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Abstract

to cold stress.

low temperature-related signal pathways in grape.

Background: WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY
genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth
and development. Grapevine (Vitis vinifera) production is largely limited by stressful climate conditions such as cold
stress and the role of WRKY genes in the survival of grapevine under these conditions remains unknown.

Results: We identified a total of 59 WIWRKYs from the V. vinifera genome, belonging to four subgroups according
to conserved WRKY domains and zinc-finger structure. The majority of WIWRKYs were expressed in more than one
tissue among the 7 tissues examined which included young leaves, mature leaves, tendril, stem apex, root, young
fruits and ripe fruits. Publicly available microarray data suggested that a subset of WIWRKYs was activated in response to
diverse stresses. Quantitative real-time PCR (qRT-PCR) results demonstrated that the expression levels of 36 VW/VRKYs
are changed following cold exposure. Comparative analysis was performed on data from publicly available microarray
experiments, previous global transcriptome analysis studies, and gRT-PCR. We identified 15 WIWRKYs in at least two of
these databases which may relate to cold stress. Among them, the transcription of three genes can be induced by
exogenous ABA application, suggesting that they can be involved in an ABA-dependent signaling pathway in response

Conclusions: We identified 59 WWRKYs from the V. vinifera genome and 15 of them showed cold stress-induced
expression patterns. These genes represented candidate genes for future functional analysis of VWW/RKYs involved in the
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Background

Plants have a variety of defense mechanisms to protect
themselves from adverse environmental effects. Families
of transcription factors are involved in these processes
by functioning to reorganize gene expression patterns.
The WRKY family is among them and plays key roles in
modulating genes expression during plant defense in re-
sponse to pathogens [1,2]. The WRKY transcription fac-
tors were first identified in sweet potato (SPF1) as DNA
binding proteins [3]. Two similar genes (ABF1 and ABF2)
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were found in wheat during germination [4]. Subse-
quently, Rushton et al. [5] reported the identification and
characterization of WRKY1, WRKY2 and WRKY3 from
parsley (Petroselinum crispum) and proposed these genes
belong to a gene family. This gene family was named
WRKY due to a conserved region (WRKYGQK) that was
identified in the N-terminal amino acid sequence of all the
members [4,5]. Further studies showed that the conserved
WRKY domain had other forms such as WRKYGKK and
WRKYGEK [6], or the WRKY domain could be replaced
by WKKY, WKRY, WSKY, WIKY, WRIC, WRMC, WRRY
or WVKY [7,8].

According to variation in WRKY domain and a zinc
finger motif in the C-terminus, WRKY proteins were di-
vided into four groups [9,10]. WRKY proteins with two
WRKY domains composed group 1. Groups II and III
were characterized by a single WRKY domain. Group II
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WRKY proteins were further subdivided into five or
more subgroups based on short conserved structural
motifs while group III proteins contained a variant zinc-
finger which ends with HXC. Finally, group IV WRKY
proteins contained the WRKY domain, but lack a com-
plete zinc-finger structure in the C-terminus. WRKY
proteins usually functioned as transcriptional regulators
via binding to W-boxes (TTGACC/T) in the promoter
regions of down-stream genes and clusters of W-boxes
had an amplified effect [3-5,11-15]. However, some other
studies have found that some WRKY proteins bind to
the PRE4 element (TGCGCTT), SURE element (TAAA
GATTACTAATAGGAA) or SURE-like element and the
WK box (TTTTCCAC) [2].

WRKY proteins have been found to play essential roles
in pathogen defense in response to bacteria [16,17],
fungi [18,19], and viruses [20,21]. Evidence also sup-
ported that WRKY transcription factors were involved in
modulating gene expression in plants during abiotic
stresses such as cold [22,23], salt [24,25] and drought
[26-28]. Besides roles in response to biotic and abiotic
stress, WRKY proteins were also implicated in processes
that modulate plant developmental processes such as
morphogenesis of trichomes and embryos, senescence,
dormancy, and metabolic pathways [2].

Grape is one of the most important fruit crops world-
wide. The productivity of grapevines is largely limited by
disease pressure and stressful fluctuations in environ-
mental conditions. Due to their essential role in the early
response to pathogens and abiotic stresses, several WRKY
genes were intensively studied in grape. VwWRKY1 and
WWRKY?2, isolated from grape (V. vinifera cv. Cabernet
Sauvignon) berries, were found to potentially participate
in defending against fungal pathogens [18,29]. VwWRKY1
was found involving in enhanced protection against Botry-
tis cinerea by transactivating the VvLTPI promoter [30],
and VWWRKY2 may regulate lignification and response to
biotic or abiotic stresses in grapevine [31]. VpWRKY1 and
VpWRKY?2, isolated from Chinese wild V. pseudoreticu-
lata, may contribute to resistance to powdery mildew
(Erysiphe necator) and tolerance to salt and cold stresses
in grape [32]. VpWRKY3 was found to be involved in
pathogen defense and also interact with the salicylic acid,
ethylene, and abscisic acid signal pathways [33]. Transge-
netic Arabidopsis plants expressing VWwWRKY11, isolated
from ‘Beifeng, an interspecific cultivar of V. thunbergii x
V. vinifera, showed increased dehydration tolerance [34].
Its homologous gene, VpWRKY11, was found to serve as a
negative regulator of disease resistance [35]. Although sev-
eral individual WRKY genes have been identified in grape-
vine, the WRKY gene family in grapevine remains wholly
uncharacterized.

