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Abstract

Background: Exposure of Medicago truncatula cell suspension cultures to pathogen or wound
signals leads to accumulation of various classes of flavonoid and/or triterpene defense molecules,
orchestrated via a complex signalling network in which transcription factors (TFs) are essential
components.

Results: In this study, we analyzed TFs responding to yeast elicitor (YE) or methyl jasmonate (M]).
From 502 differentially expressed TFs, WRKY and AP2/EREBP gene families were over-represented
among YE-induced genes whereas Basic Helix-Loop-Helix (bHLH) family members were more over-
represented among the MJ-induced genes. Jasmonate ZIM-domain (JAZ) transcriptional regulators
were highly induced by M) treatment. To investigate potential involvement of WRKY TFs in
signalling, we expressed four Medicago WRKY genes in tobacco. Levels of soluble and wall bound
phenolic compounds and lignin were increased in all cases. WRKY W109669 also induced tobacco
endo-1,3-fglucanase (NtPR2) and enhanced the systemic defense response to tobacco mosaic virus
in transgenic tobacco plants.

Conclusion: These results confirm that Medicago WRKY TFs have broad roles in orchestrating
metabolic responses to biotic stress, and that they also represent potentially valuable reagents for
engineering metabolic changes that impact pathogen resistance.

encoding PR proteins and enzymes involved in the syn-
thesis of defense-related compounds [6,7].

Background
Terrestrial plants, having a sessile life style, have evolved a
variety of active defense mechanisms to protect them-

selves against pathogens and pests. For example, in
response to pathogen attack the plant can undergo local-
ized hypersensitive cell death associated with synthesis of
antimicrobial molecules termed phytoalexins and a range
of so-called pathogenesis-related (PR) proteins [1-5].
Induction of plant defense responses occurs through a
highly complex signalling network. Transcription factors
(TFs) are essential components of these signalling path-
ways, by controlling the regulation of expression of genes

We recently described how global profiling of transcripts,
associated with metabolic profiling, has revealed details
of the mechanisms underlying the induction and accumu-
lation of various classes of flavonoid and triterpene
defense molecules in cell cultures of the model legume
Medicago truncatula [8-13]. In particular, we have shown
that the mechanisms by which the cells respond to two
different elicitors, the pathogen mimic yeast elicitor (YE)
and the wound signal methyl jasmonate (MJ), differ not
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only in the final end products accumulating, but also in
the nature of the underlying signal transduction pathways
[13]. The differences are most likely orchestrated by rapid
induction of different sets/combinations of transcription
factors [5,14-16].

WRKY proteins belong to a large family of transcriptional
regulators which contain the conserved amino acid
sequence WRKYGQK together with a zinc-finger-like
motif [17]. Members of the WRKY TF family are involved
in transcriptional regulation associated with plant
immune responses [18] and development [19]. In the past
decades, significant progress has been made on the char-
acterization of WRKY proteins involved in regulation of
plant defense responses [20]. Over-expression of WRKY
genes in transgenic plants has shown that some are able to
increase the production of PR proteins and to modulate
resistance to phytopathogens [21,22]. Most of these stud-
ies have utilized the model crucifer Arabidopsis thaliana.
Few studies have addressed the transcriptional control of
defense-related secondary metabolism in legumes.

We here describe the families of Medicago TFs that are
induced by YE or M] in cell suspension cultures of the
model legume M. truncatula, with particular focus on
members of the WRKY family. Our results show that dif-
ferent classes of transcriptional regulators are activated by
YE and MJ in Medicago cell cultures, and that heterologous
expression of selected Medicago WRKY proteins in trans-
genic tobacco enhances typical defense responses such as
PR protein induction and accumulation of soluble and
wall bound phenolic compounds.

Results and discussion

Classes of TFs regulated by YE or MJ in M. truncatula cell
suspension cultures

More than 1,350 TFs have been identified in the M. trun-
catula genome to date [23], and new classes of plant TFs
are still being discovered [23,24]. To provide a global
analysis of TFs that are transcriptionally regulated by YE or
MJ, we performed transcript profiling using Affymetrix
Medicago arrays to compare 2 h and 24 h elicited samples
to corresponding controls. The array contains over 61,200
probe sets: 32,167 M. truncatula EST/mRNA-based and
chloroplast gene-based probe sets; 18,733 M. truncatula
IMGAG and phase 2/3 BAC prediction-based probe sets;
1,896 M. sativa EST/mRNA-based probe sets; and 8,305
Sinorhizobium meliloti gene prediction-based probe sets.
Genes encoding 502 TFs were differentially expressed in
M. truncatula cell suspension cultures treated with YE or
MJ (Additional file 1). However, the pattern of activation
of TFs by YE or MJ was different (Figure 1A, B). After 2 h
of treatment, 343 TFs were up-regulated by YE, 191 by M]J,
and 125 by both (Figure 1A). At 24 h, the differences
between the two treatments were greater; the number of
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TFs up-regulated by YE dropped, but MJ up-regulated TFs
increased and only 19 were up-regulated by both treat-
ments (Figure 1B).

