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Abstract

Background: Incidence and lifetime risk of diabetes are important public health measures.
Traditionally, nonparametric estimates are obtained from survey data by means of a Nelson-Aalen
estimator which requires data information on both incident events and risk sets from the entire

cohort. Such data information is rarely available in real studies.

Methods: We compare two different approaches for obtaining nonparametric estimates of age-
specific incidence and lifetime risk with emphasis on required assumptions. The first and novel
approach only considers incident cases occurring within a fixed time window—we have termed this
cohort-of-cases data—which is linked explicitly to the birth process in the past. The second approach
is the usual Nelson-Aalen estimate which requires knowledge on observed time at risk for the
entire cohort and their incident events. Both approaches are used on data on anti-diabetic
medications obtained from Odense Pharmacoepidemiological Database, which covers a population
of approximately 470,000 over the period 1993-2003. For both methods we investigate if and how

incidence rates can be projected.

Results: Both the new and standard method yield similar sigmoidal shaped estimates of the
cumulative distribution function of age-specific incidence. The Nelson-Aalen estimator gives
somewhat higher estimates of lifetime risk (15.65% (15.14%; 16.16%) for females, and 17.91%
(17.38%; 18.44%) for males) than the estimate based on cohort-of-cases data (13.77% (13.74%;
13.81%) for females, 15.61% (15.58%; 15.65%) for males). Accordingly the projected incidence rates
are higher based on the Nelson-Aalen estimate—also too high when compared to observed rates.
In contrast, the cohort-of-cases approach gives projections that fit observed rates better.

Conclusion: The developed methodology for analysis of cohort-of-cases data has potential to
become a cost-effective alternative to a traditional survey based study of incidence. To allow more
general use of the methodology, more research is needed on how to relax stationarity

assumptions.

Background From a public health perspective it is vital to get good esti-
Diabetes is a severe disease, which is becoming increas-  mates of the present and future burden of diabetes. One
ingly prevalent in countries throughout the world [1-6].  measure of primary interest is diabetes incidence, both
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with respect to calendar time and age [7]. If combined
with a model for mortality, it allows estimating lifetime
risk of diabetes, another important public health measure
[8]. Also, if combined with data on birth rates, it is possi-
ble to obtain a projection of future incidence, often
needed for planning of health care services.

As the annual risk of developing diabetes is low in a gen-
eral population, only very few follow-up studies exist on a
general population level. Alternatively, various types of
surveys have been conducted [8,9], which have then been
analyzed to estimate age-specific incidence rates. Obvi-
ously, subjects of different ages in a survey originate from
different birth cohorts, but this has received little atten-
tion in this context. As a consequence, the life-time risk
estimated from such approaches pertains to a hypotheti-
cal cohort subjected to the current age-specific incidence
and mortality rates. Likewise, future incidence is predicted
from assuming birth cohorts of a given size and then sub-
ject these to the same age-specific incidence and mortality
rates observed in the survey.

In this paper we propose a different approach which from
the outset links past birth rates to the occurrence of inci-
dent events in a (often relatively short) time window. We
will term this type of data cohort-of-cases data as it is a
cohort consisting entirely of cases. More specifically, we
require the sample to include all subjects who have
advanced to a certain end-point (failure event) within a
given calendar time period-and only these cases. Further,
we assume that the time origin (initiating event, birth
time) of each case can be retrospectively identified. So far,
statistical methods for this type of doubly truncated data
have not (to the extent of the authors' knowledge) been
extensively studied, when the rate of initiating events is
not assumed constant over calendar time.

It should be noted that cohort-of-cases data are different
than case-cohort data (see for example [10], where the
phrase case-cohort was coined) as the latter refers to a
study comparing cases to a random sample from the cor-
responding cohort. In contrast, the cohort-of-cases data
studied here comprises a study population consisting only
of cases, but possibly supplemented with additional infor-
mation on the process of initiating events. Cohort-of-
cases designs-in this sense—are generally considered effi-
cient, in particular for diseases with a low rate of occur-
rence; see [11-15], and references therein. We also want to
point out that cohort-of-cases data provide information
different from the information of the cases in the case-
cohort studies, although the two types of data do share
common characteristics. As pointed out in ([10], p4), the
failure time in case-cohort studies is usually defined as
time from the beginning of follow-up to a failure event,
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whereas the failure time in cohort-of-cases is time from
initiating event to failure event.

