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Characterization of resistance to pine wood
nematode infection in Pinus thunbergii using
suppression subtractive hybridization
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Abstract

Background: Pine wilt disease is caused by the pine wood nematode, Bursaphelenchus xylophilus, which threatens
pine forests and forest ecosystems worldwide and causes serious economic losses. In the 40 years since the
pathogen was identified, the physiological changes occurring as the disease progresses have been characterized
using anatomical and biochemical methods, and resistant trees have been selected via breeding programs.
However, no studies have assessed the molecular genetics, e.g. transcriptional changes, associated with infection-
induced physiological changes in resistant or susceptible trees.

Results: We constructed seven subtractive suppression hybridization (SSH) cDNA libraries using time-course
sampling of trees inoculated with pine wood nematode at 1, 3, or 7 days post-inoculation (dpi) in susceptible trees
and at 1, 3, 7, or 14 dpi in resistant trees. A total of 3,299 sequences was obtained from these cDNA libraries,
including from 138 to 315 non-redundant sequences in susceptible SSH libraries and from 351 to 435 in resistant
SSH libraries. Using Gene Ontology hierarchy, those non-redundant sequences were classified into 15 subcategories
of the biological process Gene Ontology category and 17 subcategories of the molecular function category. The
transcriptional components revealed by the Gene Ontology classification clearly differed between resistant and
susceptible libraries. Some transcripts were discriminative: expression of antimicrobial peptide and putative
pathogenesis-related genes (e.g., PR-1b, 2, 3, 4, 5, 6) was much higher in susceptible trees than in resistant trees at
every time point, whereas expression of PR-9, PR-10, and cell wall-related genes (e.g., for hydroxyproline-rich
glycoprotein precursor and extensin) was higher in resistant trees than in susceptible trees at 7 and 14 dpi.

Conclusions: Following inoculation with pine wood nematode, there were marked differences between resistant
and susceptible trees in transcript diversity and the timing and level of transcripts expressed in common; in
particular, expression of stress response and defense genes differed. This study provided new insight into the
differences in the physiological changes between resistant and susceptible trees that have been observed in
anatomical and biochemical studies.

Background
Pine wilt disease is caused by the pine wood nematode
(PWN), Bursaphelenchus xylophilus, and was first
reported by Tokushige and Kiyohara [1]; this disease
threatens pine forests and forest ecosystems around the
world and causes significant economic losses [2]. Pine
wilt disease is a chronic problem in pine forests (Pinus

thunbergii and Pinus densiflora) in Japan, where
approximately 40,000,000 m3 of pine forests have been
blighted by the PWN [3]. Over the past 40 years, public
administration and central, prefectural, and city govern-
ments have attempted to stem the spread of PWN and
pine wilt disease by controlling the pine sawyer beetle
(Monochamus sp.), the vector of PWN, with insecticides
and cutting down infected trees. Additionally, national
and prefectural forestry institutes have established
breeding programs to develop resistant pine varieties. A
breeding project to develop pine varieties resistant to
pine wilt disease was started in 1978 in western Japan,
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and related projects were promoted throughout Japan,
excluding Hokkaido Island, as the damage spread. In
this breeding project, trees are screened for resistance
using an artificial inoculation test that follows a strict
protocol; during the first breeding program, which ran
from 1978 to 1984, 92 resistant P. densiflora individuals
were selected from 11,000 candidate trees, and only 16
resistant P. thunbergii individuals were selected from
14,000 candidate trees. The breeding projects continued,
and 204 resistant P. densiflora and 90 resistant P. thun-
bergii individuals were generated. Resistant P. densiflora
(n = 92) and resistant P. thunbergii (n = 16) were
ranked with regard to resistance (levels 1-5) based on
the survival rate of openly pollinated progeny following
inoculation; higher survival rates are thought to indicate
greater resistance. Average rates of survival of openly
pollinated progeny from the selected pines (i.e., resistant
trees) were 64% for P. densiflora and 53% for P. thun-
bergii, which was respectively 16% and 40% higher than
for unselected populations [4].
Since the causative pathogen was identified [1], many

researchers have characterized the physiological changes
associated with progression of pine wilt disease, and by
the mid-1990s, more than two thousand papers on the
disease had been published [5]. Many symptoms asso-
ciated with PWN infection, including decreased photo-
synthesis, denaturation of xylem and cortex parenchyma
cells, traumatic resin canal formation, cambium destruc-
tion, production of phytotoxic substances and ethylene,
reduced water potential and transpiration in leaves and
heat pulse velocity have been studied (for review, see
reference [6]). Based on the anatomical and biochemical
evidence gathered during these 40 years, development of
symptoms is thought to occur in two stages, early and
advanced stages [6]. In the early stage, a small number
of nematodes migrate and symptoms such as necrosis
and destruction of cortex and phloem tissue and cam-
bium, destruction of cortex resin canals, formation of
wound periderm in cortex parenchyma around resin
canals, and ethylene release all occur near the inocula-
tion site. In the advanced stage, ethylene production is
enhanced and coincides with the broad destruction of
cortex parenchyma, cambial destruction, and cavitation-
induced embolism of the tracheids in the xylem. The
cavitation-induced embolism causes a decrease in leaf
water potential and cessation of photosynthesis. After
cessation of photosynthesis, severe symptoms develop
rapidly with a burst in the nematode population; this
population increase results in wilting and eventual tree
death. Resistance against PWN infection depends on
stopping the symptoms at the early stage or preventing
the progression of infection to the advanced stage.
While the physiological changes that occur as pine wilt
disease progresses have been characterized anatomically

and biochemically, molecular genetic events such as
changes in transcript profiles that may be associated
with the physiological changes in either resistant or sus-
ceptible trees remain poorly understood.
Recently, the gene expression profiles of resistant