TFs are classified based on their DNA-binding motifs. To
investigate which TF classes were regulated by YE or MJ
treatments, we used the recently published legume TF
classification [23]. Figure 1C, D shows the up- and down-
regulated TFs distributed in annotated classes, not includ-
ing putative TFs. Five gene families were over-represented
among the up-regulated TFs, namely the AP2/EREBP,
bHLH, MYB, NAC and WRKY families (Figure 1C). AP2/
EREBP and NAC families are specific to plants [25]. WRKY
TF genes were rapidly and highly up-regulated by YE.
Among the 65 YE-induced WRKY probe sets, more than
half were up-regulated at 2 h post-elicitation, with fewer
being more highly expressed than in the controls at 24 h.
MJ induced only 20 and 7 WRKY probe sets at 2 h and 24
h, respectively. Notably, the WRKY most strongly induced
by YE (TC109669; almost 600-fold change) was induced
five times higher than the most strongly MJ-induced
WRKY (TC108267; 115-fold change) (Table 1). A group
of 20 probe sets corresponding to AP2/EREBP gene family
members was up-regulated at 2 h, followed by a strong
reduction in their expression at 24 h of YE treatment. Thir-
teen and ten AP2/EREBP probe sets were induced by MJ at
2 h and 24 h, respectively. The WRKY TFs were over-repre-
sented among the twelve TFs that were most highly up-
regulated (more than 20-fold) by YE (Table 1).

The Basic Helix-Loop-Helix (bHLH) family of eukaryotic
TFs [26] was more pronouncedly over-represented among
the MJ-induced genes. Seven and one bHLH probe sets
were induced at 2 h and 24 h after YE treatment, respec-
tively, and 11 probe sets were up-regulated by MJ at 2 h
and 24 h post-treatment. The bHLH gene family was over-
represented among the ten highest MJ-induced TF genes
(Table 1).

Four gene families, AP2/EREBP, bHLH, HD and MYB, were
over-represented among the down-regulated TFs (Figure
1D). The AP2/EREBP gene family was more over-repre-
sented among the genes down-regulated by M], with
seven AP2/EREBP probe sets down-regulated by YE at 2 h.
Five and 18 probe sets were down-regulated by MJ at 2 h
and 24 h, respectively. In contrast, the bHLH gene family
was more over-represented among the TFs that were
down-regulated by YE. Fifteen and one bHLH probe sets
were down-regulated by YE, and five and nine were down
regulated by MJ, at 2 h and 24 h respectively.

The mechanism of transcriptional regulation by MJ was
largely unknown until the recent discovery of a novel fam-
ily of transcriptional regulators called jasmonate ZIM-
domain (JAZ) proteins [27-29]. These function as repres-
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TFs regulated by YE or M) in M. truncatula cell suspension cultures. Venn diagrams showing the numbers of transcrip-
tion factors induced by YE or MJ at 2 h (A) and 24 h (B) of treatment. Up- (C) and down-regulated (D) transcription factors are

classified according to [23].

sors of MJ-regulated transcription in Arabidopsis.JAZ pro-
teins are normally bound to TFs and inhibit their activity.
It has been shown that MYC2 specifically recognizes the
G-box sequence in the promoter of the JAI3 (JAZ) gene
[27]. In response to wounding, jasmonoyl-isoleucine [30]
stabilizes the interaction between the SCFCO! (Skip/Cul-
lin/F box) E3 ubiquitin ligase complex [31,32] and JAZ.
The JAZ proteins are probably modified by ubiquitination
and destroyed by the 26S proteasome [27,28]. Degrada-
tion of JAZ repressors liberates the TFs that induce jas-
monate-responsive transcriptional changes. Twelve
proteins have been identified in Arabidopsis [27,28].
Homology within this family is confined to two domains,
a 'TIFY' motif that contains the conserved amino acid pat-
tern TIF(F/Y)XG [33], and a carboxy-terminal domain
[27]. Outside these domains the sequence similarity is
weak, and the proteins do not contain any known DNA-
binding domain [27]. So far, JAZ proteins have been iden-
tified only in plant species [33]. Arabidopsis JAZ genes were

quickly and specifically induced by jasmonate treatment
or constitutively expressed in untreated plants overex-
pressing MYC2 under control of the 35S promoter [27].
These findings suggest that a negative feedback mecha-
nism may limit the response after initial jasmonate per-
ception [27].

We identified seven genes in M. truncatula, represented by
12 probe sets, corresponding to JAZ proteins that are
strongly induced by MJ (Additional file 2). The probe set
Mtr.20116.1.S1_s_at corresponding to gene 1101.m00011
(IMGAG# AC146572_11) showed a massive 3,187 fold
induction at 2 h after MJ treatment. Transcript analysis of
JAZ 1101.m00010 (AC146572_10) in different naive M.
truncatula tissues through interrogation of the Medicago
Gene Expression Atlas [34] showed very low expression
(Additional file 3A), suggesting that this gene is specifi-
cally regulated by M]J. JAZ proteins share domain similar-
ity with ZIM TFs [27]. Five of the seven JAZ genes
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Table I: The most highly expressed transcription factors in Medicago cell cultures exposed to YE or M)
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Probesets YE2h YE24h MJ2h MJ24h Accession Family
Highest induced in response to YE

Mtr.11349.1.S1_at 594.20 0.92 3.67 0.87 TC109669 WRKY
Mtr.42577.1.S1 _s_at 168.56 1.43 2.66 0.43 TCI11875 WRKY
Mtr.12149.1.S1 _at 65.32 0.39 9.81 0.52 TCI12312 WRKY
Mtr.43241.1.S1_at 41.54 1.59 1.31 0.04 TC94874 WRKY
Mtr.15568.1.S1_s_at 20.99 1.81 1.06 0.65 747.m0001 | WRKY
Mtr.15018.1.S1_at 136.00 0.73 219.23 2.50 773.m00019 MYB_HD-like
Mtr.16873.1.S1_s_at 124.00 1.04 0.21 0.46 887.m00014 MYB
Mtr.38413.1.S1_at 23.15 2.84 2.01 4.03 TC102745 MYB
Mtr.16212.1.S1_at 83.05 1.68 0.47 0.73 861.m00015 AP2/EREBP
Mtr.5395.1.S1_at 36.35 1.96 3.27 1.42 BE320193 AP2/EREBP
Mtr.12511.1.S1_at 35.39 4.11 3.52 1.94 TC95045 HSF
Mtr.15278.1.S1_s_at 24.97 3.10 1.44 0.28 780.m0002 | C2H2 (ZF)
Highest induced in response to M)

