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Abstract
Background: Nitrogen (N), the primary limiting factor for plant growth and yield in agriculture, has a patchy 
distribution in soils due to fertilizer application or decomposing organic matter. Studies in solution culture over-
simplify the complex soil environment where microbial competition and spatial and temporal heterogeneity challenge 
roots' ability to acquire adequate amounts of nutrients required for plant growth. In this study, various ammonium 
treatments (as 15N) were applied to a discrete volume of soil containing tomato (Solanum lycopersicum) roots to 
simulate encounters with a localized enriched patch of soil. Transcriptome analysis was used to identify genes 
differentially expressed in roots 53 hrs after treatment.

Results: The ammonium treatments resulted in significantly higher concentrations of both ammonium and nitrate in 
the patch soil. The plant roots and shoots exhibited increased levels of 15N over time, indicating a sustained response to 
the enriched environment. Root transcriptome analysis identified 585 genes differentially regulated 53 hrs after the 
treatments. Nitrogen metabolism and cell growth genes were induced by the high ammonium (65 μg NH4

+-N g-1 soil), 
while stress response genes were repressed. The complex regulation of specific transporters following the ammonium 
pulse reflects a simultaneous and synergistic response to rapidly changing concentrations of both forms of inorganic N 
in the soil patch. Transcriptional analysis of the phosphate transporters demonstrates cross-talk between N and 
phosphate uptake pathways and suggests that roots increase phosphate uptake via the arbuscular mycorrhizal 
symbiosis in response to N.

Conclusion: This work enhances our understanding of root function by providing a snapshot of the response of the 
tomato root transcriptome to a pulse of ammonium in a complex soil environment. This response includes an 
important role for the mycorrhizal symbiosis in the utilization of an N patch.

Background
Nitrogen (N) is often a primary limiting factor for plant
growth and yield in agriculture. Applications of N in con-
ventional agriculture include fertilizer banding to the side
of the plants, broadcasting on the surface of soil, and
anhydrous ammonia injections. These N application
methods as well as localized microbial turnover of
organic N can result in spatial and temporal heterogene-
ity (patchiness) of soil N resulting in non-uniform avail-
ability to plant roots. Furthermore, the rapid
immobilization and nitrification of N additions by soil

microbes can quickly alter N availability to the root [1-3].
Roots respond to localized nutrient patches by up-regu-
lating ion transporters and by the proliferation of new
roots into the patch to capture the additional N [4-6].
Mycorrhizal fungi provide plants with an additional
mechanism to explore the soil and capture nutrients from
enriched regions, increasing nutrient uptake potential
[7,8].

Plant roots predominantly acquire N from the rhizo-
sphere as inorganic ammonium (NH4

+) or nitrate (NO3
-),

and subsequently assimilate intracellular NH4
+ into

amino acids [9,10]. Roots sense and respond to changes
in internal and external N status, which includes the reg-
ulation of gene expression, metabolism, and further N
uptake and assimilation [11,12]. High and low affinity N
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transport systems in roots allow plants to maximize
uptake depending on soil N availability. High affinity
transport systems are induced or activated under condi-
tions where soil N availability is reduced (1 μM to 0.5
mM), while low affinity transport systems (active above
~0.5 mM N) may be constitutively expressed and trans-
port N into the plant when soil N concentrations are high
[13]. Members of the NH4

+ transporter (AMT) gene fam-
ily [14] transport NH4

+ across the plasma membrane of
root epidermal cells where it may be locally assimilated
[15]. Intracellular NH4

+ is assimilated into glutamine and
glutamate via the N-regulated glutamine synthetase (GS)
and glutamate synthase (GOGAT) enzymes [16]. The
NO3

- transporters (NRT) are also encoded by a large gene
family [17]. The NO3

- taken up by roots can be translo-
cated to the shoot or reduced in roots to nitrite (NO2

-)
and then NH4

+ via N-regulated NO3
- reductase and NO2

-

reductase [13,16]. Both AMTs and NRTs exhibit complex
gene regulation patterns in response to various forms and
concentrations of N. These transporters are regulated by
internal and external N and provide roots with a mecha-
nism to mount a coordinated response that may serve to
increase N acquisition and metabolism [11,18,19].

Recent studies have moved beyond examining expres-
sion changes of single genes or gene families to studying
global changes in plant gene regulation by nutrients [19-
22]. Microarray analyses of Arabidopsis and tomato roots
subjected to increased NO3

- identified hundreds of differ-
entially regulated genes whose functions included N
metabolism, cell growth, and transcription [19,21]. How-
ever, most genomics studies on plant nutrient metabo-
lism have utilized hydroponic-grown non-mycorrhizal
plants, potentially limiting their translatability to our
understanding of roots response in soil where nutrients
are not distributed uniformly and inorganic N is being
transformed. In this report we used molecular tools to
study root response to the application of known concen-
trations of NH4

+ in a well defined region of the soil. Our
aim was to characterize how roots respond to a nutrient
patch in natural soils where complex ecological processes
are occurring including mycorrhizal colonization and the
microbial transformation of NH4

+ to NO3
-. This approach

is in contrast to previous studies [19-22] that have used
hydroponics to study responses to NH4

+ or NO3
- singly

rather than a dynamic situation which is more relevant to
agriculture or natural ecosystems where NH4

+ is rapidly
transformed to NO3

-. We report on 15N uptake and trans-
location and the coordinated changes in gene expression
patterns in mycorrhizal roots following a localized pulse
of NH4

+ as NO3
- gradually became more available.

Results
Soil N, plant status, and plant N uptake
Previous work showed that the field soil used for this
study contained low concentrations of inorganic N, high
soil N mineralization potential, moderate mycorrhizal
colonization of tomato roots, and very few changes in the
soil food web after nutrient addition [8]. In order to cre-
ate a nutrient patch and recover roots that were directly
exposed to the treatment, pots were prepared with a soil
root in-growth core (ring) buried 5 cm below the soil sur-
face and subsequently referred to as the patch (Figure 1a).
A pulse of 15NH4

+ was injected into the soil patch to sim-
ulate the short-term effects of soil inorganic N spatial
heterogeneity. The experimental design consisted of the
addition of a high NH4

+ treatment (65 μg 15NH4
+-N g-1

soil) 100-fold higher than ambient NH4
+ levels, a low

NH4
+ treatment (6.5 μg 15NH4

+-N g-1 soil) 10-fold higher
than ambient NH4

+ levels, and a water treatment to con-
trol for any potential mobilization of nutrients that
occurs when soil moisture is increased.