(resistant variety of P. thunbergii ’Sendai-290’; resistant
rank 1) and non-resistant Japanese black pine (P. thun-
bergii) trees were assessed using the LongSAGE techni-
que on stems collected 3 days after PWN inoculation
[7]. The researchers found that catalase and proteins in
the dienelactone hydrolase family were highly expressed
in resistant trees, but not non-resistant trees, whereas
pathogenesis-related (PR)-1, 2, 3, leucoanthocyanidin
dioxygenase and cell wall-related genes were expressed
at higher levels in the non-resistant trees. Although the
study assessed a difference of one time point in the
defense responses of resistant and non-resistant P. thun-
bergii following PWN inoculation, the defense response
is continuous, and the differences in resistance and sus-
ceptibility do not depend only upon qualitative differ-
ences in the activated defense genes, but also on
differences in the timing and magnitude of their expres-
sion [8]. To characterize the differences in transcript
profiles of resistant and susceptible trees as pine wilt
symptoms develop, it is necessary to sample resistant
and susceptible individuals over a defined time course.
Subtractive suppression hybridization (SSH) is a

powerful tool for gene expression profiling that effec-
tively identifies genes differentially expressed under dif-
ferent conditions or in different tissues [9]. This method
is relatively simple and easy, it can be used with species
for which there is little or no genomic information, and
the cDNAs isolated are typically longer than 100 bp and
can be effectively annotated using comparative genomics
(e.g., BLAST analysis). This method is often used to iso-
late plant genes specifically expressed in response to
pathogen infection and to identify differences in the
transcript profiles of infected resistant and susceptible
plants [10-14]. SSH selection reduces the cloning of
abundantly expressed housekeeping genes or genes com-
monly expressed in both “tester” and “driver” samples,
and therefore normalizes the expressed cDNA profiles
during library construction. As a result, SSH selection
significantly enhances the chances of cloning differen-
tially expressed genes.
The goal of this study was to identify differences in

the transcript profiles of PWN-inoculated P. thunbergii
to understand the difference in the defense responses of
resistant and susceptible individuals. Three important
experimental design elements enhanced the clarity and
relevance of our findings: 1) We used the most resistant
variety of P. thunbergii, ‘Namikata-73’; resistant rank 5.
2) We sampled inoculated trees (both resistant and sus-
ceptible) 1, 3, and 7 dpi before any macroscopic changes
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usually occur; resistant trees were also sampled 14 dpi,
when macroscopic changes are usually evident. 3) We
used SSH, a powerful approach for identifying differen-
tially expressed genes regardless of their abundance.

Results
Analysis of sequences in SSH libraries
Six subtractive libraries constructed from samples taken
at three time points, 1, 3, and 7 days dpi, were used to
identify genes that are differentially expressed in resis-
tant and susceptible trees as disease symptoms develop
following PWN inoculation. In addition, a seventh
library contained genes expressed predominantly in
resistant trees at 14 dpi compared to susceptible trees at
7 dpi (see Methods). We sequenced nucleotides from
the 5’-end of 3,299 cDNA inserts that were recovered in
the seven libraries (Table 1). Insert length varied from
100 to 780 bp; the median length ranged from 366 to
429 bp, depending on the library. The redundancy
within each library varied from 3.9% to 27.2% in
libraries from resistant trees and from 28.4% to 72.8%
from susceptible trees. The obtained non-redundant
expressed sequence tags (ESTs) ranged from 351 to 435
in libraries from resistant trees and from 138 to 315 in
libraries from susceptible trees. Importantly, the overlap
between the two libraries at each time point was extre-
mely low; for example, 0.4% of the cDNA inserts were
shared between libraries from resistant and susceptible
trees sampled at 1 dpi. Similarly, only 3.7% of the cDNA
inserts were shared by the library from resistant trees
sampled at 14 dpi and from susceptible trees sampled at
7 dpi. This high level of specificity is expected from effi-
cient SSH procedures.

Functional classification of the expressed genes in each
SSH library and identification of differentially
accumulated genes
In order to annotate the putative gene and functional
Gene Ontology (GO) categories for the transcripts of
each SSH library, we compared non-redundant ESTs of
each SSH library with the GenBank non-redundant and
EST databases using the search programs blastx, tblastx,
and blastn using the Blast2GO program [15] (Additional
file 1). The transitional hit rate of the BLAST analysis
and the annotation rate per library are indicated in Table
1. For each library, 98% or more of the clones were
matched in a BLAST search using the nr and EST data-
bases at the National Center for Biotechnology Informa-
tion (NCBI). Similarly, 97% or more of the clones in each
library were matched in a BLAST search (blastn) using
the Dana-Farber Cancer Institute Pinus taeda Gene
Index (DFCI PGI, release 8.0). The annotation rates for
GO terms resulting from automated and manual annota-
tion varied from 75.45% to 91.00% per library.

