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Abstract

including biotic and abiotic stress signaling pathways.

Background: Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in mediating biotic and abiotic
stress responses. In plants, MAPKs are classified into four major groups (A-D) according to their sequence
homology and conserved phosphorylation motifs. Members of group A and B have been extensively characterized,
but little information on the group D MAPKs has been reported.

Results: In this study, we isolated and characterised GhMPK16, the first group D MAPK gene found in cotton.
Southern blot analysis suggests GhMPKI16 is single copy in the cotton genome, and RNA blot analysis indicates that
GhMPK16 transcripts accumulate following pathogen infection and treatment with multiple defense-related signal
molecules. The analysis of the promoter region of GhMPKT6 revealed a group of putative cis-acting elements
related to stress responses. Subcellular localization analysis suggests that GhMPK16 acts in the nucleus. Transgenic
Arabidopsis overexpressing GhMPK16 displayed significant resistance to fungi (Colletotrichum nicotianae and
Alternaria alternata) and bacteria (Pseudomonas solanacearum) pathogen, and the transcripts of pathogen-related
(PR) genes were more rapidly and strongly induced in the transgenic plants. Furthermore, transgenic Arabidopsis
showed reduced drought tolerance and rapid H,O, accumulation.

Conclusion: These results suggest that GhMPK16 might be involved in multiple signal transduction pathways,
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Background
Stresses such as drought, high salinity and fungal infec-
tions constitute a major limitation to crop productivity.
Plants have developed sophisticated defense mechanisms
to deal with diverse unfavorable environmental factors.
The mitogen-activated protein kinase (MAPK) cascades
are conserved pathways through which extracellular sti-
muli are transduced into intracellular responses in all
eukaryotes [1,2]. Plant MAPK cascades have been
shown to regulate a number of essential biological pro-
cesses, including growth, development and stress
responses [3].

MAPK cascades are composed of three interlinked
protein kinases: MAPKK kinases (MAPKKKs or
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MAP3Ks), MAPK kinases (MAPKKs, MAP2Ks or
MEKs) and MAPKs. MAPKs are the terminal compo-
nents in this cascade, and they are regulated by the dual
phosphorylation of the conserved T-X-Y motif located
in the activation loop by upstream kinases (MAPKKs).
There are 20 MAPK genes identified in Arabidopsis, and
a similar repertoire of genes have been found in other
plants, such as rice (Oryza sativa), poplar (Populus sp.)
and grapevine (Vitis vinifera) [3-5]. The MAPKs can be
categorised into four major groups (A, B, C, and D)
based on the phylogenetic analyzes of amino acid
sequences and phosphorylation motifs (TEY and TDY).
The TEY subtype can be classified into three groups (A,
B and C), whereas the TDY subtype is found in the
more distant group D [4,5].

In Arabidopsis, three particular MAPKs in groups A
and B (MPK3, MPK4 and MPK6) have been extensively
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studied. Both biochemical and genetic analyzes have
been performed for each of these isoforms, which
appear to work in multiple signaling pathways and play
crucial roles in many distinct processes ranging from
stress responses to developmental processes [3]. Infor-
mation about group C MAPKs has recently emerged.
Three members of group C, MPKI and MPK2 in Arabi-
dopsis and PsMPK?2 in pea (Pisum sativum L.), are tran-
scriptionally induced by a variety of stresses [6,7]. More
recently, Arabidopsis group C MAPKs, including MPK1,
MPK2, MPK7 and MPK14, were reported to be acti-
vated by MKK3, and MKK3-MPK?7 participates in
pathogen signaling [8]. Cotton GEMPK7 may play a role
in pathogen resistance, plant growth and development
[9].

Based on the phylogenetic analysis and pairwise com-
parison of Arabidopsis and rice MAPKs, it has been pro-
posed that the rice genome contains more MAPKs with
a TDY phosphorylation motif (11 members) than with a
TEY motif (6 members). In contrast, the Arabidopsis
genome contains more MAPKs with a TEY motif (12
members) than with a TDY motif (8 members) [10].
Detailed functional data about TDY MAPKs was first
obtained from a monocot plant. Overexpression of
OsBWMKI1 (also known as OsMPKI2) in tobacco
resulted in constitutive PR gene expression and
enhanced resistance to fungal and bacterial infections
[11]. In maize, ZmMPK® is able to interact with a 14-3-
3 protein, and these data represent the first evidence of
the possible involvement of 14-3-3 proteins in the regu-
lation of MAPK cascades in plants [12]. More recently,
Arabidopsis MPK9 (a group D MAPK) and MPKI12 (a
group B MAPK) were found to be preferentially
expressed in guard cells, share functional redundancy
and function as positive regulators downstream of reac-
tive oxygen species (ROS) in guard cell abscisic acid
(ABA) signaling [13]. Moreover, Arabidopsis MPK18
helps to mediate cortical microtubule functions in plant
cells [14].