The NH4
+ treatments increased the soil inorganic N

concentrations in the patch soil, simulating heteroge-
neous soil patches. In the high NH4

+ treatment group, the
highest soil NH4

+ concentration (39.7 μg NH4
+-N g-1 dry

soil) was measured at the time of the first sampling which
was 5 hrs after injection. At 53 hrs after treatment it
remained significantly higher than controls (25.3 μg
NH4

+-N g-1 dry soil) (Fig 1b), and by 96 hrs, decreased to
3.5 μg NH4

+-N g-1 dry soil due to microbial transforma-
tions and/or plant uptake of the added NH4

+. In the high
NH4

+ treatment rings, soil NO3
- concentrations were

above ambient levels within 29 hours, indicating nitrifica-
tion of NH4

+ (Figure 1c). Patch soil NO3
- concentrations

increased over the first 53 hrs after injection of the high
NH4

+ treatment. In the low NH4
+ treatment, soil NH4

+

and NO3
- concentrations were similar to the water con-

trols.
Over the course of the experiment, plant shoot growth

was unaffected by treatment (P = 0.78). Percent total N
(mean ± SE) in the shoots was 2.29% ± 0.08 at the time of
treatment and unaffected by the N treatments (P = 0.85).
Percent phosphate (P) (mean ± SE) in the shoots was
0.18% ± 0.002 and was unaffected by the N treatments.
Roots were significantly colonized by arbuscular mycor-
rhizal fungi as measured by microscopic counting (33.5%
± 8.4, mean ± SE) and fungal transcript analysis (data not
shown).

To test whether the NH4
+ treatments resulted in mea-

surable 15N uptake and translocation, atom percent 15N
was assayed in roots and leaves (Figure 1d and 1e).
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Within 29 hrs, patch roots and leaves from high NH4
+

plants contained increased amounts of 15N compared to
naturally occurring 15N levels in the water control. The
amount of 15N in these tissues continued to increase over
time. In the patch roots from the low NH4

+ treatment,
atom % 15N was not higher compared to the water con-
trols until 53 hrs after injection, and there was no signifi-
cant enrichment detected in leaves of the low NH4

+

treatments at any time point. There were significantly
higher concentrations of 15N in the high NH4

+ treatment
roots and leaves compared to the low NH4

+ treatment
samples at multiple time points, further confirming a
physiological difference between these treatments.

Microarray analysis of patch root transcription
Affymetrix Tomato GeneChips were used to analyze the
root transcriptome at 53 hrs post-treatment; when 15N
enrichment levels were detected in roots from both high
and low NH4

+ treatment groups. Array analysis detected
expression of 5822 of the 9524 transcripts contained on
the tomato genechip. Statistical analyses identified 585
genes that were significantly altered in expression among
the three treatment groups (Additional file 1). The high

NH4
+ treatment resulted in a much larger transcriptome

response than the low NH4
+ treatment, with 535 genes

differentially expressed between the high NH4
+ treatment

and water control, compared to 89 genes with different
expression levels between low NH4

+ treatment and water
control (Figure 2a). While there were many differences
between the regulated genes under high or low NH4

+ vs.
water control treatments, 39 genes were identified as dif-
ferentially regulated in both comparison groups, and all
39 were similarly regulated by the high and low NH4

+

treatments compared to water (Figure 2a and Additional
file 2).

We annotated and categorized nearly 80% of the 585
differentially regulated genes into putative functional
classes. The NH4

+ treatments resulted in the differential
regulation of genes in a wide range of functional catego-
ries (Figure 2b). In every functional category, the high
NH4

+ vs. water comparison contained a significantly
higher number of genes compared to the low NH4

+ vs.
water comparison, further indicating that the high NH4

+

treatment resulted in a larger scale transcriptional
response. Fisher's exact test was used to determine

Figure 1 Ammonium treatments altered soil nitrogen dynamics and plant N uptake. (a) Diagram of pot-grown tomato plants where water, low 
NH4

+(6.5 μg NH4
+-N g-1 soil), and high NH4

+ (65 μg NH4
+-N g-1 soil) treatments were injected into buried soil rings. (b) and (c) NH4

+-N and NO3
--N con-

centrations per gram of patch soil in the three treatment groups at 5, 29, 53, and 96 hrs after injection. (d) and (e) atom percent 15N in roots and shoots 
5, 29, 53, and 96 hrs after injection of the three treatment groups with 15N labeled NH4

+ fertilizer. Data represent the mean ± SEM of 3 biological rep-
licates. Within each graph, means followed by different letters are significantly different from one another at P < 0.05 (two-way ANOVA with Tukey-
Kramer HSD test).
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whether the gene lists from the [high NH4
+ vs. water] or

[low NH4
+ vs. water] comparisons were enriched for dif-

ferent functional categories compared to one another,
indicating a unique type of response to the two NH4

+

treatments. Significantly more cell growth and division
genes were identified in the high NH4

+ vs. water compari-
son (29 out of 535, 5.4%) than the low NH4

+ vs. water
comparison (0 out of 89, 0%) (P = 0.0245). Conversely,
significantly more signal transduction genes were identi-
fied in the low NH4

+ vs. water comparison (15 out of 89,

16.9%) than the high NH4
+ vs. water comparison (45 out

of 535, 8.4%) (P = 0.0187).
A significant proportion (39 out of 89, 43.8%) of the

genes in the low NH4
+ vs. water comparison were simi-

larly regulated in the high NH4
+ vs. water comparison

(Additional file 2), and included N assimilation and
metabolism genes such as glutamine synthetase and tryp-
tophan synthase. Eight of the remaining 50 (16%) genes
uniquely identified only in the low NH4

+ vs. water com-
parison function in sugar metabolism including glucosyl

Figure 2 Classification of nitrogen treatment-regulated genes into defined functional categories. (a) Venn diagram displaying the number of 
genes identified in either or both the high NH4

+ vs. water and low NH4
+ vs. water comparisons. (b) Affymetrix probeset sequences were matched to 

publicly available Genbank accession identifications and categorized according to tomato or Arabidopsis orthologue gene annotations. Differential 
expression was analyzed at 53h post treatment. Black bars represent the number of genes more highly expressed in the NH4

+ treatment compared 

to the water treatment, and white bars represent the number more highly expressed in the water treatment compared to the NH4
+ treatment. Aster-

isks indicate a significant difference in the proportion of genes in those functional categories between the high NH4
+ vs. water and low NH4

+ vs. water 
comparisons.
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hydrolase, trehalose 6-phosphate synthase, low affinity
sucrose transporter SUT4, isocitrate lyase, and glucose 6-
phosphate translocator.