Non-redundant ESTs recovered in the seven libraries
were classified by function into the three principal Level
1 GO categories: biological process, molecular function,
and cellular component. Furthermore, the biological
process category was split into 24 subcategories at Level
2, molecular function was split into 61 subcategories at
Level 3, and cellular component was split into 39 subca-
tegories at Level 7. The level presented herein corre-
sponds to the depth of hierarchical categories within
each principal GO category, and higher levels represent
more general classifications. The classification for biolo-
gical process, divided into 15 major subcategories and
24 lower-level subcategories, is shown in Figure 1a. Of
the 15 subcategories under biological process, the subca-
tegory of response to stimulus was present at a higher
percentage in the susceptible libraries at each time
point, and three categories-cell wall organization or bio-
genesis, immune system process, multi-organism pro-
cess-were present at a higher percentage in the
susceptible libraries than in the resistant libraries at
each time point. In contrast, transcripts related to cellu-
lar process and metabolic process were present at a
higher percentage in the resistant libraries. In addition,
the category of response to stimulus was present at a
higher percentage even in the resistant libraries at 7 and
14 dpi. The classification for molecular function, divided
into 17 major subcategories and 61 lower-level subcate-
gories, is shown in Figure 1b. At each time point, sus-
ceptible trees expressed more transcripts in the four
subcategories of carbohydrate binding, enzyme inhibitor
activity, hydrolase activity, and pattern binding than did
resistant trees, whereas transcripts related to several
molecular binding categories such as ion binding and
protein binding and to several molecular activity cate-
gories such as oxidoreductase activity and transferase
activity were present at a higher percentage in the resis-
tant libraries. The classification for cellular component,
divided into 18 major subcategories and 39 lower-level
subcategories, is shown in Figure 1c. At each time point,
susceptible trees expressed more transcripts in the cyto-
plasmic membrane-bounded vesicle category than did
resistant trees. In contrast, the transcripts related to
organelle categories such as chloroplast, plastid and
mitochondrion were present at a higher percentage in
the resistant libraries at each time point.
In order to evaluate the specificity and diversity of the

transcripts that were specific in a time course from
infected resistant and susceptible trees, ESTs were
selected from each SSH library (Table 2, Additional file
2). The libraries from susceptible infected trees showed
very limited transcript diversity and were chiefly com-
posed of PR proteins, such as basic PR-1, PR-2 (beta-
1,3-glucanase), PR-3 (class I, IV chitinase), PR-4 (chiti-
nase type I & II), PR-5 (thaumatin-like protein), PR-6
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(type II proteinase inhibitor family protein), and antimi-
crobial peptide. In contrast, the ESTs from resistant
trees were more diverse. Transcripts encoding metal-
lothionein-like protein, heat shock protein 70 (HSP70),

xyloglucan endotransglycosylase (XET), and cytochrome
P450 (CYP450) were discernible in the resistant library
at 1 dpi and 3 dpi. The libraries from resistant trees
sampled at 7 dpi and 14 dpi had transcripts encoding
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PR-5, PR-9 (peroxidase), PR-10 (ribonuclease-like),
hydroxyproline-rich glycoprotein (HRGP) precursor, and
extensin.

Validation of differential expression using selected SSH
clones and quantitative real-time PCR (qRT-PCR)
To validate the results of the SSH procedures, expres-
sion of 16 ESTs recovered in one or more of the seven
libraries was assayed using qRT-PCR; samples for the
qRT-PCR analysis were collected from resistant and sus-
ceptible trees at 0, 1, 3, 7, and 14 dpi. (Figure 2).
Furthermore, expression of 16 ESTs of mock samples at
each time points was also assayed using qRT-PCR to
monitor expression changes induced either by PWN
infection or by cutting (Additional file 3). The results of
the qRT-PCR analysis and SSH were consistent.
Expression of 12 of 16 ESTs was clearly upregulated

following inoculation with PWN. Among the upregu-
lated ESTs, expression of putative PR-1b, PR-2, PR-3
(class I & IV chitinase), PR-4, PR-5, PR-6, and antimi-
crobial peptide was much higher in the susceptible trees
than in the resistant trees at each time point. Expression
of these ESTs was much higher in susceptible trees at 1
dpi and expression had increased further by 7 dpi. In
the resistant trees, expression of these ESTs was at a
relatively low level at 1 dpi and 3 dpi, but was abundant
at 7 dpi and 14 dpi. ESTs encoding PR-9, PR-10, HRSP,
and extensin were discernible in resistant SSH libraries.
Expression of PR-9 and PR-10 was much higher in the

susceptible trees at 1 dpi and 3 dpi; however, levels of
these two transcripts were much higher in resistant
trees at 7 dpi, though it was lower at 14 dpi than 7 dpi.
HRGP and extensin transcript accumulation in resistant
trees was high at 14 dpi, although expression of both
ESTs was higher in susceptible trees than in resistant
trees at 1 dpi, 3 dpi, and 7 dpi.
Based on qRT-PCR analysis, three ESTs–CYP450,

metallothionein-like protein, and XET–were downregu-
lated in both resistant and susceptible trees after PWN
inoculation, with greater downregulation in susceptible
trees. Transcript levels of these three ESTs decreased in
susceptible trees within 1 dpi, and were even lower at 3
and 7 dpi. The levels of these ESTs in resistant trees at
7 and 14 dpi were similar to those in susceptible trees
at 7 dpi. The transcript level of HSP70 was lower than
the other downregulated genes, and its decrease was
more moderate in resistant trees, with an expression
pattern similar to that of mock samples.