To illustrate how the model can be applied we will use
data from Odense Pharmaco-Epidemiological Database
(OPED). Briefly, this database contains information on all
redemptions of medications prescribed by a physician
and subsidized by the national health insurance at any
pharmacy within in a well defined geographical area hold-
ing nearly 500,000 inhabitants. The drug class of interest
here is that used to treat diabetes. While such data by def-
inition only concern pharmacologically treated diabetes,
they do offer the opportunity for comparing the proposed
approach with the traditional approach-the main pur-
pose of the present paper.

The paper is organized as follows. We first describe the
data, both on births and incident events. We then intro-
duce a methodology which yields a non-parametric max-
imum likelihood estimate of the age-specific incidence
distribution based solely on cohort-of-cases data, possibly
supplemented with a known birth rate. The non-paramet-
ric method does not directly provide measures of the
uncertainty of the estimate, and so we propose a bootstrap
method for obtaining measures of this uncertainty. We
then briefly outline the traditional analysis, before we
present and compare results when applying the two meth-
ods to the data. We finally discuss implications in the last
Section.

Methods

Cohort-of-cases data on anti-diabetic treatment

For the period 1992-2003 the Odense Pharmaco-epide-
miological Database (OPED) contains subject specific
information on all prescriptions for subsidized medica-
tions redeemed at any pharmacy in the County of Fyn, as
well as information on births, deaths and migration into
and out of the County of Fyn. The tracking of individuals
is based on the Civil Registration Number (CRN) which is
assigned to all at birth or first immigration into Denmark,
and which uniquely identifies all residents of Denmark.
For each individual we identified all prescriptions of anti-
diabetic agents in OPED. The anti-diabetic drugs are char-
acterized by the first three characters of the so-called ATC-
code being A10 [16]. We will not distinguish between the
various types of anti-diabetic treatments, such as for
example insulin (A10A) and oral anti-diabetics (A10B).
Incident events are defined to be the first treatment event
observed in the time window for subjects who did not
have any previous events during a one year run-in period.
The run-in period was either started at the start of the data-
base or at the time of first immigration into Fyn of the
subject, if the subject immigrated into Fyn during the
observation period. Note, that this may well introduce a
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calendar-time-dependent misclassification and hence bias
[17], but this will be ignored in the following as we are not
studying secular trends in incidence. Also note, that by
definition, these data will only allow us to study incidence
of pharmacologically treated diabetes. We will use the
words "treated" and "diseased" interchangeably, and ask
the reader to keep in mind that the present analysis only
pertains to pharmacologically treated diabetes.

Birth rates

For the period 1891-2003, available data from Statistics
Denmark were used to determine annual, national birth
counts for each gender. To estimate the number of births
within the county of Fyn, data was obtained on popula-
tion size for Denmark as a whole, as well as for Fyn with
the objective of rescaling. Population counts were availa-
ble roughly at five year intervals (1901, 1906, ..., 1921,
1925, 1930, ..., 1970, 1976, 1981, 1986, 1990, 1995,
1998, 1999, ..., 2003) for Fyn, whereas nationwide data
was available annually from 1970 and onward, and oth-
erwise similar to those for Fyn given above. Only from
1970 can all members of a given birth cohort be followed
up individually, and hence we only rely on annual counts
that are available throughout.

To estimate the number of births in the county of Fyn, we
scaled national birthrates by the relative population size
in the county of Fyn compared to the total population of
Denmark. The underlying assumption is that the fertility
rate on Fyn is similar to national rates, which seems plau-
sible given the small size of Denmark and the relatively
homogeneous composition of the population. As popula-
tion counts are not available annually we interpolated the
population data based on piecewise linear regression with
cut points at 1920, 1970, and 1996, cf. Figure 1.

