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Background: The successful treatment of tuberculosis (TB) requires long-term multidrug chemotherapy. Clinical
trials to evaluate new drugs and regimens for TB treatment are protracted due to the slow clearance of Mycobacterium
tuberculosis (Mtb) infection and the lack of early biomarkers to predict treatment outcome. Advancements in the field
of metabolomics make it possible to identify metabolic profiles that correlate with disease states or successful
chemotherapy. However, proof-of-concept of this approach has not been provided for a TB-early treatment response

Methods: Urine samples collected at baseline and during treatment from 48 Ugandan and 39 South African
HIV-seronegative adults with pulmonary TB were divided into discovery and qualification sets, normalized to creatinine
concentration, and analyzed by liquid chromatography-mass spectrometry to identify small molecule molecular
features (MFs) in individual patient samples. A biosignature that distinguished baseline and 1 month treatment samples
was selected by pairwise t-test using data from two discovery sample sets. Hierarchical clustering and repeated
measures analysis were applied to additional sample data to down select molecular features that behaved consistently
between the two clinical sites and these were evaluated by logistic regression analysis.

Results: Analysis of discovery samples identified 45 MFs that significantly changed in abundance at one month of
treatment. Down selection using an extended set of discovery samples and qualification samples confirmed 23 MFs
that consistently changed in abundance between baseline and 1, 2 and 6 months of therapy, with 12 MFs achieving
statistical significance (p < 0.05). Six MFs classified the baseline and T month samples with an error rate of 11.8%.

Conclusions: These results define a urine based TB-early treatment response biosignature (TB-ETRB) applicable to
different parts of Africa, and provide proof-of-concept for further evaluation of this technology in monitoring clinical

Keywords: Tuberculosis, Metabolomics, Biomarker, Mass spectrometry, Small molecule biosignature, Anti-tuberculosis

Background

The emergence of multidrug resistant strains of Mycobac-
terium tuberculosis (Mth) underscores the need for new
drugs and shorter regimens to treat tuberculosis (TB), one
of the world’s most prevalent infectious diseases. Consid-
erable advancements have been realized in anti-TB drug
development, but clinical evaluation of new drugs remains
a protracted process [1,2]. Phase 2 clinical trials typically
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use patient conversion to negative-sputum culture after
two months of treatment as a biomarker to assess thera-
peutic efficacy. However, this measure lacks the robustness
needed to evaluate smaller numbers of patients in each
arm of early clinical trials, or to evaluate treatment shorten-
ing regimens in Phase 3 trials [1,3]. Therefore, alternative,
quantitative biomarkers that reliably measure a patient’s re-
sponse to anti-TB treatment after a short period of time
and serve as surrogate endpoints are needed to accelerate
clinical trials [4,5].

Disease and inflammatory states correlate with changes
in the biochemistry of a system (host and pathogen), and
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metabolomic approaches provide a direct measure of a
systems biochemical profile [6-8]. Additionally, a diseased-
state metabolic profile would be expected to revert to a
normal-state (non-diseased) in response to successful treat-
ment. Modern analytical platforms such as mass spectrom-
etry (MS) provide accurate methods for assessing complex
metabolic profiles, and when combined with multivariate
statistical analyses, MS can elucidate time related metabolic
changes that correlate with transition from a diseased- to a
normal-state [7,9,10]. Metabolic flux has been exploited in
the study of oncology, diabetes and cardiovascular disease,
but has not been widely applied to infectious disease bio-
marker development [11-13]. We hypothesized that meta-
bolomic analyses by liquid chromatography (LC)-MS of
clinical samples collected at the time of TB diagnosis and
at various treatment time points would reveal a metabolic
flux that could be developed as a biosignature of treatment
response.