Identification of genes regulated among the N treatments
Multiple genes in the N transporters, N metabolism, and
amino acid metabolism subcategories were highly
responsive to the NH4

+ treatments. The high NH4
+ treat-

ment resulted in the increased expression level of N
transporter, assimilation, and metabolism genes in roots
including NH4

+ transporter AMT2, NO3
- transporter

NRT2.1, nitrite reductase Nii2, glutamine synthetases GS
(chloroplastic) and GTS1 (cytosolic), and NADH-depen-
dant glutamate synthase GLT1 (GOGAT) (Table 1). Addi-
tional genes including peptide transporter 1 (LeOPT1),
NH4

+ transporter 1 (AMT1), and nitrilase (NIT4) exhib-
ited lower expression levels in the high NH4

+ treatment
roots compared to water control samples. The nitrate
transporters NRT2.3 and NRT3.2 were found on the array
but were not differentially regulated among the treatment
groups. Multiple amino acid metabolism genes were reg-
ulated by the N treatments including higher expression
levels of two aspartate aminotransferases, an alanine ami-
notransferase, and a tryptophan synthase (Table 1).
Lower expression levels of chorismate synthase 2 and
alpha-aminoadipic semialdehyde synthase were detected
(Table 1). A tomato MADS-Box transcription factor sim-
ilar to the Arabidopsis N-starvation response transcrip-
tion factor ANR1 was expressed 3.26-fold higher in the
water control treatment compared to high NH4

+ samples
(Table 1).

We used qRT-PCR to quantify the expression of key N
metabolism genes to confirm the accuracy of the array
results. The qRT-PCR results largely agreed with both the
direction and magnitude of expression levels across the
three treatments, including three genes that were not sig-
nificantly different by array or qRT-PCR (glutamate dehy-
drogenase GDH1, ferrodoxin-dependant glutamate
synthase GLS1.2 (GOGAT), and asparagine synthetase
ASN1) (Figure 3).

Microarrays identified genes that were differentially
regulated among the NH4

+ treatments from other func-
tional categories including cell growth/division, cell wall
biosynthesis, and stress/defense response, and sulfur
metabolism (Figure 2b, Tables 2, 3, and 4, and Additional
file 1). In the cell growth and division category, there were
significantly more genes induced by the high NH4

+ treat-
ment vs. water control than repressed by the high NH4

+

treatment (27 out of 29 cell growth and division genes
induced by high NH4

+, P < 0.001) (Table 2). This category
of genes included multiple cyclins, histones, and other
growth factors. A similar pattern was observed for cell
wall biosynthesis genes encoding multiple pectinest-

erases, expansins, endo-xyloglucan transferases, and cel-
lulose synthase (18 out of 20 induced by high NH4

+, P <
0.001) (Table 3).

The NH4
+ treatments caused various transcriptional

responses in multiple stress and defense-response genes,
and genes in this functional category were some of the
most differentially regulated genes of the experiment
(Table 4). Genes in certain stress and defense response
subcategories exhibited similar transcriptional responses
including glutathione metabolism genes (6 out of 7 higher
expression in water samples), pathogen response factors
(5 out of 6 higher expression in water samples), and heat
shock proteins (6 out of 7 higher expression in high NH4

+

samples).

Phosphate transporters
The patch roots in this study were colonized by arbuscu-
lar mycorrhizal (AM) fungi therefore we examined the
transcriptome data to determine whether the NH4

+ treat-
ments might affect known symbiosis processes including
the transcriptional regulation of the phosphate transport-
ers (PTs). The tomato PTs group into mycorrhiza-spe-
cific, mycorrhiza-induced, and nonspecific root
expression patterns, and are indicators of Pi status and
the mycorrhizal symbiosis [23-26]. The Affymetrix
tomato genechip only includes nonspecific phosphate
transporter 1 (PT1), and it was 1.6-fold higher in the
water samples compared to the low N treatment (P =
0.004). To test whether the NH4

+ treatments resulted in
the differential regulation of the other PT family genes,
we assayed the expression of the tomato phosphate trans-
porters PT1, 2, 3, 4, and 5 with qRT-PCR (Figure 4).
Expression of nonspecific PT1 and PT2 were 1.9- and 3.1-
fold higher in the water samples compared to the low N
treatment samples (P = 0.003 and 0.046, respectively).
Mycorrhiza-induced PT3 and mycorrhiza-specific PT4
expression levels were 5.0- and 5.7- fold higher, respec-
tively, in the low NH4

+ treatment group compared to the
water control samples (P = 0.014 and 0.045, respectively).
Mycorrhiza-induced PT5 expression was not different
among the treatments. The expression level of the phos-
phate starvation-induced tomato gene TPSI1 was 7.5-fold
higher in the water samples compared to the low NH4

+

treatment (P = 0.019). Similar trends were found for the
high NH4

+ treatments compared to water controls. We
analyzed shoot Pi levels to test whether the alterations in
PT gene expression correlated with or resulted in changes
in shoot total Pi levels, but they not significantly different
across the treatments.

Discussion
Previous studies have reported the transcriptional regula-
tion of genes in diverse functional groups including
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Table 1: Differentially regulated nitrogen assimilation and metabolism genes.

Probe Set ID Putative 
Annotation

Fold Change
(High N vs. 

water)

P-value Fold Change
(Low N vs. water)

P-value

Les.224.1.S1_at glutamine 
synthetase

16.69 0.002 6.31 0.024

Les.2360.1.S1_at nitrite reductase 4.25 0.044 1.39 0.364

Les.3640.1.S1_at ammonium 
transporter

4.07 0.045 1.24 0.638

Les.2884.1.S1_at glutamine 
synthetase

3.23 0.044 1.39 0.365

Les.28.2.S1_a_at nitrate 
transporter 2.1

2.61 0.082 1.42 0.402

Les.987.1.A1_at aspartate 
aminotransferase

2.29 0.050 -1.02 0.943

Les.987.3.S1_at aspartate 
aminotransferase

2.18 0.044 -1.34 0.216

Les.5163.1.S1_at dicarboxylate 
transport

1.85 0.075 1.99 0.105

Les.899.1.S1_at NADH-dependent 
glutamate 
synthase

1.76 0.064 -1.05 0.834

Les.3626.1.S1_at alanine 
aminotransferase

1.71 0.092 1.36 0.246

Les.2756.1.A1_at tryptophan 
synthase-related

1.53 0.095 2.01 0.078

Les.231.1.S1_at O-
acetyl(thiol)serine 
lyase

1.32 0.136 1.63 0.088

Les.3660.1.S1_at chorismate 
synthase 2

-1.73 0.061 -1.36 0.180

Les.299.1.S1_at peptide 
transporter 1

-1.75 0.093 -1.37 0.254

Les.797.1.S1_at ammonium 
tranporter 1

-1.80 0.065 -1.09 0.700

Les.3289.1.S1_at g-aminobutyrate 
transaminase 
subunit precursor

-1.84 0.053 -1.76 0.105
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metabolism, energy, cell growth, and transcription/trans-
lation in response to N nutrition as NO3

- or NH4
+ [19-22].