1900 1920 1940 1960 1980 2000
Calendar year

e Proportion of Danes living in Fyn Fitted values ‘

Figure |
Observed and predicted fractions of the Danish population
living in the county of Fyn during 1900-2003.
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Overall, Fyn hold 9%-10% of the Danish population dur-
ing most of the twentieth century and the fit seems very
good. The sudden drop in 1920 is due to the reunion of
North Slesvig with Denmark after having been part of Ger-
many from 1864.

In subsequent analyses the missing proportions were
replaced with the predicted, while the observed propor-
tions were retained. When we combined this with the
national birth rates, we could compute the number of
births in the county of Fyn as the product of the number
of births in Denmark and the proportion of the Danish
population living in the County of Fyn. Since no observa-
tions were available for the ten year period 1891-1900,
we predicted the annual number of births in this period
from a linear extrapolation of the birth counts in the
period 1901-1910. The resulting gender specific annual
birth rates in the County of Fyns are presented in Figure 2.

For the birth rates to be of value, we must assume that
migration balances in the sense that immigration and
emigration for each birth cohort prior to and within the
observation window is expected to be of similar size. This
is, however, reasonable in the present context as the rela-
tive size of the studied population is nearly constant com-
pared to the entire Danish population. In all subsequent
analyses, estimated numbers of births are treated as fixed.

Methodological set-up

Let us now introduce the notation used in the paper. Let
U be the calendar time of the initiating events (births). Let
Y be age at onset if disease occurs before death, and infin-
ity in the absence of disease before death. Let the proba-
bility density function (pdf) of Y be f(y|u), and the
associated cumulative distribution function (cdf) F(y|u).

Number of births
2000 3000 4000 5000
L L ) L

1000
|

0
|

1900 1950 2000 1900 1950 2000

Birth year
Graphs by child gender (F = Female, M = Male)

Figure 2
Annual number of births in the county of Fyn during 1891-
2003.
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Further, let Z, be age at death if Z; <Y, that is disease does
not occur before death. If Y > Z, we let Y = o0, and other-
wise we let Z, = «. To avoid ambiguity, we will at times
denote F as F;.

Since not all subjects will experience disease prior to
death, the pdf of Y, f(y|u), is a mixture distribution with
two components:

fylu) = o () + (1 - o W)y = )

where _ (u) is defined as P (Y < o |u), i.e., it is the prob-
ability of disease occurring before death, I( ) is an indi-
cator function, and f*(y|u) is the conditional pdf of Y
given that Y < oo, i.e., Y < Z. Note, that since _, (u) is the
probability of disease occurring before death for a subject
with birth at u, it is the lifetime risk for subjects with birth
time u.

Cohort-of-cases data

Assume that we observe all ages of onset, Y, occurring
within the calendar time observation window [0; ), cf.
Figure 3 for a graphical presentation of the sampling
scheme. Assume that the occurrence of births follows a
Poisson process with intensity (u) foru < ,, and that y* =
sup{y: F* (y|u) < 1} exists and is finite forall u < , i.e., y*
is the maximal observable age at onset before death. We
can then normalize the birth intensity (u) to a density g

on [-y% o),

o(u)
0, 9(s)ds

Age

44 Calendar time

Figure 3

Lexis diagram with observation window (gray area). Dotted
lines indicate lifetime without disease until age of onset (Y),

or age at death (Z;), full lines lifetime with disease. Only age
at onset times within the observation window are observed
(blue points) in a cohort-of-cases study.
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with associated cumulative distribution function G. In
principle could well depend on covariates, but since we
consider either known or constant, we will ignore this.