Based on our previous transriptome analysis, we found
that some WRKY genes respond to cold stress in different
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patterns in V. amurensis (a cold hardy grapevine species)
and V. vinifera cv. Muscat Hamburg [36]. VWWRKY14
(GSVIVT01015952001) and WwWRKY12 (GSVIVTO0101
2682001) were found up-regulated over 30 fold in V.
amurensis after being subjected to cold stress but up-
regulated to a lesser extent in V. vinifera. In contrast, the
expression of VwWRKY43 (GSVIVT01030258001) was up-
regulated in V. vinifera (26 fold) while expression
remained low in V. amurensis. These different gene ex-
pression patterns in response to cold stress may be con-
tribute to the distinctive cold hardiness between the two
species. To further characterize how WRKY genes respond
to freezing stress of grapevine, we initiated this study to
identify the entire WRKY gene family in grapevine based
on the published 12x V. vinifera cv. Pinot noir (PN40024)
genome sequences [37]. A phylogenetic tree was con-
structed for identified WRKY proteins and the gene ex-
pression patterns in different tissues of V. vinifera were
detected by RT-PCR. WRKY genes responding to biotic
and abiotic stresses were cross-evaluated by using public
gene-chip databases. Additionally, real time RT-PCR was
used to detect the expression level of VWwWRKYs under
cold treatment and exogenous ABA. A comparative ana-
lysis was conducted to identify Vv WRKYs that may partici-
pate in cold signal transduction pathways in V. vinifera
using microarray data in public databases, our previously
reported transcriptome data and qRT-PCR analysis con-
ducted in this study.

Results

Identifying of WRKY transcription factors in V. vinifera
genome

A total of 64 transcripts in the V. vinifera genome se-
quence were identified as possible members of the
WRKY family. Five transcripts were excluded due to a
lack of the conserved WRKY domain in the predicted
amino acid sequences. The remaining 59 transcripts
were named from VWWRKY1 to VwWRKYS59 according
to their order in the V. vinifera genomic sequence
(Table 1). As for the previously published six WRKY
proteins in grapes [18,29-35], each amino acid sequence
was downloaded and BLASTp was used to find its corre-
sponding WRKY loci in the V. vinifera genome.

The putative genome location of each VwWRKY in the
grape genome was shown in Additional file 1: Figure S1.
Fifty-eight of the VwWRKYs could be mapped to 18 of
the 19 grape chromosomes, with no VwWRKYs found on
chromosome 3. VWWRKY4 was putatively located on the
‘Chromosome Unknown’. WRKY transcription factors
were not evenly distributed across the chromosomes of
the grape genome. There were most abundant on
Chromosome 4 (8 V¥WRKYs) and chromosome 7 (7
VYWRKYs) and least abundance on Chromosome 5 and
18 (1 VwWRKY).
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Table 1 Identified WRKY genes in 12x V. vinifera ‘Pinot Noir' genome
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Gene ID Gene symbol Subgroup Chromosome no. Peptide length Related publications
GSVIVT01000752001 WWRKYO1 IId chr7 285

GSVIVT01001286001 WWRKY02 % chr2 106

GSVIVT01001332001 WWRKY03 I chr1_random 436 VWWRKY2 [29,30]
GSVIVT01007006001 VWWRKY04 | chrUn 551

GSVIVT01008046001 VWWRKY05 Ib chr17 606

GSVIVT01008553001 WWRKY06 lic chr17 152 VWWRKYT [18]
GSVIVT01009441001 WWRKY07 IId chr18 320

GSVIVT01010525001 VWWRKY08 llc chrl 190

GSVIVT01011356001 VWWRKY09 Ib chr14 503

GSVIVT01011472001 WWRKY10 | chr14 890

GSVIVT01012196001 VWWRKYT1 llc chrl 284

GSVIVT01012682001 WWRKY12 Ib chr10 51

GSVIVT01014854001 WIWRKY13 I chr19 623

GSVIVT01015952001 WWRKY14 lla chr9 279

GSVIVT01018300001 WWRKY15 llc chr15 229

GSVIVT01019109001 WWRKY16 I chr4 487

GSVIVT01019419001 WWRKY17 lle chr2 324

GSVIVT01019511001 WWRKY18 Il chr2 343

GSVIVT01020060001 WWRKY19 Ib chrl 595

GSVIVT01020864001 VWWRKY20 llc chr12 312

GSVIVT01021252001 WWRKY21 lle chr10 279

GSVIVT01021397001 WWRKY22 llc chr10 320

GSVIVT01021765001 WWRKY23 lle chr10 422

GSVIVT01022067001 VWWRKY24 IId chr7 281

GSVIVT01022245001 WWRKY25 llc chr7 194

GSVIVT01022259001 WWRKY26 llc chr7 227

GSVIVT01023600001 WWRKY27 | chr11 500 VpWRKY2 [30]
GSVIVT01024624001 VWWRKY28 | chr6 571

GSVIVT01025491001 VWWRKY29 [\ chr6 122

GSVIVT01025562001 WWRKY30 I chr8 439

GSVIVT01026965001 WIWRKY31 lle chr15 349

GSVIVT01026969001 WWRKY32 llc chr15 202

GSVIVT01027069001 VWWRKY33 Il chr15 361

GSVIVT01028129001 VWWRKY34 lle chr7 243

GSVIVT01028147001 VWWRKY35 llc chr7 303

GSVIVT01028244001 WWRKY36 Ilb chr7 480

GSVIVT01028718001 VWWRKY37 Il chr16 365

GSVIVT01028823001 VWIWRKY38 lle chr16 183

GSVIVT01029265001 VWWRKY39 Ild chr1l 280

GSVIVT01029688001 VWWRKY40 Ib chr12 491

GSVIVT01030046001 VWWRKY41 | chr12 365

GSVIVT01030174001 WWRKY42 Il chr8 332 VpWRKYT [30]
GSVIVT01030258001 VWWRKY43 | chr8 514

GSVIVT01030453001 VWWRKY44 Ib chr12 499
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Table 1 Identified WRKY genes in 12x V. vinifera ‘Pinot Noir' genome (Continued)