However, these have utilized hydroponics systems that do
not necessarily reflect the rhizosphere environment
encountered by plant roots in agricultural and natural
ecosystems. Roots grown in solution culture systems do
not compete with soil microbes for nutrients, and the
concentrations of nutrients in solution are more uniform
both spatially and temporally. Fertilizer application and
soil processes in conventional and organic farming result
in the formation of heterogeneous soil nutrient patches
[4], and plant utilization of N patches depends on roots
rapidly sensing and response to the local enrichment of
nutrients where they are in competition with soil micro-
bial N assimilation and nitrification, leaching, and deni-
trification [2,3,27,28].

To better understand plant root response to a localized
and dynamic inorganic N soil patch, we utilized an exper-
imental design that simulated a more realistic patch envi-
ronment. The buried ring created the spatial attributes of
an N patch by ensuring that harvested roots were local-
ized to the NH4

+ treatment patch. Measurements of soil
NH4

+ and NO3
- levels confirmed dynamic soil transfor-

mations of available N by 53 hrs when we sampled the
roots for microarray analysis. After 96 hrs, we observed a
trend of decreasing NH4

+ and NO3
- soil levels, indicating

plant and microbial uptake of both NH4
+ and NO3

- [1,9].
Furthermore, estimates of the % recovery of applied 15N

in shoots from high and low NH4
+ treatment groups after

96 hrs (22% and 21%, respectively) support the assertion
that roots faced significant competition for N in the soil
environment.

The rapid N uptake observed in this study demon-
strates the ability of tomato roots to quickly capture fer-
tilizer in soil patches [29,30]. The roots that encountered
the high NH4

+ treatment took up and translocated signifi-
cantly more 15N from the patch than the low NH4

+ treat-
ment roots. This observation is in agreement with the
larger transcriptional response to the high NH4

+ treat-
ment including multiple nitrogen transport, assimilation,
and metabolism genes. However, the relatively low %
recovery suggests that actual uptake and assimilation are
only a small fraction of what was initially available despite
the rapid root responses.

The genes coordinately regulated in both high and low
treatments may represent a conserved physiological
response to different ranges of N patch conditions. The
co-regulated list of genes did not include the NH4

+ or
NO3

- transporters AMT1, AMT2, or NRT2.1 identified in
the high NH4

+ vs. water control comparison. We specu-
late that roots in the high NH4

+ patch needed additional
transporters to effectively capture the higher soil N levels,
while constitutively expressed transporters were suffi-
cient in the low NH4

+ patch. Of equal interest, however, is
the set of 50 genes regulated by the low NH4

+ treatment

Les.7.1.S1_at homogentisate 
1,2-dioxygenase 
HGO

-1.98 0.092 -1.54 0.214

Les.1493.1.S1_at nitrilase -2.02 0.098 -1.65 0.192

LesAffx.3336.1.S1
_at

cystathionine 
beta-synthase 
domain protein

-2.15 0.108 -3.60 0.078

Les.3071.1.S1_at alpha-
aminoadipic 
semialdehyde 
synthase

-2.27 0.067 -2.35 0.105

Les.5024.1.S1_at ANR1-like MADS-
box transcription 
factor

-3.26 0.067 -2.28 0.156

Probe Set ID; Affymetrix identifier for each microarray probeset. Putative Annotation; functional annotation based on tomato protein 
function or function of Arabidopsis orthologues identified with BLAST searches. Fold Change; linear fold changes (bold values significant at 
False Discovery Rate (FDR) adjusted P-value < 0.10). High N = added 65 μg 15NH4-N per gram soil, low N = added 6.5 μg 15NH4-N per gram soil. 
Probe Set IDs Les.987.1.A1_at and Les.987.3.S1_at represent the same genes.

Table 1: Differentially regulated nitrogen assimilation and metabolism genes. (Continued)
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that were not similarly regulated by the high NH4
+ treat-

ment. This group of genes included a significant number
of sugar metabolism genes for which we have no clear
explanation as to the functional significance for the
change in regulation. One possibility is that sugar metab-
olism may have been required for the production of root
exudates, which can increase plant growth promoting
rhizobacteria, or stimulate N cycling by microbial popu-
lations in the rhizosphere [31]. While the total number of
genes regulated by the two treatments suggests that the
high NH4

+ treatment caused a larger response, the
responses were in part unique, and may reflect different
strategies to effectively utilize the N patch. Increased N
availability stimulates highly regulated root development
and growth in order to efficiently scavenge and assimilate
the additional soil N [32,33]. The induction of multiple
histone gene family members such as histones H4, H3
and H2AX in the high NH4

+ treatment suggests an
increase in DNA replication [34,35], while the increased
expression of a mitotic spindle checkpoint gene, replicon
protein A, multiple cyclin genes, and a putative cdc20
suggest an increase in cell division processes [36,37]. Fur-
thermore, the induction of cell wall genes including

expansins, pectinesterases, and cellulose synthase sug-
gests an increase in cell wall biosynthesis that would be
required during root growth [38]. In Arabidopsis, multi-
ple expansins and other cell wall modification enzymes
were up-regulated by NO3

- 3 hrs post-treatment [20], and
gene expression profiling of maize roots in early response
to a NO3

- treatment identified multiple genes involved in
cell growth and lateral root elongation including alpha-
expansin, kinesin, and cellulose synthase [39]. These
experiments imply that similar N developmental
response mechanisms are conserved across maize, Arabi-
dopsis, and tomato roots, and that the root response to an
N nutrient patch includes coordinated root growth.

In this study, diverse stress response genes encoding
heat-shock proteins, glutathione transferases, thiore-
doxin, pathogenesis-related proteins, and dehydration/
desiccation responsive proteins were found to be differ-
entially expressed among the NH4

+ treatment groups.
Limiting nutrient conditions cause various stress-related
responses including the up-regulation of reactive oxygen
species metabolism [40]. Chronic N stress induces a
range of plant stress responses which include the tran-
scriptional regulation of numerous stress responsive

Figure 3 qRT-PCR analysis of key nitrogen metabolism genes. Expression levels of NH4
+ transporters AMT1 and AMT2, glutamine synthetases 

GTS1 and GS, NO3
- transporter NRT2.1, nitrite reductase Nii, NADH-dependant glutamate synthase GLT1 (GOGAT), glutamate dehydrogenase GDH1, 

ferrodoxin-dependant glutamate synthase GLS1.2 (GOGAT), and asparagine synthetase ASN1 in patch roots harvested 53 hrs after high (65 μg NH4
+-

N g-1 soil), low (6.5 μg NH4
+-N g-1 soil), or water control treatments. Relative quantity was calculated using the ΔΔCT method with actin (LeACT) as the 

reference control, and the water control group normalized to 1. For a given gene, means followed by different letters are significantly different from 
one another at P < 0.05 (one way ANOVA).
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Table 2: Differentially regulated cell growth and division genes.