We will in the following assume (U, Y;),..., (U,, Y,) to be
independent and identically distributed (iid). Two crucial
assumptions must be considered. First, whether or not we
have calendar time stationarity with respect to age of
onset, i.e.,

(S1) Age of onset is independent of time of birth, i.e.,
F(ylu) = F(y)-

Secondly, knowledge about the birth process will not be
available in many applications. Hence we also consider
the situation with calendar time stationarity of the birth
process:

(S2) Assume that the occurrence of initiating events,
births, started in the distant past and that this birth rate
has been stabilized. Or, quantitatively, assume that u, =
inf{u: (1) > 0} is small enough so that u, < -y*, and that g
is uniform on [-y*; ).

Stationary incidence, known birth process ((S1) only)
When only (S1) holds, the joint density of the observed
(u, y) can be written as follows:

_ i - | 8I(-ysusto-y)
urlUsvsn-u) - [0S |

| {6o-N-CEny M=y

+ *
[} {Gro—9)-G(=s)}f " (s)ds

= p(uly)pm(y)

where p (u|y) and p,,(y) are defined by the expressions in
each bracket in (3), respectively. Thus p.(u|y) can be inter-
preted as the density of birth times conditional on y being
observed in [0; ), and p,,(y) as the marginal density for
the observed y weighted with w; = G( ,-y) - G(-y), i.e., the
probability of birth occurring within the interval [-y; -y).

When g is known, then so is p,, as are the weights in p,,. It
is thus straightforward to compute the maximum likeli-
hood estimate of F* based on the weighted observations:

-1
_ iy <yW;

n -1
2w

-1 -1
w; w; )

J /2 ) at each jump
point j, where j corresponds to the observation number in
the ordered set of Y;. That the estimate in (5) is the non-

F(y)

The estimate thus places mass
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parametric maximum likelihood estimate (NPMLE) fol-
lows directly from standard results on NPMLE, see for
example the paper by Turnbull [18], who covers the gen-
eral case of which this is a special case. If all weights are
equal, the above formula reduces to the ordinary formula
for non-parametric estimation of a cdf in the uncensored
case, putting mass n'! at each jump point.

With the estimate of the conditional cdf F* it is possible
to obtain an estimator of the unconditional F utilizing
their relationship given in Equation (1). What we need is
an estimate of _, which may be obtained from noting that
the occurrence rate of incident events, I, at any calendar
time point is given by

0= otse-uie-usy

=rf ot -

where the indicator function I(t - u < y*) is needed, since
the occurrence rate does not include those for which onset
never happens, that is when y = ¢ - u > y*or equivalently
thaty =t - u = . Integrating this over the observation win-
dow, we find

[Mreoa=r. " [ sir -

e[| [ -

o[l ol

- ﬂmﬁmu){ F*(zo — ) - F*(max(0,~u)) } du

from which it follows that

BN I"(r)dt/ “ " g {70 )~ F*(max(0,-u))}du

Although the estimate is intuitely attractive it is not clear
whether it is the MLE. However, if we fill in the MLE of F*

in Equation (12), we do obtain an estimate of , since is

[Crrwd
known and 0 is estimated by the total number
of observed incidences over the interval [0; ;). Having

obtained the MLE of F* together with an estimate of _, we
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can use Equation (1) to compute an estimate of F, the
unconditional cdf of age at onset.

Stationary incidence, stationary birth process (both (S1) and (52))
When both (S1) and (S2) hold, the marginal density of
the observed y's can be further simplified by substitution
of the uniform birth density in the corresponding expres-
sion in Equation (3), i.e.,

{To/(To+y+)}f*(J);)1(ySy+) - Py <y
70/(to+y")

Pm(y) =

Note, that here the density function of the observed y's
coincides with the population density function f* of the
observable onset times, Y . In the case when only age at
onset distribution is of interest, and not lifetime risk, the
'usual methods' are thus applicable to the case data to esti-
mate f* by putting equal weights on all observations as
noted above.