GSVIVT01032661001 WWRKY45 Il
GSVIVT01032662001 VWWRKY46 Il
GSVIVT01033063001 WWRKY47 llc
GSVIVT01033188001 VWWRKY48 Ild
GSVIVT01033194001 VWWRKY49 llc
GSVIVT01033195001 WWRKY50 llc
GSVIVT01034148001 WWRKY51 llc
GSVIVT01034968001 VWWRKY52 llc
GSVIVT01035426001 VWWRKY53 llc
GSVIVT01035884001 VWWRKY54 lla
GSVIVT01035885001 WWRKY55 lla
GSVIVT01035965001 WWRKY56 I
GSVIVT01036223001 WWRKY57 Ild
GSVIVT01037686001 WWRKY58 Ilb
GSVIVT01037775001 VWWRKY59 I

chr13 289

chr13 309

chr14 183

chr4 268 WRKYT1 [33,34]
chr4 157

chr4 102

chr8 300

chr5 310

chr4 167

chr4 263

chr4 287 VpWRKY3 [32]
chr4 531

chr14 305

chr19 497

chr19 553

Categorization of VVWRKYs basis on conserved WRKY
domains

The disposition of structural domains in amino acid se-
quences is an important clue to analyze the evolution
and relationship between highly divergent sequences
[38]. The relationships among the 59 WRKY proteins
were investigated through constructing phylogenetic
trees based on multiple alignments of the predicted
amino acid sequences of the WRKY domains. As shown
in Figure 1, we classified the 59 VWWRKY proteins into
four large groups according to the results of the phylo-
genetic analyses. The models of conserved amino acid
sequences of WRKY domain and zinc-finger structure in
four groups were shown in Additional file 2: Figure S2.
Twelve of the WRKY proteins contained two complete
WRKY domains and a C,H,-type zinc finger motif.
These proteins constituted group I. The N-terminal
WRKY domain (NTWD) and C-terminal WRKY domain
(CTWD) of VWWRKY27, VvWRKY41 and VWWRKY56
were clustered into a same clade in group I. According
to Eulgem et al. [9] and by using WRKY proteins in Ara-
bidopsis as references, 39 VWWRKY in group II were cat-
egorized into five subgroups. Three members were
found in subgroup Ila, 8 in IIb, 16 in Ilc, 6 in IId and 6
in Ile. Group II was divided into two parts. Subgroup
IIa, IIb and Ilc showed a close relationship with Group
III WRKY proteins. And subgroups IId and Ile belonged
to a separate clade which was closely related to group
IV. Subgroup IIc showed higher divergence than the
other subgroups. There were also 6 WRKY proteins in
group III, and 2 in group IV which lacked a complete
zinc-finger structure.

RT-PCR based transcription levels detection of VvWRKYs
in different tissues

To investigate if the putative VWWRKYs were expressed
and assess their transcription levels in grape, we exam-
ined the expression of these genes in different grape tis-
sues. Among all VwWRKYs, we successfully designed and
verified 58 primer pairs representing all candidate
VWWRKYs except for VwWRKY38 (Figure 2). All tran-
scripts can be detected at least in one tissue. Nineteen
WWRKYs (including VWWRKY02, 11, 12, 13, 14, 17, 20,
24, 28, 30, 33, 34, 35, 36, 39, 41, 42, 48 and 52) were
found expressed in all tissues used. Six VVWRKYs
(WWRKY05, 09, 22, 40, 44 and 58) were found only
expressed in young tissues. VWWRKY05 was expressed in
the stem apex and young fruit. Vv WRKY40 was found in
stem apex, young fruit and root. VWWRKY09, 22, 44 and
58 were detected in young leaf, stem apex, young fruit
and root.

Gene-chip based expression analysis of 26 VvWRKYs
under various stresses

Although we identified WRKY transcription factors from
the V. vinifera genome, functions for these genes in re-
sponse to abiotic and biotic stress remain unknown.
Using microarray results from publically available data,
it was possible to find gene expression data from mul-
tiple experimental conditions for several of the grapevine
WRKY genes. We carefully checked the genes on the
‘GeneChip Vitis vinifera (Grape) Genome Array’ (Affy-
metrix) and a total of 26 VvWRKYs were found on this
chip. Microarray data related to salinity, water-deficit,
PEG, cold, ABA and pathogen stresses were downloaded
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Figure 1 Phylogenetic tree of VVIWRKYs. The unrooted phylogenetic tree of WRKY domains was constructed with MEGA5.1 program with the
neighbor-joining method. The numbers beside the branches represent bootstrap values based on 1000 replications. The name of groups (I, Il, Il and
IV) and subgroup (a—e) were shown at the outside of the circle. The WRKY named with suffix -N or -C indicated the N-terminal WRKY domain (NTWD)
or the C-terminal WRKY domain (CTWD) in one WWWRKY with two WRKY domains. AtWRKYs were used as reference to categorize VWWRKYs.

and their corresponding probes and the CV (coefficent
of variation of the corresponding treatment means) of
these genes in each of the microarray experiments were
listed in Additional file 3: Table S1. If the expression of a
probe set (gene) is affected by some of the treatments in
an experiment, it shows a higher CV (more fluctuation);
and vice versa. According to the data, the CV of 20 of
the 26 VWWRKYs were over 5% in at least one experi-
ment. The highest CV appeared in VwWRKY57 (up to
36%) associated with compatible viral diseases in berry
experiment in V. vinifera cv. Cabernet Sauvignon.
VWWRKY03, 06, 08, 28, and 55 responded to both abiotic
and pathogens stresses while VvWRKY21, 39, 48 seemed
to respond primarily to pathogens stresses.