Sputum and serum are conventional clinical specimens
used for TB diagnosis and evaluation of TB treatment
response [14,15]. However, urine is an alternative, non-
invasive clinical sample, and has been successfully used to
discover biomarkers for other diseases [11,16]. Urine con-
tains a sizable fraction of the human metabolome and
metabolites of microbial origin, and requires minimal pro-
cessing for analysis by LC-MS [17-20]. Our efforts applied
LC-MS to archived urine specimens collected as part of
observational studies of TB patients undergoing standard
therapy for pansusceptible, pulmonary TB. This resulted
in the definition of a urine metabolite based TB-early
treatment response biosignature (TB-ETRB) that measured
a significant metabolic flux as early as one month of
treatment.

Methods

Clinical samples

Anonymized archived urine samples used in the current
studies were procured from the Tuberculosis Research Unit
(TBRU) and Stellenbosch University. The samples provided
by the TBRU originated from the NAA2m study (DMID
08-0023) conducted in Uganda (http://www.case.edu/affil/
tbru/research_naa2m.html). This was a prospective ob-
servational cohort study of adults with newly-diagnosed
sputum smear-positive, culture-confirmed pulmonary TB
treated with supervised standard chemotherapy. Samples
were collected from 48 patients at the time of TB diagnosis
(DO) and month-1 (M1), month-2 (M2) and month-6 (M6)
of treatment. The Stellenbosch University samples were
from 39 patients from the Action TB Surrogate Marker
study [21] and the DO, M1 and M6 time point samples
were evaluated. All urine specimens were from adult pul-
monary cavitary TB patients of both sexes without HIV co-
infection. Urine specimens were stored at -80°C upon
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collection. All patients successfully responded to anti-TB
therapy.

Study NAA2m (DMID 08-0023; A Pilot Study to Evalu-
ate Nucleic Acid Amplification (NAA) and Other Tests to
Predict Relapse of Tuberculosis and to Monitor the Effect-
iveness of Treatment) was conducted according to the
Helsinki Declaration and International Conference on
Harmonisation guidelines. There was no remuneration
or financial incentive for participation. Individual writ-
ten informed consent was obtained for study participa-
tion, HIV testing, and permission for blood and other
samples to be stored and used in future TB studies. The
study was approved by the institutional review boards of
the U.S. Centers for Disease Control (IRB B), the Univer-
sity Hospitals Case Medical Center IRB (FWAO00003937)
and the Joint Clinical Research Centre Review Committee
(IRB00002647), which is duly constituted under the
supervision of the Uganda National Council for Science
and Technology (FWA00001293; http://www.uncst.go.
ug/) and the Office of the President of Uganda.

The Action TB study was conducted according to the
Helsinki Declaration and International Conference on
Harmonisation guidelines. There was no remuneration
or financial incentive for participation. Individual written
informed consent was obtained for study participation
and HIV testing. The study “A prospective evaluation of
surrogate markers for disease and relapse or reinfection
in adult patients with pulmonary tuberculosis” was ap-
proved by the Stellenbosch University Health Research
Ethics Committee (Ref no 99/039) and Cape Town City
Health.

LC-MS analysis of urine samples

The DO, M1 and M6 samples from Stellenbosch University
and the DO and M1 samples from 14 patients of NAA2m
study were used as discovery sets. Samples from all time
points of the remaining 34 individuals of the NAA2m
study were used as a qualification set. Samples used in the
discovery phase (Figure 1) were sterilized by y-irradiation.
Those used in the down selection and qualification phase
(Figure 1) were not y-irradiated and additional biosafety
measures were taken in handling these. The creatinine
concentration of each sample was measured by an alkaline
picrate based colorimetric assay (Oxford Biomedical Re-
search, Oxford, MI). LC-MS analyses of urine samples
were performed following the methods described in
Mahapatra et al. [22]. Positive-ion MS data in both cen-
troid and profile modes were collected using the Agilent
MassHunter Data Acquisition software. Data for the dis-
covery samples sets were obtained in the 4 GHz high-
resolution modes and that used in down selection and
qualification was obtained in the 2 GHz extended dynamic
range mode.
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Figure 1 Work flow for the development and qualification of a urine metabolite biosignature of TB treatment response. Biosignature
discovery (left) utilized DO and M1 samples from two distinct geographical locations. This yielded 45 MFs that decreased in abundance between
DO and M1. Biosignature down selection and qualification (right) also used samples from two geographically distinct locations and expanded the