If, however, we are also interested in the unconditional
density, f(y), we need an estimate of _ to be able to pro-
ceed. Above, this was obtained from our knowledge of the
birth process, and in principle we could exploit this again.
However, in situations where a stationary birth process is
assumed, this is typically because we lack information on
the birth process. Thus it may in such situations be neces-
sary with alternative approaches. One obvious way to pro-
ceed is the following: In the time window where
information is collected on incident cases, we also collect
information on deaths-either for all or a random sample-
and classify them according to whether or not they had
experienced disease. The relative frequency of diseased
deaths will then be an estimate of _ under stationarity
assumptions with respect to the birth process, the incidence
process, and the mortality. This estimate is valid if age-spe-
cific mortality is assumed stationary both among diseased
and non-diseased-these strong assumptions reflect the lack
of available information in such situations. With this esti-
mate of , we may then estimate the unconditional F.

Non-stationary incidence, known birth process (Neither (SI) nor (52))
When neither (S1) nor (S2) hold, the likelihood becomes
substantially more complicated. In principle, this can be
handled by introducing a parameter vector which relates
the incidence density to the time of birth. The rewriting
presented in Equation (4) is still valid with the modifica-
tion that the density term p,,(y) now depends on the
parameter vector , i.e.,

{G(10-110)-G(-y10)}f " (v16)

[ {G(ro—s6)-G(~s10)}f " (s/6)ds

pm(y16)=
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Unfortunately this density does not directly permit use of
the approach presented above for finding a non-paramet-
ric estimate of f*(y| ), nor for finding the corresponding
estimate of ().

One alternative is to set up a full likelihood by consider-
ing a full parametric model of both age of onset and age
of death, but we will not go into further details here and
instead commend this as a topic for future research.

Ordinary non-parametric analysis

The ordinary Nelson-Aalen analysis based on observed
events and time at risk is well described elsewhere, see
[19] for an extensive treatment of the subject, or [20] for a
more focused treatment. In short, we use age as the funda-
mental time scale, and we then have delayed entry due to
the fact that not all subjects are followed from birth.
Rather, they enter the observation window and capture
area at a certain age and are then followed until either
event or censoring, whichever comes first.

We let subjects become at-risk one year after the start of
the observation period if they resided in Fyn County in
this period, or one year after entrance to the capture area,
if they immigrated to Fyn during the study period. In both
cases the one year run-in period is used to identify subjects
not already in treatment (those without filled prescrip-
tions in the period), as only they are at risk for becoming
incident. Subjects cease to be under observation either at
onset, death, emigration from Fyn, or end of follow-up,
whichever comes first.

As above we require calendar time stationarity for estima-
tion of F. The second assumption in this setup is that entry
is independent of disease onset, i.e., age at immigration to
Fyn County is not informative for the subsequent distri-
bution of Y. The final assumption is that censoring is non-
informative. The two latter assumptions are similar, but
not identical, to the assumption of balance of migration
made in the analysis of doubly truncated data. The differ-
ence is, that independent delayed entry and censoring
only concerns the time within the observation period. On
the other hand, the balancing assumptions does not
require independence, i.e., migrating subjects may well
have a different morbidity than non-migrating subjects—
which is indeed the case [21]-as long as the distribution
of onset ages is similar among immigrating and emigrat-
ing subjects.

Thus we get a non-parametric estimate of Ay, the cumula-

tive hazard for onset of disease. Similarly, a non-paramet-
ric estimate of the cumulative hazard of death among

A
non-diseased,  *°, can be obtained by simply exchanging
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the event indicator from onset of disease to death and
maintaining the at-risk time.

A
From Ayand = “° an estimate of F is given by (cf. [22] for

a theoretical discussion, while [23] gives an example of its
application)

FO) = [ Av(esl-ayo)lesl-a, (ks

+i(y =y")(1-7..)
where is the hazard associated with Ay, and is the life-
time risk given by

r. = j: Ay (S)expl=Ay (5)lexpl—A,, (5)1ds

As no analytic confidence intervals are available for the
lifetime risk, we obtained them using bootstrap as above.
This can also be applied to obtain age-specific confidence
intervals for F.