To test the correlation between the expression pat-
terns of 26 VWWRKYs and their phylogenetic relation-
ship, a hierarchical cluster analysis was performed using
the 11 stress related experimental datasets (Figure 3).
Red, black and green elements in the matrix indicate up-,
no change- and down-regulated expression of WRKY
transcription factors, respectively. From the heat map,
twenty-six genes were clustered into four clades. Care-
fully analyzing the cluster of expression data in response
to abiotic stresses experiments and comparing this with
the VWWRKYs phylogenetic tree, we found that genes
with close phylogenetic relationship were classified into

the same clade during hierarchical cluster analysis. The
most obvious evidence can be found in clades 3 with 5
WRKY subgroup IId genes (including VwWRKY07, 24,
39, 48 and 57), which show similar expression patterns
in response to salt, PEG and cold stresses. Clade 1 con-
tained three WRKY group I genes and two group IIC
genes. Clade 2 was mainly composed by WRKY group I
and IIC and contains a majority of cold stress-related
VWWRKYs (Also shown in Additional file 4: Table S2).
Clade 4 only had one gene and that gene was from
WRKY group IIIL

Real-time RT-PCR based expression analysis of VWWRKYs
under cold treatment in V. vinifera

To examine the response of VwWRKYs under cold stress
in grape, we examined the transcription levels of
VWWRKYs in shoot apices of ‘Muscat Hamburg’ under
cold-treatment (4°C). VvWRKY05, 21, 32 and 40 were
excluded from cold-treated experiment since their Ct
value of amplification curve were over 35 cycles in the
templates of normal and cold-treated shoot apex. De-
tected VWWRKYs can be classified into four groups ac-
cording to expression patterns as shown in Figure 4 and
Additional file 5: Figure S3: A) sustained up-regulated
during cold treatment (22 genes, Figure 4A), B) changed
above 2 fold with irregular pattern (9 genes, Figure 4B),
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YLMLT S YFRFR YLMLT S YFRFR
vvwrkyo:l N vwriy3o HEEEEEEEE
VwWRKY0? T vvwrky3:
vwwRKkYo3 N vvwriysz IR
vvwrkyos I vvwriyss
vvwWRKyos IIEEEENE \vWRKY34
vvwRrkyos I vywrky3s IR
vwwWRrkyo7 N vvwriy3s NN
vvwWRkyos I vvwriy3z I
VvWRKY09 I vWRKY39 kil
vvWRKY10 NN vvwrkyso INEEEEERE
vvwrky1:l I vvwriys: RN
VvWRKY12 IR \vWRKY42
VWIWRKY13 e VvvwWRky43 N
VVWRKY14 EEITEENT vvwRrky44 I
vvWRKY15 I vvWRKY45 R
vwwwRrkyilc I vvwrikyse I
vvWRkY17 RN vvwRKY47
VVWRKY18 [TINTIT  vvwWRKY48 N
vwwRrky19 [ vvwrkyss R
vvwRrky20 I vvwRrkyso IR
vvwRrky21 I vvwrkys:
VvWRKY22 I VvWRKY52? R
VvWRKY23 IR VvvwWRKY53 [
vwWRKY24 N vvwrkyss T
VvWRKY25 B VvWRKY55 [
VvWRKY26 N Vvvwrkys56 N
vvwRrky27 I VvvwRkys57 I
VWRKY28 il VvWRKY5s [
VVWRKY29 I vvwrkyss
VvMDH B vvACT B

Figure 2 RT-PCR analyses of presence of VVWRKY transcripts in seven grape tissues. YL: young leaf; ML: mature leaf; T: tendril; S: stem apex;
YF: young fruit; RF: ripe fruit; R: root. VWMDH and VWACT were used as control.

C) sustained down-regulated (5 genes, Figure 4C) and D)
no significant difference (18 genes, as shown in Additional
file 5: Figure S3). The relative expressions of 36 genes
(Figure 4A, B and C) were significantly different as cold
treatment. The greatest increase in expression (nearly 30
fold) was found in VwWRKYS55 at 48 h cold treatment.
WWRKY18 and VvWRKY46 had the largest up-regulation
of greater than 6 fold at 8 hours after cold treatment.
While VwWRKY18 was degraded after 24 hours, the ex-
pression of VWWRKY46 demonstrated both up and down
regulated with a spike of expression at 48 hours after in-
tensive degradation at 24 hours.

Exogenous ABA induced accumulation of VvWRKYs in

V. Vinifera

To illustrate how the VWWRKYs respond to ABA and
whether the cold stress related VwWRKYs may partici-
pate in the ABA-dependent cold signal pathway, ABA

treated grapevine apices were examined using qRT-PCR.
WWRKY12, 29, and 46 were excluded from this ex-
periment due to their higher Ct value (Figure 4D and
Additional file 6: Figure S4). Among the 55 VWWRKYs
we detected, twelve VWWRKYs were expressed over 2-
fold greater within 2 h of exogenous ABA treatment
(Figure 4D). After statistical analyses of qRT-PCR re-
sults, 7 of them were evaluated to significantly change
during exogenous ABA treatments. Transcripts of
VWWRKY35 showed the greatest increase in expression
at 0.5 h after ABA treatments. Six other genes showed
increases in expression 1 h after exogenous ABA treat-
ment (Figure 4D).

When the data from the cold and ABA experiments
were compared, 6 of 7 genes (VWWRKY, 19, 28, 35, 42,
50 and 55) that were up-regulated during exogenous
ABA treatment were also up-regulated under cold treat-
ment (Figure 4A and B, marked by underline). Two
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Figure 3 Cluster analyses of VWWRKYs from 16 k Affymetrix V.
vinifera gene-chip data in PLEXdb database. The relative
expression values of 26 WWRKYs responding to different abiotic
stresses (salinity, water deficit, cold) were used in analysis. Red, black
and green elements in the matrix indicate up-regulated, no change
and down-regulated WRKY genes, respectively. Those genes can be
classified into four groups according to expression patterns, which
were shown in different color with its group IDs that coincide with
Figure 1. The red color was used to emphasize the WIVRKYs that
changed in expression over 2 fold under cold treatment.

genes (VWWRKYS5S, 28) were greatly up-regulated, over
10 fold. The expression levels of the rest of the 44
VWWRKYs were lower than 2-fold and not significantly
changed during exogenous ABA treatments (Additional
file 6: Figure S4).