Discussion
We sequenced cDNAs in seven SSH libraries to charac-
terize transcriptional differences between resistant and
susceptible P. thunbergii trees in response to inoculation
with PWN. In susceptible trees, transcript diversity was
statistically lower than in resistant trees at the three
time points jointly tested, 1, 3, and 7 dpi. In susceptible
trees, several transcripts encoding pathogenesis related
proteins were present at a higher constitutive level than

Table 2 Characteristic ESTs within each SSH library

Putative gene categories based on BLAST annotations Number of ESTs from each SSH library*

R_1dpi R_3dpi R_7dpi R_14dpi S_1dpi S_3dpi S_7dpi

PR-1 family 0 0 1 0 2 6 1

PR-2 family (beta-1, 3-glucanase) 1 0 1 2 7 12 21

PR-3 family (class i chitinase) 2 1 4 1 6 2 1

PR-3 family (class iv chitinase) 1 0 2 5 9 9 58

PR-4 family 1 0 1 1 14 5 56

PR-5 family (thaumatin-like) 0 0 12 62 55 52 129

PR-6 family (proteinase-inhibitor) 0 0 2 10 56 52 130

PR-9 family (peroxidase) 1 0 5 1 3 5 0

PR-10 family (ribonuclease-like) 0 8 57 1 24 11 20

Antimicrobial peptide 0 0 0 1 27 13 8

Cytochrome P450 4 4 1 0 0 0 0

Extensin 0 0 0 27 10 5 4

Heat Shock Proteins 10 4 3 22 1 0 0

Hydroxyprolinerich glycoprotein precursor 0 0 6 16 1 1 1

metallothionein-like protein 7 26 4 0 1 0 0

Xyloglucan endotransglycosylase 5 4 2 0 0 1 0

Rate of occupying a library (%) 6.8 10.1 18.8 30.5 47.7 39.2 84.0

* R = resistant, S = susceptible, dpi = days post-inoculation
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Figure 2 Quantitative real-time PCR of transcripts differentially expressed in resistant and susceptible trees following PWN
inoculation. The putative functional genes from (a) to (h) were clearly discernible ESTs in susceptible SSH libraries. The putative functional
genes from (i) to (p) were clearly discernible ESTs in resistant SSH libraries. Elongation factor 1-alpha (EF1a) was used as the reference gene, and
the data were calibrated relative to the transcript levels in resistant trees prior to nematode inoculation (at 0 days). The data are presented as
the mean ± S.D. of three replicates. Means designed by the same letter did not significantly differ at P < 0.05 according to Tukey’s HSD test.
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in resistant trees. In resistant trees at 14 dpi, several
transcripts encoding cell wall proteins were identified.
The results of the SSH approach were validated by
qRT-PCR. We clearly demonstrated that transcript com-
position, temporal changes, and levels of gene expres-
sion involved in the stress/defense response to PWN
inoculation in resistant trees differs from susceptible
trees.
There was a significant difference in transcript diver-

sity between resistant and susceptible trees after infec-
tion with PWN. The percentage of unique sequences in
susceptible libraries ranged from 71.59 to 27.17%,
whereas the percentage of unique sequences in resistant
libraries ranged from 72.82 to 96.11%. Although tran-
script diversity of the susceptible library at 3 dpi was
higher than the susceptible libraries at 1 and 7 dpi, tran-
script diversity in resistant libraries was higher than sus-
ceptible libraries at all time points after PWN infection.
According to the GO classification of the differentially
expressed transcripts, a large percentage in susceptible
trees was involved in stress/defense response categories
such as the response to stimulus, multi-organism pro-
cess, and immune system process within the biological
process category and the enzyme inhibitor activity, car-
bohydrate binding, pattern binding, and hydrolase activ-
ity within the molecular function category. Furthermore,
a large percentage of transcripts in the cellular compo-
nent category were in the cytoplasmic membrane-
bounded vesicle subcategory. On the other hand, a large
percentage of transcripts in resistant SSH libraries was
categorized into the cellular process, metabolic process
and response to stimulus subcategories of the biological
process category and in the ligand binding and transfer-
ase activity subcategories of the molecular function cate-
gory. Many transcripts recovered in libraries from
resistant trees were assigned to the cellular component
subcategory and further classified into organelle subcate-
gories of plastid, chloroplast, and mitochondrion. The
difference in transcript diversity between libraries from
resistant and susceptible trees revealed by the GO classi-
fication indicated a qualitative difference in the stress/
defense response of resistant and susceptible trees to
PWN infection.
Resistance and susceptibility do not depend only upon

qualitative differences in the activated defense genes, but
also on differences in the timing and magnitude of their
expression [8]. The gene regulation patterns of patho-
genesis related defense proteins such as PR-1b, PR-2,
PR-3, PR-4, PR-5, PR-6 and antimicrobial peptide indi-
cated temporal and quantitative differences between
resistant and susceptible trees in response to PWN
infection. In regulating the plant defense response, most
pathogenesis related proteins are induced through the
action of the signaling compounds salicylic acid (SA),

jasmonic acid (JA), or ethylene [16]. PR-1b, PR-2 and
PR-5 genes are SA-responsive genes and also indicators
of systemic acquired resistance; additionally, the PR-6
gene is a JA and ethylene responsive gene [17].
Although the relationship between phytohormones and
the defense response in the PWN-nematode interaction
is not clear from this study, it is interesting that expres-
sion of pathogenesis related genes associated with phy-
tohormones such as SA and JA/ethylene and with
antimicrobial activities were induced more quickly and
to a higher level in susceptible than in resistant trees.
The same three phytohormones, SA, JA, and ethylene,