Projection of incidence

Based on an estimate of F, projection of incidence is pos-
sible both inside and outside the observation window by
application of the formula in Equation (6), when the
birth process is known and incidence is assumed station-
ary. In the application studied here, the birth process is
known foru < . Foru > it must be projected. Hence, we
carry the last observed value of the birth process forward,
ie,let (u)= (o) foru> ,.

Results and Discussion

Table 1 gives basic descriptive statististics of the studied
population, as it shows the number of incidence events
tabulated by gender, birth period and calendar year,
which is used for estimating age-specific incidence.

Cohort-of-cases data

Complete stationarity

Although the birth process is known in our setting, we
for comparison present an analysis based on assuming
stationarity for the birth process, the incidence process,
as well as the mortality process among treated. We first
classified all deaths according to whether or not a previ-
ous redemption of anti-diabetics had been observed,
considering all with such a redemption to be diabetics.
The lifetime risk, ., was for females estimated at 9.68%
(95% Confidence Interval: 9.35%; 10.02%) and for
males at 10.86% (10.51%; 11.22%), where both confi-
dence intervals are binomial exact. The estimated inci-
dence distribution, F, stratified on gender is shown in
Figure 4(a).
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Table I: Number of incidence events by gender, calendar year of event and calendar year of birth

Event year

Gender Birth 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Females -1909 60 24 30 22 7 19 9 7 6 4 4
1910-9 103 79 74 101 8l 69 66 58 65 51 47

1920-9 110 123 99 122 98 112 118 109 106 119 118

1930-9 65 86 78 86 96 82 96 108 1 132 140

1940-9 51 51 55 70 65 64 88 100 115 117 137

1950-9 41 31 32 26 32 30 38 48 51 64 70

1960-9 18 18 13 20 8 18 28 29 30 34 48

1970-9 17 10 9 6 13 5 9 9 18 19 34

1980-9 4 3 24 5 6 8 7 9 5 I

1990- 4 6 3 3 5 7 10 10

Males -1909 29 19 18 8 7 7 4 2 2 2
1910-9 94 80 68 71 65 58 42 45 37 21 28

1920-9 126 145 106 118 96 116 99 93 82 123 123

1930-9 107 95 114 132 126 119 131 156 143 126 174

1940-9 104 102 83 102 I 129 140 166 183 191 214

1950-9 49 52 38 52 42 77 65 70 77 106 113

1960-9 16 19 19 21 27 23 28 29 41 55 53

1970-9 12 I 17 8 5 7 10 9 15 14 12

1980-9 8 2 3 28 6 2 7 12 12 12 10

1990- 5 3 2 6 7 8 9 5

Number of incidence events by gender, calendar year of event and calender year of birth.

Stationarity of incidence, known birth process

When only stationarity of the incidence distribution is
assumed, a non-parametric analysis based on the
weighted likelihood given in Equation (4) and the estima-
tor of _in Equation (12) can be conducted. With the gen-
der specific birth rates, we estimated gender specific
estimates of F*, _, and hence F, from the observed events

o]

T T T T

40 60
age

(a) Stationary birth and incidence process

Females Males ‘

Figure 4

and associated ages at the events. The resulting estimates
of the incidence distribution F are displayed in Figure
4(b).

We see that the incidence distribution for both genders are
made up of two components: The first component is a
more or less constant density for ages below 40 years (the

15

T T T T T T

0 20 40 60
|

(b) Stationary incidence process, known
birth process

age

Females Males ‘

Estimated incidence distribution F for pharmacological treatment with any anti-diabetic drug with respect to age, and stratified

on gender.
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linear part in F), whereas the second is a much higher, uni-
modal density for ages above 40 years which vanishes for
ages above 80 (the sigmoid shaped part of F). For females
the lifetime risk, ., was estimated at 13.77% (13.74%;
13.81%), for males at 15.61% (15.58%; 15.65%). Both
confidence intervals are computed using bootstrap with a
thousand replications. The confidence intervals are very
narrow which reflects the high statistical efficiency of the
weighted likelihood approach-which in turn partly
comes from the strong assumption of stationarity. As
birth counts are assumed known, this too contributes to
the narrow confidence intervals, although to a lesser
degree.