Identification of candidate cold-stress related VvWRKYs

Previously we reported the changes of the transcriptome
during cold-treatments in ‘Muscat Hamburg’ and identi-
fied 14 cold-stress related VwWRKYs (we reported 16
VWWRKYs but subsequent annotation of these genes
allowed us to exclude two genes that do not belong to
the WRKY gene family)[36]. Gene-chip based methods
also allowed to identify 10 cold-stress related VvWRKYs
[39]. In order to overcome the deficiencies of determin-
ing gene expression from a single technological approach
and obtain more reliable results, we compared the data
from three different methods. Fourteen VwWRKYs from
our previous transcriptome analysis, ten from publically
available gene-chip based data and 36 genes from qRT-
PCR results (this study) were used. The results were sum-
marized in Figure 5 and Additional file 4: Table S2. Three
VWWRKYs (VWWRKY12, 28, 55) showed identical expres-
sion patterns and were found up-regulated over 10 fold in
at least one time-point under cold-treatment by qRT-PCR
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(Figure 4A). A total of 12 VwWRKYs were confirmed by
two experimental methods (Figure 5A and B). VwWRKY56
was identified as up-regulated gene under cold treatment
only in the gene-chip studies. Twenty-two genes that were
characterized by qRT-PCR were not supported by the
other studies. It is worth mentioning that down-regulated
VWWRKYs under cold-treatment were only identified by
qRT-PCR based method.

Discussion

WRKY family in grape

Considering the important roles that WRKY transcrip-
tion factors play during plant development and in re-
sponse to various stresses, it is not surprising that we
identified so many family members in grapevine. Previ-
ously, 74 WRKY genes were found in Arabidopsis [2], 55
in cucumber [40], 102 in rice [2], 47 in castor bean [41],
86 in Brachypodium distachyon [42] and 136 in maize
[43]. Here we identified 59 candidate WRKY proteins in
V. vinifera and categorized them into four groups.

Group | WRKY proteins

When compared with WRKY family groups, WRKYs in
primitive plant ancestors Giatdia lamblia, Dictyostelium
discoideum and Chlamydomonas reinhardtii closely re-
sembled Vitis group I [7,38]. In our study, two domains
of VWWRKYs in group 1 were closely related. A BLASTp
search of EuGene.1100010359 from an ancient alga spe-
cies (Ostreococcus sp. RCC809) which has a single WRKY
domain allowed us to identify 9 corresponding WRKY ho-
mologs in grape and 8 of these belonged to group I by
MAP VIEW (Plant Genome Duplication Database) [44].
These data support the hypothesis that the dual WRKY
domains present in members of group I may be derived
from a single WRKY domain duplication [6,7].

Group Il WRKY proteins

Group II was divided into three parts: subgroup Ila + IIb,
subgroup Ilc and subgroup IId + Ile (Figure 1). Subgroup
IIa + IIb belong to the same clade and is sister to the
WRKYs in group L. Interestingly, the presumed function of
CTWDs in group I for sequence-specific DNA binding [9]
were more similar to the single WRKY domain members
in group II and III than to the NTWDs of group I, This re-
sult may indicate that subgroup Ila+IIb evolved from
group I by domain structure loss of the group I NTWD.

Group Il WRKY proteins

Group III in the phylogenetic tree was most closely related
to the very large subgroup Ilc, which was separately into
four clades and seemed to indicate an expansion of the
gene family. A thorough search of the Plant Transcription
Factor Database (http://planttfdb.cbi.pku.edu.cn) indicated
that the earliest evolutionary occurrences of group III
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Figure 4 (See legend on next page.)
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Figure 4 qRT-PCR assays of the expression patterns of VWWRKYs under cold and exogenous ABA treatments. The default expression
value for each gene was 1 at 0 hours before treatment. A, B and C represent the subgroups with different expression patterns in cold treatment
and D represents the genes that up-regulated over 2 fold in ABA treatment. A: sustained up-regulated genes in cold treatment; B: genes that
changes over 2 fold but without significant tendency in cold treatment; C: sustained down-regulated genes in cold treatment; D: up-regulated
genes in exogenous ABA treatment. VWWRKYs that accumulated in both cold and exogenous ABA treatments were underlined. One-Way ANOVA
analysis was used to test the impact of timing of cold treatment. When the effects were significantly different, we examined the difference
between treatments using post hoc multiple comparisons (LSD, p < 0.05). All data analyses were conducted using IBM SPSS Statistics 20, and the

results were displayed through a, b, c and d.

genes were those found in ferns (Selaginella moellendorf-
fii). There was no evidence of any sequenced plant species
that only contain members of group I and III but we
found in some species with only members of group I and
11, for example in mosses (Physcomitrella patens) [1], and
some gymnosperms (Pinus taeda) (http://planttfdb.cbi.
pku.edu.cn). We speculated that group III may have
evolved from group II, particularly Ilc. As group III
WRKYs in Arabidopsis responded to diverse biotic stresses
[45], group III members may indicate adaptation of early
plants to the stressful conditons associated with the
colonization of land and subsequent increase in biotic
pathogen pressures.

Group IV WRKY proteins

We found that group IV WRKY proteins, which were
characterized by the loss of the zinc-finger domain, were
in the same clade as subgroups IId + Ile. VwWRKY02
and VWWRKYS57 were duplicated gene pairs according to
a whole genome analysis of grapevine gene duplications
[46]. This might suggest an origin of group IV from sub-
groups IId +Ile. Group IV proteins were considered
non-functional due to the loss of the zinc-finger domain
[10]. However, these genes of group IV can be found in
all higher plant species as well as in algaes (Bathycoccus

prasinos: Bathy17g02050). Furthermore, some genes
were expressed in rice (OsWRKY56) [10] as were two genes
identified in this study (VWWRKY02 and VWWRKY29).
Therefore, it remains questionable whether group IV
WRKYs have biological function in plants.