are important for both basal and R-gene mediated
defense responses to foliar pathogens and insects. The
JA and ethylene signaling pathways seem to work syner-
gistically, whereas the SA and JA/ethylene signaling
pathways inhibit each other, and negative cross-talk
exists between SA and JA/ethylene signaling pathways
[18]. In interactions between Hero A-resistant tomatoes
and cyst nematode, expression of SA-responsive genes
PR-1 and PR-5 is a hallmark of the resistant cultivar,
and expression of JA-dependent PR-6 is higher in the
susceptible cultivar, indicating that SA plays some role
in the resistance to the nematode and that JA and ethy-
lene in susceptible tomatoes are likely to interfere with
the SA-inducible resistance pathway [19,20]. The invol-
vement of SA in resistance and expression of SA-
responsive genes in resistant plants has been observed
in interactions between other plant species and nema-
todes (e.g., an Arabidopsis thaliana mutant [21] and a
root knot nematode resistant peanut [13]). In our study,
the higher induction of both SA-responsive genes such
as PR-1b, PR-2, PR-5 and JA/ethylene-responsive genes
such as PR-6 in susceptible trees indicates that the
defense response mediated by these phytohormones was
not very effective in controlling PWN infestations.
We detected notable levels of putative HRGPs, exten-

sin and peroxidase (PR-9) in resistant trees at 7 dpi and
14 dpi, though expression in susceptible trees was
higher than in resistant trees at 1 and 3 dpi. Cell wall-
mediated resistance is the first line of plant defense
against pathogens, and the components of plant cell
wall are modified by production of reactive oxygen spe-
cies (ROS) such as H2O2 during attack by pathogens
[22]. The structural cell wall proteins extensin and
HRGPs play an essential role in biotic and abiotic stress
responses due to their oxidative cross-linking, which
contributes to the strength of cell walls and is catalyzed
by an oxidizing system based on peroxidase and H2O2

[23-25]. The cross-linking of HRGPs and extensin is
involved in cell wall-mediated resistance and has a
major role in arresting pathogens at the site of entry
[23]; these proteins accumulate in the walls of a number
of plant species during interactions with microbes [26].
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A number of reports describe the response of plant cell
wall HRGPs and extensin to pathogens such as viruses,
bacteria, and fungi (for review, see reference [27]). In
plant-nematode interactions, high extensin gene expres-
sion was observed in the cortical region of tobacco at 7
and 14 days after inoculation with root knot nematodes
[28]. In rhg1 resistant soybean, extensin was identified
as one of the genes characteristically expressed in syncy-
tia after inoculation with soybean cyst nematode, indi-
cating that altered cell wall composition is important in
the defense response [29]. Also, in Mi resistant tomato,
extensin and glycosyltransferase may play a role in cell
wall synthesis, which is an essential defense against root
knot nematode [30,31]. In anatomical studies of PWN
infection, Ishida et al. [32] inoculated virulent nematode
(B. xylophilus) isolate S6-1 and avirulent nematode (B.
mucronatus) isolate B. m to Japanese black pine, and
observed accumulation of lignin- and suberin-like sub-
stances around the resin canals in the cortex with both
nematode isolates at 7 dpi. Kusumoto et al. [33] also
inoculated a virulent nematode (B. xylophilus) isolate,
Ka-4, to Japanese black pine and found more frequent
accumulation of phenolic compounds around the cortex
resin canals in resistant trees at 7 dpi and 14 dpi after
inoculation with PWN (B. xylophilus), and suggested
that this accumulation was a very effective defense
against infection due to restricting PWN migration.
Although the relationship between HRGPs or extensin
and other substances in the cell wall was not examined
in this study, it is possible that upregulation of expres-
sion of cell wall-related genes such as those for HRGPs
or extensin and oxidative cross-linking of these proteins
by peroxidases plays a role in the effective defense
response of trees resistant to PWN infection at 7 dpi
and 14 dpi.
PR-10 was also one of the characteristically signifi-

cantly upregulated genes in libraries in the 7 dpi sub-
traction library from resistant trees. Although the
biological function of PR-10 remains unclear, many PR-
10 genes are upregulated when plants are exposed to
abiotic stresses, such as SA, CuCl2, H2O2, cold, darkness
and wounding [34], and biotic stresses, such as viruses
[35], bacteria [34,36], fungi [37-40] and insects [41,42].
We observed synchronized expression of PR10 with per-
oxidase in resistant trees, which indicates this gene may
be induced by ROS such as H2O2. However, PR10
(CpPRI) acts against a digestive proteinase from the root
knot nematode Meloidogyne incognita [43]. Therefore,
PR10 may act as a proteinase against cellulases, beta-
1,3-glucanase, and pectate lyases secreted from PWN
[44-46].
Heat shock protein (HSP) ESTs were characteristically

recovered in libraries from resistant trees. In particular,
stable HSP70 expression in infected resistant trees was

validated by qRT-PCR. HSP family members, which
consist of HSP70, HSP60 and HSP90, are required for
folding of nascent proteins and intracellular transporta-
tion in addition to stress responses, and are collectively
called molecular chaperones [47]. In the interaction
between soybean and soybean cyst nematode, Klink et
al. [48] observed the induction of HSP70 and ROS
responsive genes such as lipoxygenase and superoxidase
dismutase isolated from 3 dpi syncytial cells showing an
incompatible response to soybean cyst nematode infec-
tion, and suggested that HSP70 may be involved in
maintaining a properly functioning environment for
other defense responses. In the present study, it is
unclear how HSP70 is involved in the defense response
to PWN infection.
Three ESTs–putatively encoding CYP450, metallothio-