Probe Set ID Putative Annotation Fold Change
(High N vs. water)

P-value

Les.5082.1.S1_at cdc20 cell cycle regulator 3.46 0.044

Les.2170.1.A1_at cyclin 2.89 0.062

Les.5789.1.S1_at histone 3 2.74 0.045

Les.103.1.S1_at cyclin A1 2.65 0.044

Les.3009.3.A1_at histone HTA12 2.52 0.053

Les.3713.1.S1_at B2-type cyclin dependent 
kinase

2.48 0.044

Les.677.1.S1_at histone H2AX 2.33 0.053

Les.677.2.A1_at histone H2AX 2.31 0.061

Les.5740.1.S1_at replicon protein A 2.28 0.044

LesAffx.66157.1.S1_at mitotic arrest deficient-like 2.21 0.068

LesAffx.19390.1.S1_at cyclin 2.16 0.044

Les.3209.1.S1_at histone H4 replacement 
isoform

2.11 0.044

Les.3090.1.S1_at histone H3 2.08 0.044

Les.3555.1.S1_at histone H2B-2 2.00 0.044

Les.4603.1.S1_at histone H3 1.96 0.044

Les.5283.1.S1_at minichromosome 
maintenance protein

1.83 0.084

Les.4439.1.S1_at histone H3 1.80 0.053

Les.4978.1.S1_at DNA-dependant ATPase 1.77 0.091

Les.4442.1.S1_s_at histone H2B-1 1.73 0.044

LesAffx.57438.1.S1_at nucleosome chromatin 
assembly factor

1.72 0.081

Les.3209.2.A1_at histone H4 replacement 
isoform

1.72 0.062
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genes. In Arabidopsis ~35% of the genes upregulated by a
severe chronic N limitation stress were classified as
response to abiotic stimulus, general stress, or oxidative
stress [41]. Studies of N effects on the expression of stress
response genes in rice also indicate that N limiting condi-
tions cause the differential regulation of biotic and abiotic
stress genes [42]. From their studies, Lian et al. postulate
that this could be due to the perception of N limitation as
a biotic or abiotic stress that requires a conserved set of
regulated genes that play protective roles [42]. Our
results suggest that the conditions in the water control
samples may have initiated a stress response in roots due
to an N limitation, and that the high and low NH4

+ treat-
ments alleviated this coordinated stress response.

The complex regulation of specific NH4
+ and NO3

-

transporters following the NH4
+ pulse may reflect a

simultaneous and synergistic response to both NH4
+ and

NO3
- in the soil patch. Both Arabidopsis AtAMT1.1 and

tomato LeAMT1 exhibit increased transcript levels dur-
ing N deprivation and are repressed by NO3

- and NH4
+

[43-45]. The higher expression of LeAMT1 under control
conditions and its repression by high NH4

+ in the present
study further support the idea that LeAMT1 is a high
affinity ammonium transporter whose expression is regu-

lated by N-limiting conditions to increase NH4
+ uptake.

In two hydroponics studies, LeAMT2 was induced by
increased concentrations of NH4

+ over the course of 24
hrs but repressed by increased concentrations of NO3

-

after 24 hrs [19,44]. The higher expression of LeAMT2 in
response to the soil N patch 53 hrs after treatment in this
current study suggests that the positive effects of NH4

+

may be stronger than the long-term repressive effects of
NO3

- exposure. Arabidopsis, barley and tomato NO3
-

transporters AtNRT2.1, HvNRT2, and LeNRT2.1 were
induced by NO3

- in hydroponic culture, and NH4
+

repressed HvNRT2 expression [13,19]. We report that
LeNRT2.1 was induced in the high NH4

+ treatment where
we measured increased NO3

- concentrations. The
increased NO3

- in the patch may have induced LeNRT2.1,
although the effects of NH4

+ alone in the absence of NO3
-

on LeNRT2.1 remain to be tested. The complex regula-
tion of the NH4

+ and NO3
- transporters in this study indi-

cate that tomato roots are able to quickly sense and
respond to changing concentrations of NH4

+ and NO3
-

simultaneously in a localized N patch, enhancing N
uptake and utilization. Moreover, growth is known to
increase with co-provision of NH4

+ and NO3
- [22]. Recent

Les.4831.1.S1_at nucleosome chromatin 
assembly factor

1.64 0.053

Les.4539.1.S1_a_at histone H4 1.57 0.091

LesAffx.2226.2.A1_at ribonucleotide reductase-like 1.57 0.091

Les.4564.1.S1_at microtubule associated 
protein

1.54 0.088

Les.2989.1.S1_at histone HTA7 1.51 0.044

Les.4539.2.S1_at histone H4 1.50 0.091

Les.3009.2.S1_at histone HTA12 1.48 0.066

Les.4940.1.S1_at cyclin -1.56 0.088

Les.3563.1.S1_at ER auxin binding protein 1 -1.74 0.082

Probe Set ID; Affymetrix identifier for each microarray probeset. Putative Annotation; functional annotation based on tomato protein 
function or function of Arabidopsis orthologues identified with BLAST searches. Fold Change; linear fold changes (bold values significant at 
False Discovery Rate (FDR) adjusted P-value < 0.10). Probe Set IDs representing the same genes include (Les.3009.3.A1_at and 
Les.3009.2.S1_at), (Les.677.1.S1_at and Les.677.2.A1_at), (Les.3209.1.S1_at and Les.3209.2.A1_at) and (Les.4539.1.S1_a_at and 
Les.4539.2.S1_at).

Table 2: Differentially regulated cell growth and division genes. (Continued)
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Table 3: Differentially regulated cell wall metabolism genes.

Probe Set ID Putative 
Annotation

Fold Change
(High N vs. 

water)

P-value Fold Change
(Low N vs. 

water)

P-value

Les.3273.1.S1_at cell wall-plasma 
membrane linker

5.98 0.053 1.63 0.424

LesAffx.846.2.S1_at pectinacetylesterase 3.22 0.080 -1.44 0.458

Les.3733.1.S1_at expansin 3.20 0.067 1.45 0.414

Les.3590.1.S1_at endo-xyloglucan 
transferase

3.12 0.081 -1.33 0.565

LesAffx.4617.1.A1_at pectinesterase 3.10 0.063 -1.41 0.417

Les.2316.1.S1_at cellulose synthase 
isomer

3.01 0.067 1.88 0.193

Les.2189.1.S1_at pectinesterase 2.51 0.070 -1.07 0.868

Les.218.3.S1_at pectinesterase 2.07 0.094 -1.14 0.710

Les.1604.1.A1_at cobra-like4 
phytocheletin 
synthase

1.91 0.096 1.51 0.219

Les.369.1.S1_at expansin 1.87 0.074 1.48 0.186

LesAffx.69659.1.S1_at chitinase class IV 1.82 0.063 1.65 0.127

Les.5233.1.S1_at pectinesterase 1.76 0.089 1.06 0.829

Les.218.1.S1_at pectinesterase 1.73 0.096 1.27 0.362

Les.3523.1.S1_at polygalacturonase 1.72 0.096 1.17 0.551

Les.4739.1.S1_at UDP-glucose:protein 
transglucosylase

1.70 0.048 1.28 0.196

Les.109.1.S1_at beta-galactosidase 1.61 0.065 -1.02 0.944

Les.4707.1.S1_at pectate lyase 1.61 0.061 1.67 0.093

Les.2590.2.A1_at endo-xyloglucan 
transferase A2-like

1.40 0.085 -1.05 0.743
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studies have also reported root responses to soil gluta-
mate that may have been available to patch roots [46].
This study highlights the ability of plant roots to simulta-
neously regulate multiple transporters for uptake of both
forms of inorganic N as part of a plastic response strategy
to quickly exploit the N pulse.