VWRKYs participate in development and stress-related
signal pathways

WRKY genes were found to be expressed in many tissues
and seem to be involved in regulating plant developmen-
tal and physiological processes. Transcriptomic analysis
of senescence in the flag leaf of wheat demonstrated that
WRKY transcription factors are greatly up-regulated dur-
ing the senescence process [47]. OsWRKY78 was found
to be up-regulated in elongating stems and knockdown
mutations in this gene cause plants to produce a semi-
dwarf and small seed phenotype caused by reducing cell
length [48]. Moreover, the transcription of GhWRKY15
was observed abundant in the roots and stems of to-
bacco and transgenic overexpression lines of these plants
displayed faster elongation at the earlier shooting stages
[49]. Here the expression of 15 VwWRKYs (Figure 2) can be
detected in all grape tissues we used, which may indicate
its fundamental roles in different cell-types in grape. Simi-
lar to expression patterns observed in other plant species,

A gRT-PCR data B

(36)

N

(10)
Gene-chip data

(14)
Transcriptome data

Genename qRT-PCR  Gene-chip Transcriptome  Exogenous ABA
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Figure 5 An overview of cold stress-related VWWRKYs in three sets of data. A: The Venn diagram of the cold stress-related VWWRKYs obtained
from qRT-PCR, transcriptome and gene-chip data. B: The VWWRKYs that were found in more than one type of experimental data. Green color in
forms indicated WIWRKYs induced by exogenous ABA.
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WWRKYs were found to be expressed in young tissues
such as young leaf, shoot apex, tendril and young fruit.

Several numbers of VWWRKYs were found activated in
more than one type of stress condition (Figure 3 and
also Additional file 3: Table S1). VpWRKY3, homologous
to VwWWRKY55 was observed to be up-regulated in re-
sponse to many different sources of stress, including
pathogen exposure, salicylic acid, ethylene, cold and
drought stress [32]. VWWRKYs that were up-regulated in
response to more than two types of stresses (e.g. patho-
gen and drought) supported the occurrence of cross-talk
between signal transduction pathways in response to dif-
ferent stress conditions in plants [50].

Phylogenetic relationships between VvWRKY genes
suggested that there may be conserved responses of these
genes to salt exposure, PEG and cold-stress (Figure 3). All
members of group IId clustered into one clade with simi-
lar expression pattern during these three stress conditions,
suggesting the function of these VWWRKY proteins may
relate to the structures of WRKY domains. Subgroup IId
was identified as a novel CaM-binding transcription factor
family in plants and their conserved structural motif was a
Ca**-dependent CaM-binding domain [51]. Thus the
placement of the WRKYs in the phylogenetic tree may
also help to predict function of new members that belong
to certain gene family.

VvWRKYs that participate in the cold related signal
transduction in grape
Three different experimental methods were combined to
robustly analyze the response of V¥WRKY genes to cold
stress (Figure 5 and Additional file 4: Table S2). Results
from qRT-PCR demonstrated the greatest number of
cold stress-related VvWRKYs (36) while gene-chip based
methods identified the least, 10 VwWRKYs. This differ-
ence may be attributed to the method used but is also
likely due to differences in the treatment conditions be-
tween experiments. During Digital Gene Expression pro-
file (DGE) analysis [36], plant material was obtained
from 4 h cold treatment at 4°C, whereas in our pRT-
PCR experiment, we used samples collected at several
different time periods (at 8 h, 24 h and 48 h after cold
treatment at 4°C). Additionally, multiple matched tags
were excluded from the final analysis performed by Xin
et al. [36], which may have reduced the number of iden-
tified cold related VwWRKYs. Finally, gene-chip based
methods may bias results due to a lower number of
genes with corresponding probes related to the WRKY
proteins (only 26 WRKY). By integrating the data from
different methods, we obtained more reliable results and a
total of 15 candidate cold tolerance VvWRKYs (Figure 5)
were identified during our investigation.

According to previous studies, the transcriptional con-
trol of plant responses to cold stress can be divided into
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ABA-dependent and ABA-independent signal pathways
[52]. The results of our study also indicated that 15 pu-
tative cold stress-related VwWRKYs can be divided into
two groups according to their responses to exogenous
ABA. Three VWWRKYs (VWWWRKY28, 42 and 55) may par-
ticipate in an ABA-dependent signal pathway and other
12 in ABA-independent pathway. WRKY transcription
factors have been identified as key components in the
ABA signaling pathways [8,53]. In rice, OsWRKY24, 51, 71
and 72 are induced by (ABA) in aleurone cells.
OsWRKY24 and 45 were functional as negative regula-
tors in ABA induction of the HVA22 promoter-beta-
glucuronidase construct, while OsWRKY72 and 77
synergistically interacted with ABA to activate this
reporter construct [10]. It is still unknown how
WRKYs participate in the cold stress-related signal
pathway and what relationship these genes have with
C-repeat Binding Factor genes (CBFs), which are critical
transcription factors responsible for cold tolerance in
plant [54].

The reliability of the identified 15 cold-related
VWWRKYs was also supported by homologous genes in
other species. STHP-64, which showed high similarity
with VwWRKY43, was not present in leaves until Novem-
ber and December in Solanum dulcamara [55]. WRKY38,
a homolog gene of VwWRKY14, was transiently accumu-
lated when leaves and roots were exposure to low
temperature in barley [56]. BcWRKY46 showed higher
similarity with VwWRKY33 and responded to low temper-
atures in Pak-choi. Constitutive expression of BcWRKY46
reduced the freezing susceptibility in transgenic tobacco
[57]. The transcription level of VYWRKYS55 was up-
regulated robust under cold treatment. Its homolog gene,
WRKY71 was found in banana with a similar expression
pattern [58]. All these VwWRKYs mentioned above were
confirmed by at least two set of experiment methods,
which provided appropriate candidates to illustrate the
roles of WRKY protein under low temperature-related sig-
nal pathways in grape.