Data analyses

LC-MS data from the discovery and qualification sample
sets were processed with the Molecular Feature Extractor
(MFE) algorithm tool of the Agilent MassHunter Qualita-
tive Analysis software version B.04.00. The parameters
used for MFE were minimum 500 counts, ion species H",
charge state maximum 1, compound ion count threshold
2 or more ions, and all other parameters were default set-
tings. Comparative analyses of the MFE data files from the
training sample sets were performed with the Agilent
Mass Profiler Pro (MPP) software version B. 02.01. The
molecular features (MFs) were aligned with a 0.4 min re-
tention time and 15 ppm mass tolerance. Aligned MFs
were filtered based on their presence in 50%, 60%, or 70%
of samples in at least one time point group. The relative
abundance of MFs obtained from different treatment
time points were compared and features that varied sig-
nificantly by at least 2-fold based on pairwise t-test or
ANOVA (p <0.05) were selected. The MFs that decreased
significantly in abundance between D0 and M1 for disco-
very set-1 and -2 (Figure 1) were selected by k-means
clustering analysis. The abundances of selected MFs
(area under the peak for the monoisotopic mass) in the
extended discovery and qualification data sets were de-
termined using the Agilent MassHunter quantitative
analysis software and exported as a Microsoft Excel
spreadsheet for statistical analyses.

Statistical analyses
Statistical analysis was performed using SAS version 9.2.
All feature intensity (arbitrary numbers) values were

transformed to the log2 scale prior to statistical analysis.
To prevent undefined values, a value of one was added to
all values prior to transformation. Separately for each MF
of the Stellenbosch University and NAA2m data sets, a re-
peated measures analysis was performed using SAS proc
mixed. The response variable was log2 transformed in-
tensity (abundance) value from the Agilent MassHunter
quantitative analysis software. The model included a fixed
effect for time and a random subject effect to account for
repeated measures. Comparisons across time points were
based on contrasts of the model. After identifying a subset
of features with consistent changes across time and sam-
ple sets, logistic regression was used to model treatment
status (DO versus M1).

Identification of the metabolites

The chemical formulas of the MFs were predicted from the
accurate mass data using the molecular formula generator
tool of Agilent MassHunter Qualitative Analysis software.
These molecular formulas were searched against the Metlin
compound database (Metlin_ AMRT_PCDL.cdb) using the
ID browser application of MPP. The same molecular for-
mulas were also searched against publicly available Human
Metabolome Database (HMDB, http://hmdb.ca) [23].

Results

Clinical sample evaluation

To allow development and assessment of a robust bio-
signature, urine samples from adult pulmonary cavitary
TB patients of both sexes without HIV co-infection, col-
lected at the initial time of TB diagnosis (DO0) (i.e. before
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start of therapy), and at different treatment time points
during the course of therapy were divided into discovery
and qualification sets (Figure 1). To minimize the impact
of confounding variables (i.e. normal flora, diet, racial
ethnicity, age, and sex), samples from two geographical
regions (Uganda, 48 patients; and South Africa, 39 pa-
tients) were analyzed and the data normalized to urinary
creatinine levels [24].

We initially applied LC-MS analyses and data processing
as described in Materials and Methods to an expanded-
discovery set of urine samples from South Africa (DO, M1
and M6) to assess the separability of these time-grouped
samples based on metabolic signatures. Specifically, an
ANOVA was performed to identify relevant MFs (ions
with defined accurate mass and retention time) present in
at least 60% of the samples for any given treatment time
point and that differed in abundance between time points
by at least 2 fold (log2 data). An unsupervised principal
component analysis (PCA) demonstrated that DO samples
separated from those of the M1 and M6 treatment time
points (Figure 2). However, the data also revealed a separ-
ation between the M1 and M6 samples. This indicated
that metabolic profiling can be utilized to assess anti-TB
treatment, but that the selection of a TB-ETRB based on
samples from three time points would be difficult to
deconvolute.