Mtr.22988.1.S1_at 0.29 0.67 239.60 9.66 1643.m00042 bHLH
Mtr.27133.1.S1_at 1.69 0.48 137.66 18.73 AWS61111 bHLH
Mtr.51379.1.S1_at 1.63 1.50 65.23 53.94 751.m00006 bHLH
Mtr.43316.1.S1_at 0.51 0.93 60.15 68.28 TC95049 bHLH
Mtr.12392.1.S1 _at 1.49 1.40 22.41 13.65 TC94630 bHLH
Mtr.18769.1.S1_at 0.48 1.01 33.97 46.25 1047.m0003 | HD_ZIP
Mtr.15018.1.S1_at 136.00 0.73 219.23 2.50 773.m00019 MYB_HD-like
Mtr.10896.1.S1_s_at 2.56 1.44 115.88 51.18 TC108267 WRKY
Mtr.40890.1.S1_at 4.95 1.97 83.14 83.64 TC108268 WRKY
Mtr.20232.1.S1_at 3.22 0.53 24.38 12.81 1207.m00022 AP2/EREBP

Accessions include IMGAG Annotated Medicago BACs [95] and DFCI Medicago Gene Index Release 8.0 (January 19, 2005) [98]. Numbers
represent fold change — elicited/control; only significant data are highlighted in bold.

identified in M. truncatula were previously classified as
ZIM family TFs [23] and two genes were not annotated.
The similar response of JAZ genes to MJ in Arabidopsis and
M. truncatula may reflect a conserved mechanism of jas-
monate regulation between species.

The best characterized TF in jasmonate signaling is
AtMYC2, which positively regulates genes involved in the
wound response but negatively regulates genes involved
in pathogen defense [14]. ERF1 also differentially regu-
lates these two responses, but with the opposite effect to
that of MYC2 [14,15]. AtMYC2 encodes a nuclear local-
ized helix-loop-helix-leucine zipper bHLH-type transcrip-
tion factor [14]. As outlined above, M. truncatula TFs of
the bHLH family were highly induced by MJ and down-
regulated by YE (Additional file 1, Figure 1C, D). The gene
1643.m00042 (AC141862_14) was induced 240-fold at 2
h of MJ treatment (Additional file 1). This gene is likely
induced specifically by M]J, as its expression was extremely
low in naive M. truncatula tissues and only observed in
roots following nodulation (Additional file 3B).
AC141862_14 showed 33% identity and 56% similarity at
the amino acid level to AtMYC2 (NP_174541). The pro-
tein has a nuclear localization signal (ERRRRE), and the
gene may be the M. truncatula ortholog of AtMYC2.

An opposite response to that of bJHLH TFs was observed
for the Medicago AP2/EREBP (ethylene responsive) gene
family TFs (Additional file 1, Figure 1C, D). The interplay
between bHLH and AP2/EREBP TF families may explain,
at the molecular level, how plants select the correct
response to pathogen attack or wounding [14].

Selection of Medicago WRKY transcription factors for
expression in transgenic tobacco

Among the five families of significantly over-represented
TFs induced by YE or MJ, the WRKY family predominated
(Figure 1). M. truncatula cells accumulate isoflavonoid
phytoalexins in response to YE [9], and a rapid and mas-
sive induction of WRKY TF genes is correlated with the
induction of genes involved in the central phenylpropa-
noid pathway and the downstream steps in the biosynthe-
sis of the isoflavonoid phytoalexin medicarpin [9,13].
Roles of TFs in plant defense have been demonstrated in
several species including Arabidopsis, tobacco, parsley and
other plants [35-43]. However, no gain- or loss-of-func-
tion studies to characterize WRKY proteins from Medicago
species have been reported to date.

In order to investigate the potential involvement of Med-

icago WRKY TFs in the regulation of the phenylpropanoid
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pathway, we decided to over-express candidate genes in
tobacco. Because of the large amount of redundancy
among transcription factor families, a gain-of-function
approach was chosen as it might be more likely to yield a
detectable phenotype [25,44].

Selection of WRKY TFs was based on the pattern of their
transcriptional induction by YE. The heat map in Figure
2A shows detailed induction kinetics of seven WRKY
genes induced by YE as revealed by oligonucleotide array
analysis. This approach gives lower reproducibility than
the Affymetrix arrays, but allows for analysis of more time
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Figure 2

Expression of WRKY transcription factors in M. trun-
catula cell cultures. A, induction of WRKYs by YE as
revealed by oligonucleotide array analysis. The double apos-
trophes represent minutes and the single apostrophes repre-
sent hours. B, WRKY transcript levels in YE and M) treated
cells determined by Affymetrix array analysis. C, Detailed
time course for WRKY gene transcript levels in response to
YE, as determined by RT-PCR. Actin is shown as loading con-
trol.
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points due to its much lower cost. Many of the WRKY
genes were rapidly induced by as early as 15 min after
treatment, and their transcript levels were reduced after 2
h post-elicitation. Using the more sensitive Affymetrix
microarray technique, the transcript levels of the WRKY
genes were quantified at 2 h and 24 h after YE or M] treat-
ment (Figure 2B). The most strongly expressed WRKY,
corresponding to tentative consensus (TC) 109669, was
up-regulated 594-fold in response to YE. The expression
kinetics of several of the WRKY genes, including the one
down-regulated by YE, were confirmed by non-quantita-
tive RT-PCR (Figure 2C) and the results further validated
by semi-quantitative RT-PCR (Additional file 4).