Although low-temperature related WRKYs were iso-
lated in several species, the mechanism of how WRKYs
respond to cold signals and regulate the expression of
downstream genes is still largely unknown. Further work
is needed to elucidate the function of these important
genes in low-temperature related signal pathways. Previ-
ously we reported the different expression patterns of
WRKYs in V. amurensis, a cold-hardness species. The
WRKY genes identified here from V. vinifera may accel-
erate the functional analysis of this gene family in V.
amurensis. The comprehensive analysis of cold stress-
related WRKYs in two different Vitis species with con-
trasting cold hardiness phenotypes would certainly help
to illustrate the function of WRKY genes in conveying
cold hardiness in grapevine.
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Conclusions

In summary, a total of 59 VWWRKYs in the V. vinifera
genome were identified. The VWWRKYs were unevenly
distributed in 18 of the 19 chromosomes. WRKY do-
main based phylogenetic analysis allowed categorizing
59 VWWRKYs into four large groups. A majority of
VWWRKYs were found expressed in more than one tissue
in V. vinifera. Gene-chip based data analysis suggested
that a subset of VWWRKYs was activated in respond to
diverse biotic and abiotic stresses. The transcription level
of 36 VwWWRKY genes changed over 2 fold after cold in-
duction. A comparative analysis of qRT-PCR results,
gene-chip based data and transcriptome analysis allowed
us to identify 15 VwWRKYs that show identical expres-
sion patterns during cold treatment at least in two kinds
of analyses. These studies not only increase our know-
ledge of WRKY family, but also provide candidate genes
for future functional analysis of V¥WRKYs involved in
the low temperature-related signal pathways in grape.

Methods

Identification of WRKY genes in the grape genome
Candidate WRKY proteins were identified from the 12X
V. vinifera cv. Pinot noir genome (quasi-homozygous
line PN40024, http://www.phytozome.net). Full-length
amino acids sequences of all WRKY proteins in Arabi-
dopsis thaliana (http://www.arabidopsis.org/) were used
as query sequences. A BLASTp search was performed
and E-value of e ® was used as the threshold [59]. Candi-
date WRKY proteins were manually confirmed [60] by
searching for WRKY domains in the candidate amino
acids sequences using SWISS-MODEL (http://swissmo-
del.expasy.org/) and the results were shown in Table 1.

Phylogenetic analysis of WRKY family

Multiple alignments of the amino acid sequences of 73
WRKY domains from V. vinifera were performed using
CLUSTALW by MEGAS5.1 [61]. Twelve Arabidopsis
WRKY domains from different WRKY groups were used
as references to categorize the WRKY proteins from
grape. The GenBank accession numbers of those AtWR-
KYs are AtWRKYO01: ABJ17102, AtWRKY11: AEE85928.1,

AtWRKY14: AAP21276.1, AtWRKY18: AAM78067,
AtWRKY21: AAB63078.1, AtWRKY27: ABHO04558,
AtWRKY28: AEE84006, AtWRKY31: AEE84546.1,
AtWRKY38: AED93044.1, AtWRKY41: AEE82969,
AtWRKY43: AEC10646.1, AtWRKY45: ABD57509.1,

AtWRKY49: AAQ62425.1. The parameters used during
alignment were: protein weight matrix: Gonnet series;
negative matrix: on; gap open penalty: 10; gap extension
penalty: 0.20; delay divergent sequences: 30; residue-
specific gap penalties: on; hydrophilic penalties: on; gap
separation distance: 0; end gap separation penalty: on.
An unrooted phylogenetic tree was constructed using
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Neighbor-Joining (NJ) methods and bootstrapped with
1,000 iterations to help identify WRKY protein groups.

Plant materials

‘Muscat Hamburg’ (V. vinifera) was obtained from the
Institute of Botany, the Chinese Academy of Sciences.
Tissues of young leaves, mature leaves, tendril, stem
apex, root, young fruits and ripe fruits were collected
from the vineyard in July, 2012. Cold and exogenous
ABA treatment experiments were performed on tissue
culture seedlings of ‘Muscat Hamburg’ according to Li
et al. [62]. Briefly, seedlings were cultured on 1/2 B5
medium with 30 g/L of sucrose in a growth chamber
under 16-h light/8-h dark photoperiod at 26°C. Cold
treatments were performed in another growth chamber
with the same parameters except for temperature (4°C).
Seedlings with five well developed leaves were used and
the shoot apex with one well developed leaf was col-
lected at 0 hour (h, used as control), 8 h, 24 h and 48 h.
Seedlings with five well developed leaves were trans-
planted in 1/2 B5 nutrient solution. Exogenous ABA
treatments were performed after one week under normal
culture conditions with 100 pM ABA and the shoot apex
with one well developed leaves were collected at 0 h
(used as control), 0.5 h, 1 h and 2 h after treatments.
Three independent replicates were collected for each
time point and frozen in liquid nitrogen. Samples were
then stored at - 80°C for the following RNA isolation.