nein-like protein, and XET–were detected in resistant
SSH libraries at 1 dpi and 3 dpi, which depend on the
genes significantly downregulated in susceptible trees at
1 and 3 dpi. In plants, CYP450 monooxygenases play
paramount roles in the synthesis of lignin intermediates,
sterols, terpenes, flavonoids, isoflavonoids, furanocou-
marins, and a variety of other secondary plant products
[49]. In conifers, diterpene resin acids are prominent
defense compounds against insect pests and pathogens
in conifers [50-52], and CYP450s are involved in the for-
mation of a suite of diterpene resin acids of conifer
oleoresin; they oxidize abietadienol and abietadienal to
abietic acid in vitro and in vivo [53,54]. Keeling and
Bohlmann [50,51] indicated that oleoresin may contain
specific components that are toxic or deterrent to insect
herbivores or may affect adults or broods physiologically
and thus prevent successful colonization or reproduc-
tion. The downregulation of CYP450 observed in the
present study may cause a reduction in diterpene resin
acids in pine trees infested with PWN. Consequently,
PWN may expand its invasion and habitat, and the
rapid reduction in CYP450 expression in susceptible
trees may trigger PWN expansion.
Metallothioneins are involved in ROS scavenging, and

in rice, downregulation of metallothionein expression is
observed during the oxidative burst phase in elicitor-
treated cells, and metallothionein expression is impor-
tant for defense signaling [55,56]. The metallothionein
expression we observed indicated that ROS accumula-
tion and defense signaling may have been induced by 1
dpi in susceptible trees infected with PWN, whereas it
may not have been induced much in resistant trees 3
dpi later; this provides evidence for rapid induction of
defense response genes such as those encoding patho-
genesis related proteins in susceptible trees.
XET action is thought to regulate wall loosening dur-

ing turgor-driven expansion by rearranging load-bearing
xyloglucan cross-links between cellulose microfibrils,
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and its activity and expression have been detected in
growing tissues [57-64]. We found that XET was down-
regulated in both resistant and susceptible trees follow-
ing PWN infection, and its regulation was induced
relatively early, by 1 dpi. These findings suggest that the
expansion of cell walls in xylem, phloem or both is
inhibited by the downregulated XET during PWN infec-
tion; alternatively, the cell wall may be immobilized by
the cross-linking of HRGPs or extensin.
In pine-nematode interactions, Myers [65] and Futai

[66] suggested that invasion and rapid migration of a
few mobile parasites through tree tissues invokes an
innate hypersensitive reaction such as death of the par-
enchyma, production of toxins, and leakage of oleoresins
and other material into tracheids. Furthermore, the
population of PWN spreads throughout the whole body,
and a series of hypersensitive reactions eventually leads
to tree death in susceptible pine species. In this study,
defense response genes, antimicrobial peptide, SA-
responsive genes such as PR-1b, PR-2, PR-5 and JA/ET-
responsive genes such as PR-6 were induced more
quickly and to a higher level in susceptible than in resis-
tant trees. These defense responses in susceptible trees
would not be effective in controlling PWN nematode
infestations, and defense signaling induced within the
tree may then induce a series of hypersensitive reactions
through cellular interactions that subsequently lead to
death, as Myers [65] and Futai [66] suggested. In con-
trast, a moderate hypersensitive reaction along with
upregulation of pathogenesis related genes followed by
upregulation of cell wall-related genes contributing to
the strength of cell walls would be a very effective
defense against PWN infection, because these events
might restrict PWN migration.

Conclusions
This is the first study to assess the difference in EST
transcript diversity of activated defense genes and differ-
ences in the timing and magnitude of expression of
these genes between resistant and susceptible P. thun-
bergii trees following PWN inoculation. In susceptible
trees after PWN inoculation, pathogenesis related genes
and antimicrobial-related genes were rapidly induced to
high levels within 1 dpi; this finding indicated that a
hypersensitive reaction-like response was induced in
susceptible trees and supported the hypothesis of Myers
[63] and Futai [64]. In contrast, a moderate defense
response mediated by pathogenesis related protein
expression followed by significant upregulation of cell
wall-related genes induced by ROS was a very effective
defense against PWN infection. The ESTs generated in
our study will certainly advance understanding of
defense mechanisms against PWN at the transcriptional
level in other varieties or other Pinus species.

Methods
Plant materials and nematode inoculation
A resistant tree of ‘Namikata 73,’ which is the most
highly resistant variety of the 16 resistant varieties
selected out of 15,000 individuals from 1990 to 1998 [4],
was planted in the Forest Products Research Institute,
Forest Tree Breeding Center (FFPRI-FTBC) in Ibaraki,
Japan. A susceptible tree of the variety ‘Kataura 1,’
selected as a plus-tree for growth traits, was also in the
FFPRI-FTBC. Both clones were grafts obtained from the
original trees at the FFPRI-FTBC in 2005. The PWN
used in this study was the Ka-4 isolate, which has been
used in pine wilt disease resistance breeding projects
since 2003.
Inoculation with PWN was conducted on July 1, 2007.