Biosignature discovery

To allow selection of a TB-ETRB, pairwise analyses of
LC-MS data of DO and M1 samples from Discovery
Sets-1 and -2 were performed (Figure 1). This analysis
was performed with the Agilent MPP software that pro-
vides a method to filter through large data sets for MFs
that differ between groups (i.e. DO and M1) based on the
MEF abundance as measured by peak height and normal-
ized to the mean of all samples, as well as user provided
parameters. This resulted in the identification of 822 and
2644 MFs, respectively, for Discovery Sets-1 and -2 that
either decreased or increased in abundance (2 fold) follow-
ing the onset of treatment. PCA based on the selected
MFs demonstrated discrete clustering of the DO and M1
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samples of both discovery sets (Additional file 1). As a
means of validating the overall approach, the predicted
metabolites of anti-TB drugs [25-29] were identified based
on accurate mass measurements. These compounds were
included in the group of MFs that increased in abundance
between the DO and M1 samples (data not shown). To
avoid biasing a TB-ETRB by inclusion of known or un-
known drug metabolites, subsequent analyses were limited
to MFs that decreased in abundance following the onset
of treatment (Figure 3). These data demonstrated that the
separation of DO and M1 samples was more pronounced
for Discovery Set-2 versus Discovery Set-1. Further, the in-
clusion of MFs that changed abundance in either direction
(Additional file 1) versus those that only decreased in
abundance (Figure 3) did not alter this trend between dis-
covery sets. From the 183 and 659 MFs that decreased in
abundance between DO and M1 for Discovery Sets-1 and
-2, respectively, 26 differentiating MFs were consistent be-
tween the two data sets. An additional 19 MFs were in-
cluded for their high significance in a single discovery set
to give the initial discovery-phase TB-ETRB of 45 MFs
(Figure 1).

Biosignature down selection and qualification

Application of a MS defined metabolic biosignature to as-
sess treatment response during clinical trials would be fa-
cilitated by the evaluation of LC-MS data in a manner that
was independent of a specific software platform. With this
in mind further downs selection and qualification of
the 45-MF TB-ETRB was performed on quantitative data
(area under the peak for the selected MFs) directly ex-
tracted from LC-MS files of urine specimens in Expanded
Discovery Set-1 and the Qualification Set (Figure 1). It is
noted that the Expanded Discovery Set-1 includes the DO
and M1 samples used in the initial TB-ETRB discovery
phase, whereas the Qualification Set samples were ana-
lyzed for the first time during the down selection and
qualification phase. The inclusion of the Expanded Dis-
covery Set-1 was justified in these later evaluation steps
since the more robust quantitative measure of MF peak
area was used with the Agilent Quantitative Analysis
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Figure 2 Unsupervised PCA of DO (triangle), M1 (circle), and M6 (cross) samples from South African patients. The PCA was constructed
based on MFs that were present in at least 60% of the samples for any given time point and differed in abundance between time points by at
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Figure 3 Unsupervised PCA of DO (triangle) and M1 (circle) patient samples, and MFs demonstrating a decrease in abundance after the
start of anti-TB treatment. The PCAs were constructed based on MFs present in at least 70% and 50% of the samples for any given time point
of Discovery Set-1 (A) and Discovery Set-2 (B), respectively, and that decreased in abundance between DO and M1 by at least 2 fold with a

p < 0.05. A k-means clustering analysis was performed to select MFs that decreased in abundance between DO and M1 of Discovery Set-1

software. This was in contrast to the discovery phase that
was based on the high-throughput filtering power of the
MPP software with MF abundance based on peak height.

The quantitative data of each MF were evaluated for
change in abundance across the DO, M1, and M6 time
points for Expanded Discovery Set-1; and DO, M1, M2,
and M6 samples for the Qualification Set. Ten of the 45
MEFs failed to yield extractable quantitative data from the
LC-MS files of the Qualification Set. Thus, the bio-
signature that could be further down selected based on
robustness across multiple data sets was comprised of
35 MFs. The molecular formulas of these 35 MFs were
predicted based on their accurate masses and interro-
gated against the Human Metabolome and METLIN da-
tabases to provide putative structure identification of the
MFs (Additional file 2).