The shape of F is quite similar to the unweighted estimate,
whereas the estimated lifetime risks are substantially
higher than those estimated above. The major explana-
tion is of course lack of stationarity of the true lifetime risk
and/or the disease duration: The estimate of _ based on
disease status among observed deaths takes most of its
information from the older cohorts as they are the ones
with high mortality. If the older cohorts had lower life-
time risk and/or previously had relatively higher mortality
among diseased compared to non-diseased (both of these
scenarios are very realistic, but contrary to assumptions of
the previous analysis), this will result in a decreased esti-
mate of _ . This would be amplified if older cohorts are
larger than younger cohorts, as is indeed the case here, cf.
Figure 2.

Contrastingly, when indirectly estimating , based on
weighting with the birth process, the estimate can be
viewed as a weighted average of , over the entire interval
for the birth process [-y+; -¥).

Projection of diabetes incidence

In the completely stationary situation, where (S1) and
(S2) are both assumed to hold, the projected annual inci-
dence is a constant number equaling the lifetime risk mul-
tiplied by the annual number of births. As the annual
number of births are usually not observable in such set-
tings, an alternative is needed. In the spirit of estimating
» from the treatment status among deaths, one could take
the total annual number of deaths as an estimate of the
number of births. The reasoning for this is that if the pop-
ulation is in a completely stationary state, the annual
number of deaths must on average equal the average
annual number of births. In our setting the observed
numbers of deaths over the 11 year period are 29,871 for
females and 29,816 for males yielding projected, annual
incidences of 262.8 for females and 294.3 for males. In
Figure 5 the incidence is projected based on the weighted,
non-parametric estimate of F obtained above, i.e., with
known birth intensity and stationary incidence. All
annual birth counts after 2003 are set to the number of
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births observed in 2003. Note, that the observed inci-
dence strongly suggests a departure from stationarity, and
so future actual incidences are likely to be higher than
those projected from a stationarity assumption. The pro-
jected incidences show a small but persistent decline for
2004-2013 due to declining birth rates in the last half of
the twentieth century. The general level is much higher
than above, reflecting the higher estimate of , obtained
from using the known birth distribution, but correspond
well with observed incidences.

Ideally, projections should be accompanied by confi-
dence intervals, but we have been unable to compute
them. While in principle some variant of bootstrap might
be employed, this is numerically very demanding as the
entire cdf of age-specific incidence must be bootstrapped.
Judged from the conifdence intervals of the lifetime risks,
the confidence intervals of the projections will be very
small, reflecting both high efficiency of the method, as
well as its strong assumptions.

Ordinary non-parametric analysis

The gender specific estimates of F are shown in Figure 6.
The shape of the estimated cdf is very similar to the one
obtained above using a known birth process for weight-
ing. The estimated lifetime risks are 15.65% (15.14;
16.16) for females, and 17.91% (17.38; 18.44) for males,
where confidence intervals were found from bootstrap
with 1,000 replications. This is somewhat higher than
when analyzing data as doubly truncated. The explana-
tion is that mortality has generally declined substantially
over the past century, and hence an estimate based on the
mortality rates observed within the observation window
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Figure 5

Projected and observed annual numbers of incident events in
the county of Fyn based on an assumption of a stationary
incidence and using a weighted, non-parametric estimate of F.
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Figure 6

Estimated incidence distribution F for pharmacological treat-
ment with any anti-diabetic drug with respect to age, and
stratified on gender. Ordinary non-parametric estimate with
independent delayed entry.

leads to a higher risk of diabetes onset prior to death than
an estimate which implicitly accounts for past mortality.

Projection of diabetes incidence

Projections are obtained as above-except that the ordi-
nary non-parametric estimate of F is used-and results are
shown in Figure 7. Due to the elevated lifetime risk the
projected incidences are now higher-also too high com-
pared to observed incidences. Also for this projection we
have been unable to provide confidence intervals for the
same reasons as above.