Numerous transcription factors were identified in the
microarray study that may function as key regulators of a
secondary response to the N enrichment. The tomato
MADS-box transcription factor BT013126 shares 67%
amino acid sequence similarity with Arabidopsis ANR1
and is expressed 3.26-fold higher in the water control
compared to the high NH4

+ treatment (Table 1). Arabi-
dopsis ANR1 is a key regulator of the developmental
response to N in roots and is induced by N starvation and
repressed by NO3

- re-supply [47,48]. Prior to the N addi-
tions, the plants were most likely N-limited as the shoot
N concentration was below sufficiency levels (mean =
1.94% for water control) [49]. The expression pattern of
this tomato ANR1-like gene in N patch roots corresponds
to what was found in Arabidopsis, suggesting that its
functional role to regulate root development in response
to N is conserved across species and in diverse root envi-
ronments.

Root responses to macronutrients N, P, potassium (K),
and sulfur (S) are interconnected and may be due to the
increased availability of one causing an imbalance in
another. Previous studies have shown N addition to
increase the expression level of S metabolism genes
[21,50], which could account for the changes in S metab-
olism genes reported here (Additional file 1). Alterna-
tively, these genes may have been affected by sulfate in
the NH4

+ treatment, although soil S concentrations were
likely sufficient for the plant. Cross talk between K and N
has also been shown where K deficiency alters the tran-
scriptional and post-transcriptional activity of various N
uptake, assimilation, and metabolism genes including
three nitrate transporters [51,52]. Nitrogen and phos-
phate metabolism have been shown to be closely linked
where N uptake results in coordinated P uptake [53,54].
However, in response to a 3 hr nitrate pulse, phosphate

transporter expression levels in hydroponics-grown Ara-
bidopsis did not change [20]. In soils, mineral availability
and acquisition is additionally affected by the mycorrhizal
symbiosis, and previous work has linked the up-regula-
tion of the fungal phosphate transporter GiPT to the
presence of N [55]. In this current study, multiple phos-
phate transporters were regulated by the NH4

+ treat-
ments, in contrast to the Arabidopsis findings [20]. We
observed that mycorrhizal-induced PT3 and mycor-
rhizal-specific PT4 were more highly expressed when
more NH4

+ was present in the soil. The PT3 and PT4
expression patterns suggest that arbuscular mycorrhizal
Pi uptake may be enhanced by NH4

+ soil enrichment.
Phosphate transporters PT1 and PT2 are found in both
mycorrhizal and nonmycorrhizal root tissues, but are
repressed in mycorrhizal roots [56-58]. The repression of
PT1 and PT2 in the NH4

+ treatments in the present study
further supports the conclusion that the NH4

+ treatments
promoted the symbiotic Pi uptake pathway. In fact, Wang
et al. reported that tomato PT2 was induced by NO3

- in
hydroponic-grown non-mycorrhizal roots [19], and thus
it appears that PT2 regulation in the current study was in
response to up-regulation of the mycorrhizal Pi uptake
pathway rather than soil NO3

- directly. We can speculate
that the NH4

+ soil enrichment induced root growth in the
nutrient patch, resulting in a localized P deficiency that
promoted the mycorrhizal Pi uptake pathway. Impor-
tantly, the lower expression level of phosphate-starvation
induced TPSI1 in the low and high NH4

+ treatment plants
suggests that these roots were receiving more Pi than the
water control samples [59], although this was not mea-
sured directly. This shift towards the mycorrhizal Pi
uptake pathway may have resulted in increased Pi uptake,
possibly as a mechanism to support N-induced growth.
Our results detail a novel and complex interaction
between inorganic N, the arbuscular mycorrhizal symbi-
osis, and the tomato phosphate transporter gene family,
and suggest an important role for the symbiosis in the
utilization of an N patch to increase P uptake and main-
tain N-induced growth.

Les.4523.1.S1_at xyloglucan 
endotransglucosylas
e-hydrolase

-2.53 0.079 -1.58 0.265

Les.4652.1.S1_at esterase/lipase/
thioesterase

-3.76 0.063 -1.78 0.271

Probe Set ID; Affymetrix identifier for each microarray probeset. Putative Annotation; functional annotation based on tomato protein 
function or function of Arabidopsis orthologues identified with BLAST searches. Fold Change; linear fold changes (bold values significant at 
False Discovery Rate (FDR) adjusted P-value < 0.10). Probe Set IDs Les.218.1.S1_at and Les.218.3.S1_at represent the same genes.

Table 3: Differentially regulated cell wall metabolism genes. (Continued)
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Table 4: Differentially regulated stress and defense response genes.

Probe Set ID Putative Annotation Fold Change
(High N vs. 

water)

P-value Fold Change
(Low N vs. 

water)

P-value

Les.2287.3.A1_at TAS14 peptide 
dehydrin

-24.08 0.053 -40.75 0.078

Les.5957.1.S1_at lactoylglutathione 
lyase

-6.87 0.111 -17.15 0.078

Les.293.1.S1_at hydroxyacylglutathio
ne hydrolase

-4.66 0.513 -4.44 0.078

Les.23.1.S1_at glutathione S-
transferase

-4.54 0.569 -3.07 0.078

Les.124.1.S1_at glutathione 
transferase

-4.38 0.044 -2.54 0.107

Les.5100.1.S1_at type I small heat shock 
protein

-3.85 0.044 -2.20 0.107

Les.4789.1.S1_at pathogenesis-related 
protein

-3.47 0.062 -2.12 0.115

Les.5341.1.S1_at pathogen responsive 
alpha-dioxygenase 2

-2.76 0.098 -1.85 0.131

Les.1645.1.A1_at pathogenesis-related 
chitin-binding protein

-2.44 0.065 -1.74 0.133

Les.4004.1.S1_a_at pathogenesis related 
PR5-like protein

-2.26 0.070 -1.59 0.143

Les.5098.1.S1_at early responsive to 
dehydration 7-like

-2.20 0.064 -1.42 0.152

LesAffx.47187.1.S1_at responsive to 
dehydration 22-like

-2.12 0.058 -1.34 0.165

Les.5103.1.S1_at pathogenesis-related 
protein 1 like

-2.04 0.062 -1.33 0.168

Les.3151.1.S1_at universal stress 
protein

-1.99 0.084 -1.33 0.168

Les.253.1.S1_at pathogenesis related 
protein 1-like

-1.95 0.044 -1.29 0.229

Les.4910.1.S1_at stress enhanced 
protein 2-like

-1.93 0.085 -1.26 0.232
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Les.1498.1.S1_at dehydration 
responsive