In four susceptible clones and four resistant clones, 2
cm at the tip of the main stem was cut off, the cut edge
was quickly crushed with pliers, and 10,000 nematodes
that had been suspended in 100 μl sterile water were
injected into the cut edge. As a mock sample, sterile
water (without nematodes) was injected into the cut
edge of the main stem of another four susceptible clones
and four resistant clones. Stem tissue of inoculated sam-
ples and mock samples was collected 5 cm below the
inoculated stem apex at 1, 3, 7, and 14 dpi. A 2 cm seg-
ment of stem was cut, frozen immediately in liquid
nitrogen, and stored at -80°C.

RNA isolation
Total RNA was isolated from 1.5 g of stem that
included bark and wood tissue using the RNeasy plant
mini kit (QIAGEN) following the protocol supplied by
the manufacturer. RNA concentration was determined
using a GeneQuant pro spectrophotometer (Amersham
Biosciences). Integrity of the RNA was tested using the
Agilent 2100 bioanalyzer (Agilent Technologies).

SSH library construction, DNA sequencing, data analysis
and dbEST submission
Six subtractive libraries were constructed from samples
taken at three time points; specifically, two libraries–one
from resistant trees and one from susceptible trees–
were constructed from samples taken 1, 3, or 7 days
dpi. Forward libraries containing genes expressed predo-
minantly in resistant trees were constructed by subtract-
ing driver RNA sampled from susceptible trees from
tester RNA sampled from resistant trees, and reverse
libraries containing genes expressed predominantly in
susceptible trees were constructed by subtracting driver
RNA sampled from resistant trees from tester RNA
sampled from susceptible trees. Additionally, a seventh
library was constructed by subtracting driver RNA
sampled from susceptible trees 7 dpi from tester RNA
sampled from resistant trees 14 dpi; the driver RNA
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samples were taken at 7 dpi because the susceptible
trees had died by day 14. SSH libraries were constructed
using a SuperSMART cDNA Synthesis kit (Clontech)
and a Clontech PCR-Select cDNA Subtraction kit (Clon-
tech). The SSH products were purified using a QIA-
quick PCR purification kit (QIAGEN) and ligated into
the pT7Blue vector (Merck4Biosciences). Blue/white
selection was conducted on plates containing ampicillin,
isopropyl-D-thiogalactopyranoside and X-gal. Clones
were randomly selected and single-pass sequenced using
a primer that recognizes vector sequences from the 5’
-end of the inserts. On -average, 500 clones were
sequenced per library using an ABI 3130xl DNA Analy-
zer (Applied Biosystems). The resulting sequences were
trimmed and edited manually to identify the cloning
vector sequences, adaptor sequences used in the SSH

procedure, and regions of low-quality sequence using
Sequencher 4.10.1 software (Gene Codes Corp.). Quality
sequences greater than 100 bp were selected for further
analysis. A total of 3,299 sequences were at least 100 bp
and these sequences were submitted to the GenBank
EST database with the GenBank accession numbers
FY841122 to FY844420. To determine the number of
contigs and EST singletons in each library, the ESTs
were assembled using Sequencher 4.10.1 by the require-
ment for at least 98% identity over each 20 bp continu-
ous sequence.

EST similarity search and functional assignments
A similarity search and functional annotation were per-
formed for the EST singletons in each library using
online version of the BLAST2GO program (BLAST2GO

Table 3 Primers used in this study

Putative gene function Forward primer Reverse primer Fragment length
(bp)

GenBank
Acc.

PR-1b family 5’ -TGCCCCTTCAGGTAAATCGT-3’ 5’ -GCGGGTCGTAGTTGCAGATAA-
3’

125 FY841927

PR-2 family (Beta-1,3-glucanase) 5’ -CGACAACATTCGCCCCTTCT-3’ 5’ -CTGCAGCGCGGTTTGAATAT-3’ 130 FY843702

PR-3 family (class I chitinase) 5’ -ACCTACAGCGCCTTCATTGC-3’ 5’ -TGTGGTTTCATGCGACGTTT-3’ 120 FY841849

PR-3 family (class Iv chitinase) 5’ -CCATCGAAGCCCAGGTAATTT-3’ 5’
-AGCCGGGAAGCAATATTATGGT-
3’

90 FY843470

PR-4 family 5’ -CCCCGTTACTGTCAATTGCAT-3’ 5’ -AAAGCGTGACGGTGCGTATT-3’ 90 FY841704

PR-5 family (thaumatin-like) 5’
-GAACCAGTGCCCATACACAGTCT-3’

5’ -CCTGCGGCAACGTTAAAAGTC-
3’

96 FY842709

PR-6 family (proteinase inhibitor) 5’ -TGCTGGCGGCATCTATTTTA-3’ 5’ -TAACACCTGCGCAAATGCA-3’ 90 FY843534

PR-9 family (peroxidase) 5’ -ACACCACCGTGCTGGACATT-3’ 5’ -GTGCGGGAGTCGGTGTAGAG-
3’

118 FY842918

PR-10 family (ribonuclease-like) 5’ -TGTCTCAAGTGGAGGCAAGGA-
3’

5’
-AAGCGACAATTTCAGGCAAAAC-
3’

90 FY842956

Antimicrobial peptide 5’ -GCGTTGCTCATACCCGTTTT-3’ 5’
-GCAGCACTTAGCACTGGATGAA-
3’

90 FY841562

Cytochrome P450 5’ -AACATGTCCTGCAGCACGAA-3’ 5’ -GTGCACCGCAAGTAAACCAA-
3’

95 FY841345

Extensin 5’ -CGAATGTAATTCCGAAGTTGCA-
3’