On the basis of the above expression patterns, four Medi-
cago WRKY TCs (100577, 100630, 108715 and 109669)
were selected for cloning and transformation into
tobacco. It should be noted that three of these (100577,
100630 and 108715) were not the most strongly induced
according to quantitative Affymetrix data (Table 1); these
WRKYs were selected based on oligonucleotide microar-
ray data before the Affymetrix platform for Medicago was
available. Genomic sequences were available for
W100577 (AC174357_2) and W109669 (CT963079_8).
The second most strongly induced WRKY, TC111875,
might be a splice variant of CT963079_8. The amino acid
sequence of W100630 showed 50% identity to Arabidop-
sis WRKYG (NP_564792.1).

Full length cDNA sequences were available for three of the
above genes. The cDNA clone of TC108715 was truncated at
the 5' end, and was completed by RACE PCR. Detailed
descriptions of cloning and Gene Bank accession numbers
are given in Methods. Amplified cDNA products were cloned
into the binary vector pBI121 by replacing the GUS gene.

WRKY gene family members have low sequence similarity
outside the WRKY domain, a 60 amino acid region that is
highly conserved. WRKY proteins are classified into three
distinct groups based on the number of WRKY domains
and differences in their zinc-finger-like motifs [17], and a
functional distinction between the domains has been dem-
onstrated [45,46]. A comparative phylogenetic analysis of
Arabidopsis WRKYs [17] with the selected Medicago genes
showed that W108715 belongs to group I, W100630 to
group IIb, W100577 to group IId, and W109669 to group
III (Additional file 5). Nuclear localization was predicted
for all the selected WRKY proteins with 95% confidence
using the 'LOCtree' bioinformatics tool [47]. Additional file
6 shows transcript analysis of the four WRKY genes in dif-
ferent plant tissues. W100630 (WRKY TC100630) is
expressed in Rhizobium-inoculated roots and at late stages
of seed development (Additional file 6A). W100577 is
expressed relatively highly in all tissues tested, especially in
Rhizobium-inoculated roots (Additional file 6B). W108715
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is expressed in petioles, vegetative buds, stems and Rhizo-
bium-inoculated roots (Additional file 6C). Very low,
almost background transcript levels were detected for
W109669 (Additional file 6D), suggesting that this gene is
most likely involved primarily in defense responses,
whereas W100630, W100577 and W108715 are also
expressed during plant development.

Medicago WRKY genes induce phenolic compounds and
lignin in transgenic tobacco

Kanamycin resistant plantlets harboring WRKY expres-
sion constructs regenerated from tissue culture were
screened initially by genomic PCR of leaf tissues (data not
shown). Transgenic plants did not show significant visible
phenotypic changes compared with controls. Most of the
transgenic lines showed expression of the transformed
WRKY gene in the leaf tissue, whereas control lines har-
boring pBI121 did not (typical data are shown for
W109669 in Figure 3). Induction of WRKY TFs was cotre-
lated with accumulation of phenolic compounds in elic-
ited M. truncatula cells [9,13]. This suggested examining
phenolic compound profiles in transgenic tobacco plants
expressing Medicago WRKYs. Soluble and wall bound phe-
nolic compounds were therefore extracted from control
and WRKY-expressing transgenic tobacco lines, and the
extracts analyzed by HPLC. Rutin and kaempferol-3-O-
glucoside were present at higher levels in the soluble frac-
tion from plants expressing any of the four WRKY genes
than in controls (Figure 4A, C), by more than 2-3-fold for
rutin and 3-6-fold for kaempferol-3-O-glucoside.

A number of TFs involved in the regulation of flavonoid
production have been isolated and reported previously.
Generally, these belong to either MYB or the basic helix-
loop-helix, MYC-type families [48,49]. In most studies,
co-action of members belonging to both of these gene
families was required for the production of anthocyanins
in the plant [49-54]. Expression of the maize LC (MYC-
type) and C1 (MYB-type) genes in the fruit of transgenic

Transgenic lines Controls

e —
1 2 34 56 7 8 9101112 13 14 1516 17 181920 1 2 3 4
Nt Actin

w109669 [T Lt Lt TN
e P2 YO e

Figure 3

RT-PCR analysis of Medicago W109669 and tobacco
PR2 transcript levels in transgenic tobacco lines over-
expressing W109669. Control plants harbored pBI121.
Control and transgenic plants of the T, generation were used
for analysis. Actin is shown as loading control.
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tomatoes resulted in a strong accumulation of kaempferol
glucoside, but not in the accumulation of anthocyanins, a
finding that was explained by insufficient expression of
the gene encoding flavanone-3',5'-hydroxylase [55].

Induction of WRKY TFs by YE in M. truncatula cells corre-
lates with accumulation of the isoflavonoid medicarpin
[9,13]. Tobacco does not possess a fully functional isofla-
vonoid pathway, and ectopic expression of Medicago
WRKYs in transgenic tobacco shifts the metabolic flux into
the accumulation of biosynthetically related flavonol glu-
cosides instead (Additional file 7). The roles of flavonoids
in stress- and pathogen-protection are still under investi-
gation, but flavonols may be among the most important
flavonoids in this regard [56]. A kaempferol triglucoside
was isolated from carnation stems and roots, and was sug-
gested to be an active phytoalexin against the fungal path-
ogen Fusarium oxysporum f. sp. dianthi [57].