Hierarchical clustering based on the abundance of the
35 individual MFs across all time points of the Expanded
Discovery Set-1 and Qualification Set was performed.
This demonstrated nine clusters of MFs based on their
kinetics of change in abundance, and two MF (174.0636,
and 311.1239) with abundance changes that excluded
them from any of the clusters (Figure 4). The MFs form-
ing clusters C1, C3, C6 and C9 behaved inconsistently
between the two sample sets, with the most relevant in-
consistency occurring in abundance change from DO to
M1. A total of 23 MFs that typically displayed consistent

abundance change trends across treatment time points
of both the Expanded Discovery Set-1 and Qualification
Set were encompassed by clusters C2, C4, C5, C7 and
C8. As expected the MFs in these five clusters decreased
in abundance between the DO and M1 time points, and
either continued to show decreased abundance at later
time points or slightly increased in abundance after the
initial DO to M1 decrease.

The above analyses were performed with values aver-
aged across patient samples of each data set. To further
assess robustness, each MF was evaluated on a patient-by-
patient basis by calculating the percentage of patients
demonstrating a decrease in abundance between the DO
and later time points. The Expanded Discovery Set-1 dem-
onstrated that 91% to 35% of the patients yielded a de-
creased abundance of individual MFs between DO and M1
(Figure 5 and Additional file 3). A similar range of these
same patients (94% to 24%) revealed a decrease in the
abundance of individual MFs between DO and M6. Like-
wise, the Qualification Set displayed a decrease in MF
abundance between DO and M1, or DO and M6 that
ranged between 95% and 20%, or 95% and 40% of the pa-
tients, respectively (Figure 5 and Additional file 3). A total
of 17 MFs decreased in abundance between DO and other
time points in 70% or greater of the patients in at least
one of the sample sets, and five of these 17 MFs decreased
in abundance in at least 70% of the patients from both
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Figure 4 Heat map of 35 MFs showing the change in abundance across multiple time point. A cluster analysis was performed on log2
transformed averaged abundances of individual MFs at each time point for samples of Expanded Discovery Set-1 (EDS-1) and the Qualification
Set (QS). MFs are displayed in rows and noted by the monoisotopic mass of the MF. Columns display time points. Visual analysis of the heat

map revealed four clusters (C1, C3, C6, C9) of MFs that behaved dissimilarly between qualification sets; five clusters (C2, C4, C5, C7, C8) of MFs that
behaved similarly between qualification sets; and two MFs (*) that did not fit into a specific cluster because of the low abundance at DO.

Red indicates high abundance, green indicates low abundance.

