT on bcl-2 and bax expression. MCF-7 were treated for 48 and 72 h with equol (100 uM) and 4-OHT (10
pM) and whole cell extracts were prepared. Protein expression was then analyzed by western blot using anti-bcl-2 and anti-bax polyclonal
antibodies. Data are representative of three individual experiments. C, vehicle control; E, Equol (100 uM); T, 4-OHT (10 uM), E+T, Equol (100 uM) +
4-OHT (10 pM),




Charalambous et al. BMC Cancer 2013, 13:238
http://www.biomedcentral.com/1471-2407/13/238

pathway. The significance of our findings is that women
with ER-positive early-stage breast cancer, undergoing
tamoxifen adjuvant treatment, may be further benefitted
by co-treatment with pharmacological doses of equol.
Our results also suggest that “equol producers” may be
at lower risk of developing breast cancer due to the
apoptotic action of equol against ER positive breast can-
cer cells. Future clinical trials designed to determine the
safety and efficacy of equol in adjuvant hormonal ther-
apy against breast cancer are warranted.
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