The level of wall bound caffeic acid increased in transgenic
tobacco lines expressing three of the four WRKY genes
(Figure 4B, D), by more than 4-fold in lines expressing
W100630 and W108715. Increased levels of caffeic acid
were correlated with increased lignin content, as deter-
mined by the acetyl bromide method, in these lines (Fig-
ure 5). Elevated lignin accumulation was previously
reported in transgenic rice lines over-expressing
OsWRKY89 [40], and has also been shown in M. truncat-
ula suspension cells in response to YE, but not MJ (Lei, Z
at al. unpublished results). Induced lignification is one of
several plant defense responses to pathogen attack and
wounding [58-61]. Transgenic rice over-expressing
OsWRKY89 also showed enhanced ultraviolet tolerance
and disease resistance, suggesting that OsWRKY89 plays
an important role in responses to biotic and abiotic stress.
Our similar results from transgenic tobacco plants
expressing Medicago WRKYs suggest that these TFs have
broad roles in orchestrating metabolic responses that
impact stress tolerance.

Induction of lignin biosynthetic genes in M. truncatula

Affymetrix microarray analysis showed that several genes
encoding enzymes involved in lignin biosynthesis were
induced in M. truncatula cells exposed to YE or MJ (Addi-
tional file 8). Most of the probe sets representing lignin
pathway genes were up-regulated at 2 h of YE treatment
(Additional file 8). Two cytochrome P450 enzymes, cin-
namate 4-hydroxylase (C4H) [62,63] and coumarate 3-
hydroxylase (C3H) [62,63], as well as hydroxycinnamoyl
CoA: shikimate hydroxycinnamoyl transferase (HCT)
[64], caffeic acid 3-O-methyltransferase (COMT) and cin-
namyl alcohol dehydrogenase (CAD), were induced by
YE, but not by MJ. Caffeoyl-CoA 3-O-methyltransferase
(CCoAOMT) and three probe sets representing cinnamoyl
Coenzyme A reductase (CCR) were up-regulated by both
YE and M], but induction by YE was higher. All ferulate 5-
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hydroxylase (F5H) probe sets showed high expression at
later time points after MJ treatment, and two showed
delayed induction by YE. One of the probe sets,
iMsa.1740, showed 98% nucleotide identity to the func-
tionally characterized F5H-K10 of alfalfa [62,63]. F5H cat-
alyzes hydroxylation at the C; position of coniferaldehyde
and coniferyl alcohol in S monolignol biosynthesis [65],
and down-regulation of F5H significantly reduced the
yield of syringyl monomers in transgenic alfalfa lines [62].
However, lignin accumulation was not observed in M]
treated M. truncatula cells [66].

Laccases and peroxidases are involved in dehydrogenative
polymerization of monolignols into lignin [65]. Five
probe sets of genes encoding laccases were induced by YE

at 2 h of treatment, and one set was also induced by MJ
(Additional file 8). From 49 probe sets of putative perox-
idases, 32 were up-regulated by YE and 16 by MJ. The cor-
relation of WRKY TFs with activation of lignin
biosynthetic genes and increased levels of lignin in M.
truncatula cells, coupled with their ability to induce lignin
in transgenic tobacco, suggests involvement of WRKY TFs
in induced lignification responses.

Expression of W109669 induces PR2 and enhances the
response to TMV in transgenic tobacco plants

The importance of phenylpropanoid compounds in plant
disease responses has been much discussed [67-70].
Induction of phenylalanine ammonia-lyase (PAL) and
downstream enzymes of the phenylpropanoid pathway is
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bor pBII21. Error bars indicate standard error from three
biological replicates (control and transgenic lines — T, genera-

tion).

associated with viral-induced necrosis in tobacco [71],
and suppression of PAL compromised systemic resistance
in tobacco plants infected with tobacco mosaic virus
(TMV) [67]. Tobacco may have four PAL genes, which
appear to be expressed in most tissue types [72-75].
Expression of PAL3 [75] was not altered from control lev-
els in tobacco lines expressing Medicago WRKY genes (data
not shown). Other PAL genes might therefore be involved
in the biosynthesis of phenolic compounds in tobacco
expressing Medicago WRKY genes.

Salicylic acid (SA) is a signal molecule in the establish-
ment of both local and systemic acquired resistance (SAR)
in tobacco [76]. Plants expressing a bacterial salicylate
hydroxylase gene demonstrated no accumulation of
pathogenesis-related (PR) gene 1 transcripts [77], suggesting
that PR1 expression is dependent on production of SA.
Rather than directly measuring SA levels in tobacco
expressing Medicago WRKY genes, we determined the lev-
els of NtNPR1 [78] and NtPR2 [79] transcripts. Differ-
ences in NtNPR1 transcript levels were not detected in any
plants expressing any of the WRKY genes. However,
NtPR2 was constitutively expressed in transgenic plants
expressing W109669 (Figure 3). NtPR2 is an acidic, extra-
cellular, endo-1,3-B-glucanase) [79]. A defensive role for
B-1,3-glucanases in plants has been suggested by the
observation that 3-1,3-glucanases and chitinases are coor-
dinately induced in response to pathogens [79]. B-1,3-
Glucans are important structural components of fungal
cell walls, and in vitro evidence shows that -1,3-glucanase
in combination with chitinase has a direct fungicidal
action on some phytopathogenic fungi [80]. B-1,3-Gluca-
nases may also act indirectly by releasing elicitors from

http://www.biomedcentral.com/1471-2229/8/132

fungal cell walls that can subsequently stimulate phyto-
alexin accumulation in the host plant [81].