sample sets. Three additional MFs from this group of 17 To define a distinguishing TB-ETRB that could be ap-
decreased in abundance between DO and other time plied at later anti-TB treatment time-points as well as
points in at least 60% of patients of both sample sets M1, a repeated measures analysis was performed on the
(Figure 5 and Additional file 3). All but three of the 17  extracted quantitative data of the 35 MFs at all time
MFs with the most consistent patient-to-patient abun-  points of the Expanded Discovery Set-1 and Qualification
dance change were encompassed in cluster C2, C4, C5, C7  Set. This revealed 18 MFs with consistent and significant
or C8 (Figure 4), further indicating that MFs in these clus-  abundance changes between DO and M1, and DO and M6
ters likely provide the most robust biosignature of treat-  for the Expanded Discovery Set-1 (Additional file 4). Of
ment response. It was interesting to note that a large these 18 statistically significant MFs, 12 also showed con-
percentage of patients (at least 60%) from the Expanded  sistent and significant changes in abundance between DO
Discovery Set-1 presented an increased abundance be- and M1, and DO and M2 or M6 of the Qualification Set
tween DO and other time points for MF 174.0636 and the  (Table 1 and Figure 6). As expected, the repeated mea-
majority of patients from the Qualification Set also  sures analyses showed that all 12 of the MFs except
showed this MF increasing in abundance over time. Thus, = 174.0636 decreased in abundance between DO and later
this outlier is truly a MF that tended to increase with  time points. To further assess this 12 MF TB-ETRB, the
treatment although the MPP software initially indicated it DO and M1 data of all 73 subjects used in the down se-
decreased in abundance. The MFs of C1, C3, C6 or C9 lection and qualification phase were applied to a logistic
typically did not yield robust patient-to-patient results or  regression model fitted to predict time status (DO versus
produced dichotomous results between the two sample  M1). Prior to model fitting, MF abundance values were
groups. This is consistent with the hierarchical cluster data  log transformed and standardized to have mean zero and
(Figure 4) and the conclusion that these MFs would lack  standard deviation of one for each MF and data set
value in assessing treatment response. separately. Best subsets selection was used to identify
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Figure 5 Heat map based on the percentage of patients that demonstrated a decreased abundance in each of the 35 MFs between
DO and other time points. The MFs are ordered based on the clusters identified in Figure 3, and the MF clusters are noted to the right of the
individual MFs that are designated by their monoisotopic mass. The Expanded Discovery Set-1 (EDS-1) and the Quialification Set (QS) were
evaluated separately for the percent of patients demonstrating a decrease in MF abundance. * indicates MFs that consistently decreased in
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Table 1 Statistically significant MFs after down selection and qualification

MF' Predicted formula? Alternate formula +10 ppm?® DB Match*

137.0484 C,H,NO, None p-Aminobenzoic acid + 10
167.0591 CgHoNO3 None Pyridoxal/isopyridoxal + 10
174.0636 CgHioN504 CgHysPS Formimino-L-glutamic acid + 1
2021326 CoH1gN,05 None Leu Ala+8

231.1831 Ci2 Has N Os None None

246.0865 CoH14N>0¢ Multiple L-alpha-Aspartyl-L-hydroxyproline + 2
263.1124 CoH17N30¢ Multiple Thr Gly Ser+8

286.2374 Ci4H30N405 None N1,N12-Diacetylspermine + 1
421.2051 Ci9H57N504 Multiple None

496.2014 Co5HgNLO5 Multiple None

566.2683 Cao Hag N2 O P, S, Multiple None

874.3547 C36 Hgs N» Oy P3 Multiple None

'The MF is denoted by its monoisotopic mass.

2The chemical formula was predicted based on accurate mass by molecular formula generator algorithm of Agilent MassHunter software.

3The alternate chemical formulas are within 10 ppm of the observed monoisotopic mass.

“The structure is the product with the closest match to the observed monoisotopic mass. The number denotes the number of structures in METLIN or HMDB
databases that share the same molecular formula.
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Figure 6 Heat map of 12 MFs determined to have the highest statistical significance in both the Expanded Discovery Set-1 (EDS-1) and
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arranged based on clustering analysis (left) and the associated clusters identified in Figure 4 are noted (C4, C5, C8 and *). *indicates the molecular
features identified by logistic regression analysis that classify DO and M1 samples with an error rate of 11.8%.

Qs

the logistic regression model with the smallest AIC value,
and resulted in the selection of six MFs (167.0591,
174.0636, 202.1326, 246.0865, 496.2014, and 874.3500)
(Figure 6). Evaluation of the model based on leave-one-
out cross-validation revealed an error rate of 11.8%. It is
noted that since all of the TB patients evaluated in this
study responded to treatment, this model has not been
tested for prediction of successful treatment response.
Nevertheless, this analysis provides proof-of-concept
that a metabolite-based biosignature can be established to
monitor anti-TB treatment as early as one month.