-1.87 0.096 -1.25 0.289

Les.208.1.S1_at glutathione S-
transferase

-1.72 0.062 -1.22 0.340

Les.2657.1.S1_at rare cold inducible 
protein-like

-1.70 0.095 -1.20 0.377

Les.3194.1.S1_at universal stress 
protein

-1.62 0.088 -1.16 0.386

Les.5128.1.S1_at responsive to 
dehydration 22-like

-1.61 0.044 -1.14 0.454

Les.3276.3.S1_at monocysteinic 
thioredoxin

-1.56 0.093 -1.11 0.509

Les.252.1.S1_at wound-responsive 
protein-related

-1.50 0.077 -1.11 0.524

Les.54.1.S1_at sulfiredoxin 1.10 0.044 -1.10 0.537

Les.248.2.A1_at glutathione S-
transferase

1.14 0.095 -1.08 0.796

Les.384.1.A1_at thaumatin-like 
pathogenesis-related 
PR-5 like protein

1.42 0.070 -1.07 0.850

Les.4307.1.S1_at early responsive to 
dehydration 3-like

1.47 0.053 -1.05 0.870

Les.1394.1.A1_at heat shock factor 
binding protein 1

1.82 0.063 1.22 0.185

Les.3593.1.S1_at heat shock protein 2.13 0.044 1.45 0.204

Les.2409.1.S1_at dnaJ related 
molecular chaperone

2.30 0.050 1.57 0.537

LesAffx.43379.1.S1_at dnaJ homologue 3 2.71 0.052 1.64 0.623

LesAffx.71535.1.S1_at heat shock protein 2.81 0.077 1.72 0.639

Les.641.1.S1_at dnaJ heat shock 
protein

3.01 0.067 1.95 0.746

LesAffx.66226.2.S1_at cold-regulated 
plasma membrane 1 
protein

3.28 0.044 1.97 0.180

Table 4: Differentially regulated stress and defense response genes. (Continued)
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Conclusions
Spatially discrete NH4

+ is quickly transformed in the soil
and taken up by plants, and the tomato root transcrip-
tome reflects levels of N availability and transformations
of N that occur in the soil. The dynamic regulation of
both NH4

+ and NO3
- transporters in N-patch roots dem-

onstrates that roots are able to simultaneously sense and
respond to both forms of inorganic N, in ways that are
likely to increase root competition with microbial immo-
bilization, nitrification, and denitrification, and conserve
N within cropping systems. The arbuscular mycorrhizal
symbiosis may further increase the effective recovery of
other nutrients such as P in an N patch. The strong and
diverse transcriptional response to the soil N patch illus-
trates the utility of applying transcriptomic studies to
plants growing in realistic soil environments and the key
genes co-regulated under high and low N conditions in
this study may serve as molecular tools for monitoring
plant N status in agricultural sites for finer tuning of fer-
tilizer application, soil microbial N processes, and ulti-
mately, to develop more efficient agriculture methods.

Methods
Soil and plant material
Seeds of Solanum lycopersicum L. Cv. 76R [60] were sur-
face sterilized, germinated with mist irrigation and then
watered with one-tenth strength Long Ashton's solution
containing N as (NH4)2SO4 (4 mM) and NaNO3 (8 mM).
Plants were maintained under day/night length of 16/8 hr
in UC Davis glasshouses. Seven week old seedlings were
transplanted into 12-L pots containing buried rings with
field-collected soil (Zamora loam, a fine silty, mixed ther-
mic, Mollic Haploxeralfs) collected on an organically
managed farm (Jim and Deborah Durst Farming in
Esparto, Yolo County, California) [8]. The buried soil root
in-growth cores (rings) were 7.3 cm in diameter and 4.2
cm tall (total volume 176 cm3) and were filled with 210 g
of field soil to a final bulk density equal to that of the sur-
rounding soil (1.2 g cm-3). The broad ends of the ring
were covered with 1 mm plastic mesh to easily allow
roots to grow up and down into the ring. The soil was
passed through a 1 cm sieve before packing into pots at a
bulk density of 1.2 g cm-3. Extractable inorganic N (mean
± standard error) was 0.20 ± 0.02 μg NH4

+-N g-1 dry soil
and 9.7 ± 1.09 μg NO3-N g-1 dry soil at the time the rings
were prepared. An application of one tenth strength Long
Ashton's solution was applied two weeks after transplant-
ing. Soil moisture was maintained gravimetrically at 19%
before and after treatment injection by weighing the pots
daily, and watering to compensate for evapotranspiration
water loss.

Experimental design
We applied the nutrient treatments five weeks after trans-
plantation by injecting 9 aliquots of 2 mL solution inside
the buried ring using a template placed on the soil surface
to assure an even distribution of nutrients and minimal
loss of the solution. We added 6.5 μg and 65 μg 15NH4

+-N
(99 atom percent) g-1 dry soil in the ring for the low and
high NH4

+ treatments, respectively (1.35 mg 15NH4
+-N

per ring and 13.5 mg 15NH4
+-N per ring, respectively).

Water was used as a control. Each treatment consisted of
three biological replicates, and plants were destructively
harvested at 5, 29, 53, and 96 hrs after 15NH4

+-N addition,

Les.5158.1.S1_at dehydration response 
element B1A

3.36 0.092 1.99 0.218

LesAffx.59336.1.S1_at response to 
desiccation 26-like 
transcription factor

3.59 0.082 2.25 0.231

Probe Set ID; Affymetrix identifier for each microarray probeset. Putative Annotation; functional annotation based on tomato protein 
function or function of Arabidopsis orthologues identified with BLAST searches. Fold Change; linear fold changes (bold values significant at 
False Discovery Rate (FDR) adjusted P-value < 0.10).

Table 4: Differentially regulated stress and defense response genes. (Continued)

Figure 4 qRT-PCR analysis of phosphate physiology genes. Ex-
pression levels of the tomato phosphate transporters and phosphate 
starvation response gene TPSII in patch roots harvested 53 hrs after 
high (65 μg NH4

+-N g-1 soil), low (6.5 μg NH4
+-N g-1 soil), or water con-

trol treatments. Relative quantity was calculated using the ΔΔCT meth-
od with actin (LeACT) as the reference control, and the water control 
group normalized to 1. For a given gene, means followed by different 
letters are significantly different from one another at P < 0.05 (one way 
ANOVA).
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for a total number of 36 plants in an unreplicated block
design. The transcriptome analyses were performed on
roots harvested at 53 hrs post-treatment.