Because W109669 induces NtPR2 transcripts in tobacco, we
examined systemic disease resistance of transgenic plants
expressing either W109669 or W108715 (which does not
induce NtPR2) by inoculation with tobacco mosaic virus
(TMV) U1 strain. Plants were pre-inoculated with virus on
the lower leaves, and secondary inoculations were per-
formed on upper leaves five days later. As shown in Addi-
tional file 9, the sizes of the secondary lesions formed in
W109669 expressing lines were much smaller than in con-
trols or in lines expressing the other WRKY genes, indicating
that W109669 enhanced SAR in tobacco.

The observation that ectopic expression of any one of four
WRKY TFs promoted increased levels of flavonols in
tobacco, that three out of the four also induced caffeic acid
levels, and that some, but not all, induce SAR raises ques-
tions as to whether these results reflect functional redun-
dancy among family members, or simply non-specific
effects due to high level ectopic expression in a heterolo-
gous species. Functional redundancy is common not only
for TFs [44,82]. For example, when 86% of the 19,427
predicted Caenorhabditis elegans genes were knocked
down, only 10% of the resulting mutants exhibited any
phenotype [83]. For more then 40 Arabidopsis WRKY
knock-down mutants, phenotypes were rarely observed
[82]. However, it is clear that WRKY TFs are crucial regula-
tors of defense responses in Arabidopsis. For example
AtWRKY53 was identified as a positive regulator, and
AtWRKY58 as negative regulator, of SAR [84]. AtWRKY70
has been shown to play an important role in determining
the balance between SA-dependent and JA-dependent
defense pathways [21,85]. Ectopic expression of TFs at
high level may have pleiotropic effects [86]. For example,
expression of the Arabidopsis MYB transcription factor,
TT2, in Medicago hairy roots resulted in up-regulation of
over 400 probesets [87]. Only 45 of them overlapped with
probesets preferentially expressed in M. truncatula seed
coat, the organ in which TT2 is naturally expressed, indi-
cating that a large number of genes were non-specifically
up-regulated by TT2. However, massive accumulation of
proanthocyanidins was observed in the hairy roots
expressing TT2 [87], confirmed the potential of using TFs
for metabolic engineering.

Although ectopic over-expression of four Medicago WRKYs
in tobacco led to similar chemical phenotypes, only
W109669 induced PR2 expression and enhanced SAR.
Thus, ectopic over-expression in a heterologous system
can reveal differences between WRKYs in relation to the
expression of defense-associated marker genes and the
response to certain pathogens. These are useful observa-
tions from a biotechnology perspective, but do not of
themselves indicate precise functions for these genes in M.
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truncatula. Analysis of recently available M. truncatula
Tntl retrotransposon insertion lines [88] may provide a
loss-of-function approach to address this issue. Irrespec-
tive of considerations of in vivo function, the fact that
ectopic expression of Medicago WRKY genes increases the
levels of phenolic compounds and lignin in tobacco high-
lights the value of such genes for engineering improved
chemical defenses or increasing levels of health-beneficial
antioxidant polyphenols in agricultural crops.

Conclusion

Challenging M. truncatula cell suspension cultures with YE
or MJ leads to accumulation of various classes of flavo-
noid or triterpene defense molecules. Complex signal
transduction network controls such processes, of which
TFs are essential components as master regulatory pro-
teins controlling the transcriptional cascade. We have
observed opposite regulation of AP2/EREBP and bHLH TF
families in response to YE or M] that may explain, at the
molecular level, how plants select the correct response to
pathogen attack or wounding. Strong induction of WRKY
TFs by YE suggests that they may have a role in signaling
in response to this pathogen mimic. Expression of four
Medicago WRKY TF genes in transgenic tobacco increased
phenolic compounds and lignin, suggesting that these TFs
have broad roles in orchestrating metabolic responses
implicated in biotic stress tolerance. Expression of
W109669 in transgenic tobacco enhanced viral tolerance,
suggesting a potential role of this TF in triggering an addi-
tional genetic cascade for disease resistance independent
of lignin and phenolic production.

Methods

Plant Material

Details of the initiation and elicitation of M. truncatula
Gaerth 'Jemalong' (line A17) cell suspension cultures
have been provided elsewhere [9,11,13]. Transgenic
plants of N. tabacum cv Xanthi NN were grown in 4.5 inch
diameter pots containing "Professional blend" soil (Sun
Gro Horticulture, Bellevue, WA) at a temperature of
20°C/19°C (day/night). Plants were fertilized at time of
watering using a commercial fertilizer mix (Peters Profes-
sional 20-10-20 (N-P-K) General Purpose, The Scotts
Company, Marysville, OH).

Gene constructs and plant transformation

Sequences of full length cDNA clones representing WRKY
genes can be accessed in GenBank, accession numbers:
W100577 - EU526033, W100630 - EU526034, W108715
- EU526035, and W109669 - EU526036. Full length
cDNA clones were available for W100577, W100630, and
W10966. The cDNA clone of W108715 was truncated at
its 5' end; this part of the sequence was recovered by
RACE-PCR using the BD SMART RACE cDNA amplifica-
tion kit (BD Biosciences Clontech Inc., Palo Alto, CA)
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according to the manufacturer's protocol. WRKY genes
were cloned, by PCR using primers with a BamHI site at
the 5'-end and a Sacl site at the 3'-end (Additional file 10),
into the BamHI/Sacl sites of the binary vector pBI121 (GB
Accession AF485783) [89] to replace the GUS gene.