Conclusion

In this paper we have developed and implemented meth-
ods for estimating and projecting incidence, as well as the
lifetime risk of a disease based on observation of incident
events in an observation window, i.e.,, what we termed
cohort-of-cases data. The developed methodology yields
non-parametric estimates comparable to those of a stand-
ard Nelson-Aalen analysis based on independent delayed
entry, but it gives slightly better projections of incidence
due to its implicit accounting for the unobserved mortal-
ity among untreated in the past.

In its simplest form-i.e., assuming both a stationary birth
process and incidence-a simple non-parametric estimate
of the age of onset distribution is obtained. When alterna-
tively the birth process is considered known, this is taken
into account by a weighted, non-parametric estimate with
weights based on the relative sizes of the relevant birth
cohorts. Both approaches directly provide estimates of
age-specific incidence as well as of lifetime risk, which are
of considerable public health interest. Due to the rela-
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Figure 7

Projected and observed annual numbers of incident events in
the county of Fyn based on the ordinary non-parametric esti-
mate of F with independent delayed entry.

tively fast computational procedures developed, confi-
dence intervals for the lifetime risk could be obtained
from direct application of bootstrap methodology. We
were however unable to provide confidence intervals for
projection of incidence.

As stated by Narayan et al. in 2003, lifetime risk of diabe-
tes appears not to have been estimated prior to their
paper [8], and only one subsequent paper have reported
comparable estimates of lifetime risk [24]. The directly
comparable estimates for the US population found in [8]
are substantially higher (39% for females, 33% for
males) than ours (14% for females, 16% for males). The
two major reasons for the difference is a generally lower
diabetes incidence in Denmark [4], as well as the fact that
our estimates only pertain to pharmacologically treated
diabetes. It would however be interesting to explore if
part of the difference is due to their use of the traditional
method, as the traditional method in our material leads
to an elevated estimate of lifetime risk of 16% for females
and 18% for males. It is further interesting that the gen-
der differences are in opposite directions in the two
countries.

Several papers have used estimates of incidence to project
the future burden of diabetes, most prominently [2,5,6].
For all three, it would be interesting to re-analyze their
data using our developed method for cohort-of-cases
data, if possible, to see if a similar discrepancy exist
between the two analytical methods as we have found,
where the traditional method lead to an inflated projec-
tion of the number of incident events of diabetes, when
compared to the observed count.
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For the theoretical developments, assumptions (S1) and
(S2) have been crucial, but from an applied perspective
the assumptions are very restrictive. In our application
concerning diabetes, the assumptions are likely not satis-
fied, as it is questionable that both age-specific incidence
and age-specific mortality among diabetics have been
constant since 1900-rather, changes in incidence due to
altered lifestyle, and changes in mortality due to improved
treatment and general health are reasonable. Indeed, it is
known that within the observation window of 1993 and
2003, statistically significant trends exist for both quanti-
ties [4]. Yet the predictions based on the developed model
are at least as good as those based on the ordinary non-
parametric method, showing the potential of the devel-
oped model. More work on relaxing the assumptions is
however mandated before the model can be used more
generally.

Although we in principle showed how the stationarity
assumption could be relaxed by formulating a full, para-
metric likelihood, we did not give a detailed analysis of
this situation due to its complexity. Also, the data consid-
ered in this paper are rather limited since, first, the obser-
vation window is short compared to typical disease
duration, and second, no information is available on age
of onset outside the observation window. As a result, we
have been unable to allow for trends in incidence and
mortality, the absence of which must be considered unre-
alistic. In some epidemiological settings it will, however,
be possible to obtain data on age of onset for subjects
prevalent at start of the time window or for diseased sub-
jects dying in the observation window [25]. While such
information is valuable and needs to be incorporated in
the analysis to allow relaxation of assumptions, it requires
knowledge about the past mortality among diabetics. In
contrast, we have tried to develop a methodology that
only rely on observation of incident events and past birth
rates, which are often easier to obtain. There is, however,
a need for further research on the applicability and exten-
sions of the method before its potential can be more
clearly appreciated.
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