Harvest and sample analysis
At harvest, shoots were severed at the soil surface, dried
at 60°C, weighed, and ground to a fine powder for isotope
analyses. Immediately following the harvest of the above-
ground biomass, the root in-growth rings were carefully
exposed, and the roots growing into and out of the ring
were severed. Patch roots for transcriptome analysis were
rinsed and immediately frozen in liquid nitrogen. A
homogenous sub-sample of the patch soil and the sur-
rounding pot soil was immediately removed for gravimet-
ric water content and soil inorganic N concentrations.
Soil NH4

+ and NO3
- were analyzed after KCl extractions

and colorimetric determination using modifications of
Miranda et al., [61] and Foster et al., [62] respectively. A
small subsample of ring roots was scored for arbuscular
mycorrhizal fungi at 200× [63]. The remaining patch
roots were washed by wet sieving, dried at 60°C, weighed,
and ground to a fine powder for isotope analyses. All
dried plant material was analyzed for δ15N on a PDZ
Europa ANCA-GSL elemental analyzer and a PDZ
Europa 20-20 isotope ratio mass spectrometer (Sercon
Ltd., Cheshire, UK) at the UC Davis Stable Isotope Facil-
ity, USA. Background 15N was calculated as the average
atom percent 15N in the water samples (mean atom per-
cent 15N ± SD in shoots: 0.369% ± 0.0003). Leaf total P
was analyzed by microwave digestion with nitric acid/
hydrogen peroxide [64] followed by atomic absorption
spectrometry and inductively coupled plasma atomic
emission spectrometry at the UC Davis Division of Agri-
culture and Natural Resource Laboratory.

Soil analysis
Soil nutrient and plant isotope data were analyzed with a
two-way analysis of variance (ANOVA) with harvest
time, nutrient addition, and block as fixed main effects.
All two-way interactions were tested. The three way
interaction was not tested because of insufficient degrees
of freedom. Data was checked to assure that the ANOVA
assumptions were met and was transformed as necessary.
Tukey-Kramer Honestly Significant Difference test was
used to determine differences between means at P < 0.05.
All data were analyzed using R (R Core Development
Team 2007).

RNA isolation
Root RNA samples were extracted using the RNeasy
Plant Mini Kit (Qiagen Sciences, Germantown, MD,
USA) following the manufactures guidelines plus a third
wash step before elution. RNA concentrations and quality
were assessed using the Agilent Nanodrop and the RNA

6000 Nano Assay (Bioanalyzer 2100, Agilent, Santa Clara
CA). RNA samples had RNA integrity numbers (RIN) of
at least 7.0. DNase digestion was performed on 20 ug
total RNA using RQ1 RNase-free DNase (Promega, Mad-
ison WI). These RNA were used for both microarray
analysis and cDNA synthesis for qRT-PCR analysis.

Microarray analysis
Transcriptome profiling of each 53h-post injection RNA
sample was performed using the Tomato Genome Array
Chip (Affymetrix, Santa Clara, CA, USA). RNA samples
were prepared for microarray analysis using the Mes-
sageAmp Premier RNA Amplification Kit (Ambion, Fos-
ter City CA) with 200 ng total RNA as input. Fragmented
cRNA samples were then sent to the University of Mis-
souri's DNA Core Facility for Array hybridization and
scanning. Each array's CEL file was summarized in
Affymetrix Expression Console software using the MAS5
algorithm. The signal intensities were log transformed,
and quality control analysis performed. This array data
has been made available on the Gene Expression Omni-
bus (GEO; http://www.ncbi.nlm.nih.gov/projects/geo/)
accession #GSE21020. The data were filtered to remove
probesets whose log signal intensity was below 4.605 in
all 9 arrays. For each probeset, which represents the com-
bined expression data from all relevant probe pairs on the
chip, the generalized linear model Yij = μ + Ti + εij was fit.
In each ANOVA, Yij is the log normalized transcript level
for the ith treatment and the jth replicate, μ is the overall
mean expression for the probeset and Ti represents the ith
treatment (water, low nutrient, and high nutrient). The
null hypothesis t1 = t0 (i.e., mean expression not different
between a pair of treatments) was tested using an F-test.
We examined the model for conformation to the assump-
tion of normality of the residuals testing the null hypoth-
esis that the residuals for each gene were normally
distributed using the Shapiro-Wilk Test. All analyses were
performed in JMP Genomics 3.0 (SAS Institute, Cary
NC). An FDR level of 10% was used for declaring findings
significant, and a stringent rate of 5% was also examined
[65,66]. ANOVA analysis of all differentially expressed
genes can be found in Additional file 1. The list of statisti-
cally significant transcripts was initially annotated using
the Affymetrix NetAffyx annotation file to match a repre-
sentative Genbank public ID and Unigene to each probe-
set. The functional annotations of the Unigenes were
grouped into functional categories as described in Bevan
et al. [67]. In cases where the tomato gene did not have a
matching Unigene or had not been functionally anno-
tated, the tomato sequence was used to identify Arabi-
dopsis orthologues by WU-BLAST searches at TAIR [68].
To test for enrichment of specific functional categories
between the high vs water and low vs. water pairwise
comparisons, Fisher's exact test was performed using

http://www.ncbi.nlm.nih.gov/projects/geo/
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GraphPad Prism 5.0, San Diego CA). Within specific cat-
egories, binomial distribution probability tests were per-
formed to test for enrichment in the up/down regulation
patterns of functionally related genes (expectation = 0.5).

Quantitative real-time RT-PCR
cDNA was synthesized from 1.5 ug DNase-treated total
RNA using the Superscript III kit (Invitrogen Carlesbad
CA). Gene-specific primer sets were designed using
IDT's primerquest software program (Additional file 3),
and their sequence uniqueness confirmed with a nucle-
otide BLAST search against the tomato genome database.
Primer pairs were tested for specificity and efficiency
with serial dilution reactions and dissociation curve anal-
ysis post-amplification. Real-time PCR reactions were
run on the Stratagene MX3000 PCR machine using Sybr
Green chemistry (Invitrogen Platinum Sybr Green II
master mix, 400 nM primer concentration, ROX refer-
ence dye, and 1:150 diluted cDNA). Multiple reference
control genes were tested against all samples to identify
control genes whose expression was not affected by the
NH4

+ treatments. LeACT and LeUBI were similarly
expressed across the samples while LeTubulin was differ-
entially expressed. LeACT was subsequently used as the
reference control gene, and the relative expression of the
various target genes was analyzed according to the ΔΔCT
method [69]. Standard error was computed from the
average of the ΔCT values for each biological sample [70].
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