The binary vector constructs including pBI121 as negative
control were introduced into Agrobacterium tumefaciens
strain C58C1 by electroporation. Agrobacteria harboring
the plasmid were confirmed by colony PCR and used for
transformation of N. tabacum cv Xanthi NN. Leaf disc
transformation of tobacco was performed as previously
described [90].

RNA isolation and non-quantitative and semi-quantitative
RT-PCR

Total RNA was isolated from 0.5 g of frozen, ground tissue
of M. truncatula suspension cells or N. tabacum leaves
using 5 ml of Tri-Reagent (Molecular Research Center,
Cincinnati, OH) following the manufacturer's protocol.
Three pg of total RNA was used in a first strand synthesis
using Ready-To-Go RT-PCR Beads (Amersham Bio-
sciences Corp, Pittsburgh, PA) in a 50 pl reaction with
oligo-dT primers according to the manufacturer's proto-
col. Two pl of the first strand reaction was then PCR
amplified for 30 cycles at 68°C annealing temperature
using Takara Ex Taq (Fisher Scientific Company, Palatine,
IL) according to the manufacturer's protocol. The PCR
products were analyzed on an agarose gel.

Semi-quantitative RT-PCR was performed using a Quan-
tum RNA 18S internal standard kit (Ambion Inc., Austin,
TX) according to the manufacturer's protocol. Each RT-PCR
reaction was repeated with three independent biological
replicates. PCR products were separated in a 1% agarose gel
and stained with Syber Green (Invitrogen Inc., Carlsbad,
CA). The fluorescence signal was captured using a UVP Bio-
imaging system (UVP, Inc., Upland, CA). Analysis of signal
intensity of products was performed with Image Quant TL
software (Amersham Biosciences, Pittsburgh, PA). Data
were normalized according to 18S internal standard.

The sequences of oligonucleotide primers used in RT-PCR
experiments are given in Additional file 11.

Microarray analysis

DNA microarray analysis was performed utilizing oligo-
nucleotide microarrays representing 16,086 TC sequences
and Affymetrix Medicago genome arrays with 61,000
probe sets as described previously [9,13]. For the oligonu-
cleotide arrays, a reference design was employed in which
all RNA samples for both control and elicited cells were
compared to RNA from a separate batch of non-elicited
cells. Three biological replicates were used. The Amino
Allyl cDNA Labelling Kit (Ambion Inc, Austin, TX) was
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used to label 25 pg of total RNA following the manufac-
turer's protocol. Cy3 dye (Amersham Biosciences Corp,
Piscataway, NJ) was used for labelling the reference RNA
and Cy5 for the experimental samples. The arrays were
read with a ScanArray 4000 scanner (Packard, Palo Alto,
CA) at 10 pm resolution and variable photomultiplier
tube voltage settings to obtain maximal signal intensities.
The fluorescence intensity for each flour and each element
on the array was captured using GenePix Pro 4.1 (Axon,
Union City, CA). Normalization of Cy3 and Cy5 signal
was performed by adjusting the signal intensities of the
two images using the Lowess (sub-grid) method of the
GeneTraffic software, and the local background was sub-
tracted from the values of each spot on the array. Statisti-
cal analysis (ANOVA) of normalized data was performed
using GeneSpring software as described previously [9].

For experiments using the Affymetrix GeneChip® Medicago
Genome Array (Affymetrix, Santa Clara, CA), RNA samples
were prepared from cells exposed to YE or M] for 2 h or 24 h,
along with the corresponding unelicited controls. Two bio-
logical replicates, with analytical duplicates, were used for
minimal statistical treatment, and mean values for each treat-
ment were divided by the corresponding control baseline
values. Full details of the experimental procedures and statis-
tical analysis have been presented elsewhere [13].

The complete Affymetrix dataset is publicly available at
ArrayExpresss [91], and the oligo array data are available
via the DOME database at the Virginia Bioinformatics
Institute [92].

Analysis of phenylpropanoid compounds

Tobacco leaves (1 g fresh weight) were ground in liquid
N,. Extraction of soluble and wall bound phenolic com-
pounds were as described previously [93,94]. Separation
and quantification of phenolic compounds were as
described previously [94].

Determination of lignin content

Lignin content of transgenic tobacco leaves was deter-
mined by the acetyl bromide method using ~30 mg
extractive-free material [95,96]. A molar extinction coeffi-
cient of 17.2 [95] was used for samples from all the con-
trol and transgenic lines.

Tobacco mosaic virus inoculation

Purified TMV U1 strain was mechanically inoculated onto
leaves of tobacco plants at the 10 leaf stage using carbo-
rundum powder (Sigma, St Louis, MO). The lower leaves
were inoculated with 100 pl per leaf of TMV solution
(1.27 ng/ul). Five days later, when the local lesions
appeared on the lower leaves, the upper leaves were inoc-
ulated with the TMV solution and the resulting lesions
measured 4-5 days after the secondary inoculation.
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Additional material

Additional file 1

M. truncatula TFs differentially expressed in response to YE or MJ.
This table shows microarray analysis of transcription factor genes whose
transcripts are either up-regulated or down-regulated in M. truncatula
cell cultures exposed to either yeast elicitor or methyl jasmonate. TFs were
classified according to [23]. Accessions include IMGAG Annotated Med-
icago BACs [97] and DFCI Medicago Gene Index Release 8.0 (January
19, 2005) [98]. Numbers represent fold change - elicited/control, only
significant data are color coded (p-value < 0.05); green, fold change less
than or equal to 0.5; orange — more than or equal to 2.0 and less then
4.0; red — more than or equal to 4.0.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-132-S1.xls]

Additional file 2

Affymetrix analysis of M. truncatula genes putatively encoding JAZ
proteins. This table shows microarray analysis of predicted M. truncatula
JAZ genes which were strongly induced by methyl jasmonate. M. trunca-
tula gene predictions were based on sequence similarity to Arabidopsis JAZ
genes [27,28].