Discussion

The present studies elucidated a small molecule metabolic
biosignature that differentiates TB patients prior to the
start of therapy from those successfully responding to
treatment early (one month) after the start of therapy.
Additionally, we demonstrated that a TB-ETRB can be de-
veloped using a non-invasive clinical specimen such as
urine. Efforts to define diagnostic or prognostic biomarkers
of TB have largely focused on microbiological and im-
munological measurements or identification of bacterial
macromolecules [30-35]. Nevertheless, small molecule me-
tabolites or metabolic processes such as adenosine deami-
nase activity in pleural fluid or hydroxyproline in urine are
proposed as diagnostic markers of TB [36,37]. Moreover,
several reports have evaluated the use of volatile organics
in breath condensates as metabolic markers of TB [38-40].
Weiner et al. recently performed metabolomic analyses on
sera from active and latent TB patients, as well as healthy

controls to identify 20 small molecules as a diagnostic sig-
nature of TB [41]. Thus, as with non-infectious human
diseases, [11-13] a growing body of evidence supports the
use of small molecule metabolites as diagnostic or prog-
nostic markers of TB.

Advanced computational tools greatly enhance the field
of metabolomics and allow for the development of meta-
bolic biosignatures [7]. Our metabolomic based analyses
of urine allowed the separation of TB patients' samples
based on treatment time points. However, it was noted
that the profile of DO versus M1 distinguishing metabo-
lites likely differed from those allowing recognition of DO
versus M6 samples. Thus, a pairwise comparison of DO
and M1 samples and the subsequent filtering of the differ-
entiating MFs such that they could be applied to other
time points during therapy were adopted for the biosigna-
ture discovery phase. The first filtering step ensured pa-
tients from two distinct geographical regions shared the
DO versus M1 MFs. A second filtering step was used to re-
move potential bias introduced by drug metabolites and
thus, the biosignature was limited to MFs that decreased
in abundance after the start of therapy. This resulted in
intermediate list of 45 MFs. The exclusion of MF that in-
creased in abundance between DO and M1 was a conser-
vative approach for this proof-of-concept study. However,
as we recently demonstrated with the discovery of an
INH-NAD adduct in urine of TB patients undergoing
treatment (22), there was a possibility that unknown drug
metabolites might have biased biosignature data. Although
this conservative approach can be justified for a proof-of-
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concept study, it must be recognized that MFs increasing
in abundance with successful anti-TB treatment are likely
to be equally valuable in predicting treatment response as
long as they are shown not to be direct products of drug
metabolism.

The 45 MFs from the discovery phase were down se-
lected with LC-MS data from an expanded set of discovery
samples and previously untested patient samples repre-
senting a qualification set. Moreover, the down selection
was performed on the quantitative data extracted from the
raw LC-MS files and was extended to treatment time
points beyond M1. This process yielded 23 MFs that cor-
related well between the sample sets, and over half of
these 23 MFs were determined to be statistically signifi-
cant (p < 0.05) by a univariant analysis. Multivariant statis-
tical modeling further selected six MFs that yielded an
11.8% error rate in classifying DO and M1 samples. Al-
though down selection based on consistency of data across
sample sets and statistical analyses define the most robust
MFs to include in a TB-ETRB, it is also important to
understand why some of the 45 MFs from the discovery
phase behaved inconsistently in evaluation of data for
down selection and qualification. Firstly, not all patients
will be at the same state of disease clearance at a specific
treatment time point, thus the kinetics of abundance
change for individual metabolites could vary from patient-
to-patient during the course of treatment. Another possi-
bility is the difference in handling of samples between the
discovery and down selection phase . To assess samples in
a manner that more closely resembles what might occur
during a clinical trial, the Qualification Set samples were
not subjected to y-irradiation; a process that was applied
to the other samples and resulted in elevated temperatures
and potential alteration of some metabolites. Additionally,
significant time gaps existed between the analyses of each
sample set, and some MFs may have lacked a consistency
that would withstand minor technical variability between
analyses. While such variability in sample handling could
exclude potentially useful MFs, it also allowed for selection
of the most robust MFs. A third variable was the data ana-
lysis used for discovery versus that used in down selection.
This likely explains why one MF (174.0636) selected dur-
ing the discovery phase for decreased abundance between
DO and M1 was subsequently shown to increase in abun-
dance after the start of treatment when LC-MS data were
analyzed for down selection and qualification. The MPP
software analyzes MFs that are selected based on '*C
monoisotopic mass to *3C isotopic mass ratios; a process
vulnerable to technical issues such as detector saturation
[9,42]. Analyses performed with the LC-MS data for down
selection, however, only considered the abundance (peak
area) of the monoisotopic mass of each MF and data that
was collected in an extended dynamic range mode; thus,
eliminating detector saturation artifacts. This observation
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underscores the need and utility of identifying and cor-
recting misclassifications via qualification studies and the
use of unmodified quantitative MS data.