5’ -CCATCCCAAACCACCAGTCT-3’ 110 FY844277

Heat shock protein 70 5’ -AACACCACCATTCCCACCAA-3’ 5’ -CGAATTTGCCGAGCAGGTTA-3’ 130 FY841300

Hydroxyproline-rich glycoprotein
precursor

5’
-GAGAAACTGGCACCGTCTTAGGA-
3’

5’ -ACCTCCCCCTCCATCTCACA-3’ 140 FY843962

Metallothionein-like protein 5’ -TCAGGCTGCTGCGTTATTTG-3’ 5’ -TGTCAGCGCAGTCACAATTTG-
3’

120 FY842178

xyloglucan endotransglycosylase 5’ -TCTGCGCCCCTACTTTTCC-3’ 5’ -AGCTGGGCGATTGATCATGT-3’ 121 FY842425

Elongation factor-1 alpha 5’ -GGGAAGCCACCCAAAGTTTT-3’ 5’ -TACATGGGAAGACGCCGAAT-
3’

160 FY842441

The putative functional genes from (a) to (h) were clearly discernible ESTs in susceptible libraries. The putative functional genes from (i) to (p) were clearly
discernible ESTs in resistant trees. Elongation factor 1-alpha (EF1a) was used as the reference gene, and the data were calibrated relative to the transcript levels
in resistant trees prior to nematode infection (at 0 dpi). The data are presented as the mean ± S.D. of three replicates. Means designed by the same letter did
not significantly differ at P < 0.05 according to Tukey’s HSD test
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2006; [15]). The thresholds used with the BLAST algo-
rithms were as follows: (1) blastx comparison with the
non-redundant protein database of NCBI with a thresh-
old value of e-6; (2) tblastx comparison with the nucleo-
tide database of NCBI with a threshold value of e-6; (3)
tblastx comparison with the EST database of NCBI with
a threshold value of e-6; (4) blastn comparison with the
EST database of NCBI with a threshold value of e-10.
Additionally, the ESTs in each library were compared
with 69,968 EST sequences in the DFCI Pinus Gene
index release 8.0 using an E value cut-off of e-10. The
ESTs were assigned to functional categories using the
Blast2GO program, and manual annotations were based
on the result of BLAST analysis using the PGI database.
The Blast2GO program extracts the GO terms asso-
ciated with homologies identified with NCBI’s QBLAST
and returns a list of GO annotations represented as
hierarchical categories of increasing specificity. There-
fore, the “level” presented in this study corresponds to
the depth of hierarchical categories in each principal
GO category, with the topmost Level 1 representing the
most general classification (principal GO categories) of
biological process, molecular function, and cellular
component.

Real-time qRT-PCR
Primer pairs were designed for each sequence using Pri-
mer Express software v3.0 (Applied Biosystems) and fol-
lowing the manufacturer’s guidelines for primer design
(Table 3). For SYBR Green real-time RT-PCR assays,
the amplification efficiency of all primer pairs was opti-
mized with genomic DNA from resistant and susceptible
trees using the StepOnePlus Real-Time PCR System
(Applied Biosystems).
RT-PCR was performed using the total RNA used to

make the SSH libraries. For the mock samples at each
time point and for the reference sample (without nema-
todes or water), total RNA was extracted from stem tis-
sues and used for RT-PCR. Total RNA (500 ng in a
final volume of 20 μL) was reverse-transcribed using the
PrimeScript II 1st strand cDNA synthesis kit (TaKaRa)
according to the manufacturer’s protocol. Real-time
quantitative PCR was performed using the Power SYBR
Green PCR Master Mix (Applied Biosystems) on the
StepOnePlus Real-Time PCR System (Applied Biosys-
tems). PCR mixtures were prepared according to the
manufacturer’s instructions and contained 300 nM of
both the forward and reverse gene-specific primers and
4 μL of the 20-fold diluted reverse transcription reaction
(total 5 ng) in a final volume of 20 μL. All reactions
were heated to 95°C for 10 min; this denaturation step
was followed by 40 cycles of 95°C for 15 s and 60°C for
1 min. The PCR products were subjected to melting

curve analysis; the conditions were incubation at 60-95°
C with a temperature increment of 0.3°C s-1. Elongation
factor 1-alpha was used as the reference gene for nor-
malizing the transcript profiles. The real-time PCR data
were calibrated against the transcript levels in resistant
tree stem samples prior to nematode exposure; the 2-
ΔΔCt method was used to quantify relative transcript
abundance [67]. All assays were carried out in triplicate,
and the data are presented as means ± S.D. of three
replicates. The specificity of each amplification was
checked by melting analysis and agarose gel electrophor-
esis of the amplified products.

Additional material

Additional file 1: Summary of BLAST search results for ESTs among
7 SSH libraries.

Additional file 2: Summary of BLAST search results for specific ESTs
in the expression analysis.

Additional file 3: Quantitative real-time PCR of transcripts
differentially expressed in uninfected resistant and susceptible
clones. The putative functional genes from (a) to (h) were clearly
discernible ESTs in susceptible libraries. The putative functional genes
from (i) to (p) were clearly discernible ESTs in resistant trees. Elongation
factor 1-alpha (EF1a) was used as the reference gene, and the data were
calibrated relative to the transcript levels in resistant trees prior to
nematode infection (at 0 dpi). The data are presented as the mean ± S.
D. of three replicates. Means designed by the same letter did not
significantly differ at P < 0.05 according to Tukey’ s HSD test.
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