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-132-S2 xls]

Additional file 3

Affymetrix microarray expression analysis of Medicago genes JAZ
AC146572_11 and bHLH AC141862_14. This figure shows expression
levels of two transcriptional regulators, JAZ AC146572_11 and bHLH
AC141862_14, in different naive M. truncatula tissues. The Medicago
genes were: (A) AC146572_11 (homolog to AtJAZ1); (B)
AC141862_14 (homolog to AtMYC2). Transcript levels were measured
in the different tissues shown, including seeds at various stages of develop-
ment (numbers refer to days post pollination, dpp) and nodules (Nod)
derived from Rhizobium-inoculated roots at various times (numbers
refer to days post-inoculation, dpi). Root-0d — roots at 0 dpi (control for
nodule developmental series). Nodule — nodules from 4 weeks old plant.
VegBud — vegetative buds (apical and lateral meristem regions). Error
bars indicate standard deviation from three biological replicates. Data
were mined from the Medicago Gene Atlas [34].

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-132-83.pdf]
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Additional file 4

Semi-quantitative RT-PCR analysis of WRKY transcript levels. The
data show representative changes of WRKY transcripts in response to yeast
elicitation based on semi-quantitative RT-PCR analysis. Data represent
the fold change in transcript level in response to YE as compared to une-
licited control. Error bars indicate standard deviation from three biological
replicates.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-132-84.pdf]

Additional file 5

Phylogenetic analysis of Arabidopsis and M. truncatula WRKY pro-
teins based on their DNA-binding WRKY domain. This figure shows a
phylogenetic tree of Arabidopsis and M. truncatula WRKY proteins,
based on their DNA-binding WRKY domains. The amino acid sequences
of the Medicago WRKY sequences reported here were compared with
those of published Arabidopsis WRKY TFs [17] and additional sequences
available online [99]. Amino acid sequences from the single WRKY
domain of group II and III members or the C-terminal WRKY domain of
group I members were aligned using the MegAlign program in the DNAS-
TAR Lasergene package software (DNASTAR, Inc., Madison, WI). The
ClustalW method with BLOSUM series of protein weight matrix was used
for alignment. The numbers above the branches are bootstrap values from
1000 replicates.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-132-S5.jpeg]

Additional file 6

Affymetrix microarray analysis of the tissue specificity of expression of
WRKY TFs. This figure shows WRKY gene expression profiles in different
naive M. truncatula tissues. Genes were: (A) W100630; (B) W100577;
(C)W108715; (D)W109669. Transcript levels were measured in the
different tissues shown, including seeds at various stages of development
(numbers refer to days post pollination, dpp) and nodules (Nod) derived
from Rhizobium-inoculated roots at various times (numbers refer to days
post-inoculation, dpi). Root-0d - roots at 0 dpi (control for nodule devel-
opmental series). Nodule — nodules from 4 weeks old plant. VegBud — veg-
etative buds (apical and lateral meristem regions). Error bars indicate
standard deviation for three biological replicates. Data were mined from
the Medicago Gene Atlas [34].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-132-6.pdf]

Additional file 7

Scheme of the flavonol biosynthesis pathway. This figure shows a
scheme of the flavonol biosynthesis pathway in Medicago. Enzymes are:
CHS, chalcone synthase; CHR, chalcone reductase; F3H, flavanone-3-
hydroxylase; IFS, isoflavone synthase; 2HID, 2-hydroxyisoflavanone
dehydratase; FLS, flavonol synthase; GT, glucosyltransferase.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-132-S7.tiff]

Additional file 8

Affymetrix analysis of M. truncatula genes involved in the lignin
pathway that are induced in response to YE or MJ. This table shows
Affymetrix microarray analysis of genes involved in the lignin pathway
which were either up-regulated or down-regulated in M. truncatula cell
cultures exposed to either yeast elicitor or methyl jasmonate.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-132-S8.doc]

Additional file 9

Enhanced TMV resistance in transgenic tobacco lines overexpressing
W109669. The data shown an analysis of the sizes of the secondary
lesions formed in transgenic tobacco lines overexpressing W109669 after
inoculation with tobacco mosaic virus. Bars show the size (diameter) of
secondary lesions on TMV infected control and transgenic tobacco lines
expressing Medicago W108715 or W109669. Control plants harbored
pBI121. Error bars indicate standard errors for the size of lesions from
three control and transgenic lines of the T, generation.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-132-89.pdf]

Additional file 10

Primers for cloning Medicago WRKY TFs. This table presents the
sequences of the gene-specific primers used for cloning Medicago WRKYs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-132-S10.xls]

Additional file 11

Primers for gene-specific RT-PCR analysis of transcripts in M. trunca-
tula cell cultures and transgenic N. tabacum lines. This table presents
the sequences of gene-specific primers complementary either to Medicago
or tobacco genes used for RT-PCR analysis.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-132-S11.xls]
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