Bacteriological analysis of sputa is the most widely ac-
cepted method for the diagnosis and assessing treatment
response of pulmonary TB [1]. In fact sputum culture
results at two months of treatment are applied in Phase
II clinical trials as an early indicator of drug efficacy.
Analysis of individual molecules in sputa, however, can
be technically challenging owing to viscosity and com-
plexity of the matrix, as well as the absence of markers
against which analyte abundance can be normalized. In
contrast urine allows for facile recovery of analytes and
can be normalized based on creatinine concentrations
[24]. Metabolic profiles of individual urine samples will
vary due to differences in diet, normal flora and other
lifestyle related factors. Racial origin, age and sex will
also influence metabolite profiles in sample subpopula-
tions [43]. The use of samples from two geographical re-
gions and the implementation of stringent biosignature
selection criteria allowed for the identification of mul-
tiple MFs in the urine that changed consistently with
early treatment response in both geographical regions.
The data and approach presented provide proof-of-
principle that a small-molecule, urine based TB-ETRB
could be applied as a tool in clinical trials of new TB
drugs and regimens.

This study also demonstrated that a metabolic flux oc-
curs early during the successful treatment of TB patients.
Thus, the metabolites identified based on abundance
change over the course of treatment are likely indicators of
diseased individuals returning to a normal or healthy state.
This is underscored by the observation that the TB-ETRB
behaved similarly at M1 and later time points of treatment,
including M6. Additional studies, however, are needed to
validate these biomarkers in patients with TB who are
treated and followed for longer term unfavorable clinical
outcomes such as treatment failure, recurrent TB or death,
and for which microbiological data can be correlated with
metabolic flux. Future analyses should also include pa-
tients from other geographical regions and patients co-
infected with HIV as well as variations in infecting Mtb
strains [44,45]. Likewise, fully elucidating the structural
identity and biological significance of each MF can en-
hance the utility of a biosignature. Further studies are re-
quired to confirm the putative chemical identities assigned
to the MFs of the TB-ETRB. This can be a protracted
process [22,46,47], and one that is currently being pursued.

Conclusions

Tuberculosis (TB) continues to have a major impact on
global health, and the continued emergence of multiple
drug resistant TB has enhanced the need for new anti-
TB drugs. The need to accelerate anti-tuberculosis drug
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development and the study of new compounds in clinical
trials is hindered by a lack of biomarkers that serve as in-
dictors of clinical outcome or response to treatment. The
current measure of treatment response is dependent on
sputum culture methodology that can take weeks to ob-
tain results and for which a clinical specimen becomes
more difficult to collect as patients respond favorably to
treatment. LC-MS analyses of aliquots of human urine
normalized to creatinine concentrations allowed for the
elucidation of a qualified small molecule (< 1,000 Da) me-
tabolite biosignature comprised of 23 MFs that consist-
ently changed in abundance over the course of treatment
in these individuals; with 12 of these MFs achieving statis-
tical significance. These studies and data demonstrated for
the first time the feasibility of using small molecule bio-
signatures to monitor the response of individuals to anti-
TB therapy. The analysis of clinical samples by LC-MS is
rapid in comparison to the currently used culture methods
for monitoring of anti-TB therapy and the qualified bio-
signature developed had a level of robustness that allowed
for it to be applied in separate geographical settings.
Moreover, this methodology was applied to urine; a clin-
ical sample that requires little processing and is collected
in a non-invasive manner.
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