Expression patterns analysis of VWWRKYs by RT-PCR

Total RNA was isolated from collected samples using
Plant Total RNA Isolation kit (Tiandz Inc; Beijing,
China). RNase-free DNase (RQ1, Promega) was used to
degrade DNA from total RNA. ¢cDNA was synthesized
by the SuperScript III Reverse Transcriptase (Invitrogen)
with Oligo(dT);s (Promega) according to the manu-
facturer’s instructions. Primer pairs (Additional file 7:
Table S3) for VWWRKYs were designed by Primer 3
(http://bioinfo.ut.ee/primer3-0.4.0/) and tested by NCBI
Primer BLAST. Two genes, B-actin (GenBank accession:
EC969944; sense primer: 5 -CTTGCATCCCTCAGC
ACCTT-3’; antisense primer: 5-TCCTGTGGACAAT
GGATGGA-3') and malate dehydrogenase gene (MDH;
GenBank accession: EC921711; sense primer: 5 -CCAT
GCATCACCCACAA-3’; antisense primer: 5-GTCAA
CCATGCTACTGTCAAAACC-3") were used as positive
control for RT-CR [63]. Three biological replicate and
35 cycles for each reaction were performed. PCR prod-
ucts were detected by agarose gel electrophoresis with
2.5% gel concentration.

Gene-chip based expression pattern analysis of VWWRKYs
We explored the expression profiles of VWWRKYs using
publically available data from the 16 k Affymetrix V.
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vinifera gene-chip stored at PLEXdb (Plant Expression
Database) [64] to explore the response of VvWRKYs dur-
ing biotic and abiotic stresses in grape. The different
studies and datasets that were included in these analyses
were: A) a short term abiotic stress experiment in ‘Cab-
ernet Sauvignon’ [39], B) a long-term salt and water
stress study [65]; C) a study examining gene expression
associated with compatible viral diseases in grapevine
cultivars [66]; D) an experiment designed to examine the
powdery mildew-induced transcriptome in a susceptible
grapevine ‘Cabernet Sauvignon’ [67]; E) the com-
plimentary dataset of the powdery mildew-induced tran-
scriptome of a resistant grapevine ‘Norton’ [67]; F) a
study of gene expression in grapevine in response to Bois
noir infection [68]; G) a study of the grape skin tran-
scriptome of berries grown on an exogenous abscisic
acid treated vine [69]; H) the complimentary dataset of
the grape skin transcriptome in the berries cultured
in vitro and treated with exogenous ABA [69]; and lastly,
I) a gene expression study associated with compatible
viral diseases in the berry [70]. In our comparative ana-
lysis, we divided these experiments into either abiotic or
biotic stresses related datasets. For each microarray ex-
periment, the Affymetrix MAS5.0 normalized data were
used for calculations of the fold change of differentially
expressed genes. Probe sets corresponding to the puta-
tive VWWRKYs were identified at PLANEX (http://pla-
nex.plantbioinformatics.org) and completed via PLEXdb
blast tool. Comparisons of WRKY expression level from
gene-chip data for the short term abiotic stress treat-
ment in ‘Cabernet Sauvignon’ was performed using
Cluster 3.0 and JavaTreeview.

Quantitative RT-PCR

Total RNA was isolated from cold and exogenous ABA
treated shoot apices following the cDNA synthesis
methods mentioned above. Synthesized ¢cDNA was di-
luted 1:10 with ddH,O, and the quantitative RT-PCR re-
action mixture contained 5 pl of 2x SYBR Green I
Master Mix (Roche, USA), 2.6 pL ddH,O, 0.2 pL of
10 pM solution of each primer and 2 pL diluted tem-
plate ¢cDNA. Reaction specificities for each primer pair
was tested using qRT-PCR melting curve analysis. The
experiment was carried out using a StepOnePlus real-
time PCR Instrument (Applied Biosystems). Transcrip-
tion levels of each VWWRKY was normalized against
the average of B-actin, MDH (as mentioned above)
and glyceraldehyde-3-phosphatedehydrogenase (GAPDH:
CB973647; sense primer: 5-TTCTCGTTGAGGGCT
ATTCCA-3’; antisense primer: 5'-CCACAGACTTCAT
CGGTGACA-3") [63]. Each sample had three biological
and two technical replicates to ensure the accuracy of re-
sults, and RNA samples with the same reverse-
transcription (without Reverse Transcriptase) and dilution

Page 12 of 14

procedure were used as negative controls. The Ct values
and the real-time PCR efficiencies were obtained using
Lin-RegPCR [71] and the normalized relative quantities
and standard errors for each sample were calculated by
gbaseplus [72]. The relative expression level of each
VWWRKY in different templates was calculated based on
normalized relative quantities. We used One-Way ANOVA
analysis to test the impact of timing of cold treatment.
When the effects were significantly different, we examined
the difference between treatments using post hoc multiple
comparisons (LSD, p <0.05). All data analyses were con-
ducted using IBM SPSS Statistics 20.

Additional files

Additional file 1: Figure S1. Chromosomal location of 57 VWWRKYs.
VWWRKY03 was located on ‘chromosome 1 random’ and WWWRKY04 was
located on ‘chromosome unknown’. Neither was shown here.

Additional file 2: Figure S2. The models of conserved amino acid
sequences of WRKY domain and zinc-finger structure in four groups. The
numbers behind the charts indicated gene numbers in each group.

Additional file 3: Table S1. The coefficient of variation of the
corresponding treatment means (CV) and probe set IDs of VWWRKYs in 9
experiments. A higher CV means the expression of the probe set (gene)
is affected by treatments in an experiment. Five VWWRKYs that didn’t
show any changes in any treatments are marked by green color.

Additional file 4: Table S2. Cold stress-related V/WRKYs obtained in
one of three experimental methods. Yellow, red and blue forms represent
genes obtained via gRT-PCR, gene-chip data and transcriptome data
respectively. Exogenous ABA induced WWRKYs were shown in green
color in form.

Additional file 5: Figure S3. Quantitative RT-PCR assays of the expression
level of 18 VWRKYs under cold treatment. The transcription level of these
genes didn't show significant changes during cold treatment in V. vinifera.

Additional file 6: Figure S4. Quantitative RT-PCR assays of the expression
patterns of 44 VWWRKYs under exogenous ABA treatment. The transcription
level of these genes didn't show significant changes during exogenous ABA
treatment in V. vinifera.

Additional file 7: Table S3. The primers used for expression pattern
analysis for WIVRKYs.
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