Cotton (Gossypium hirsutum) is one of the most
important fibre and oil crops, and its growth and yield
are severely impaired in various biotic/abiotic stress
conditions. The biological significance of cotton group
D MAPKs has not yet been described. In this study, a
cDNA clone, GhEMPKI6, encoding a putative group D
MAPK gene was isolated and characterised. Our results
indicate that the expression of GEMPKI6 is induced by
chemical and biological signals. Ectopic expression of
GhMPK16 in Arabidopsis results in enhanced disease
resistance against fungi and bacteria pathogen. More-
over, GhMPKI6 transgenic plants were obviously more
drought-sensitive than control plants. We deduced that
GhMPK16 may play important roles in regulating patho-
gen resistance and drought signaling.
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Results

Cloning and characterisation of the full-length GhMPK16
cDNA

Based on the conserved region of plant group D MAPK
genes, the degenerate primers MP1 and MP2 were
designed and synthesized to clone the internal con-
served region of MAPKs from cotton, and a putative
MAPK fragment (476 bp) was cloned. Next, rapid
amplification of cDNA ends-PCR (RACE-PCR) was per-
formed, and the full length sequence was retrieved. A
3-end fragment of about 1500 bp and a 5-end fragment
of about 360 bp were obtained with the specific primers.
The full-length cDNA sequence was PCR amplified
using the gene-specific primers (FL1 and FL2), and it
showed a high degree of homology to group D MAPKs
especially Arabidopsis AtMPKI16. According to the
nomenclature for plant MAPKs, the novel cotton MAPK
gene was named GhMPKI6 [4,5], and is the first group
D MAPK identified in cotton. The full-length cDNA
sequence of GhMPKI16 (GenBank accession number:
FJ966889) was 2030 bp with a 78 bp 5 untranslated
region (UTR) and a 287 bp 3" UTR. The cDNA contains
a 1665 bp open reading frame (ORF) that is predicted
to encode a protein of 554 amino acids with a predicted
molecular mass of 63.18 kDa and an isoelectric point
(pI) of 8.61.

A BLAST search (http://www.ncbi.nlm.nih.gov/
BLAST) and multi-alignment analysis revealed that
GhMPK16 is highly related to other group D MAPKs,
sharing a homology of 81.48% to AtMPK16, 72.18% to
TaMAPK2, 74.56% to OsMPK16-1 and 76.02% to
ZmMPK6 (Figure 1A). Moreover, as with other known
plant group D MAPKs, GhMPK16 has the same family
signature of 11 conserved subdomains, an activation
loop (T-loop), a phosphorylation motif (TDY motif) in
the T-loop, and an extended C-terminal region relative
to groups A, B and C. Additionally, GhMPK16 also
lacks a C-terminal CD domain, a feature conserved in
MAPKs belonging to the other groups (A, B, C) [4].

To reveal the evolutionary relationship of GhMPK16
with other MAPKs from various plant species, we con-
structed a phylogenetic tree using amino acid sequences
derived from the GenBank database (Figure 1B). Our
results indicate that GhRMPK16 has high similarity with
AtMPK16 and a close genetic relationship with many
monocot (rice, corn, and wheat) group D MAPKs, such as
OsMPK16-1, OsMPK15, ZmMPK6 and TaMAPK?2, which
suggests that these genes may have a similar function
across species including dicotyledons and monocotyledons.

Genomic structure and Southern blot analysis of
GhMPK16

To isolate a genomic GEMPKI6 clone, two pairs of
specific primers, FL1/Z1 and FL2/Z2, were designed
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Figure 1 Sequence analysis of GhMPK16. (A) Alignment of the deduced GhMPK16 protein sequence with other known plant group D MAPKs.
Amino acid sequences used in the analysis are from Arabidopsis thaliana (AtMPK16, NP_197402), Triticum aestivum (TaMAPK2, ABC54585), Zea
mays (ZmMPK6, NP_001105238), Oryza sativa (OsMPK16-1, ACF06191), Gossypium hirsutum (GhMPK16, FJ966888). These sequences were aligned
using the DNAman 6.0 program. Identical and similar amino acids were shaded in black and gray, respectively. The protein kinase subdomains
are indicated by Roman numerals (I to XI) over the sequences. The activation-loop is boxed, and the phosphorylation motif (TDY) is marked by

and classified as a member of the TDY group.

an arrow. (B) The phylogenetic relationships of GhMPK16 and other plant MAPKs. Numbers above or below the branches indicate bootstrap
values (>50%) from 1,000 replicates. The amino acid sequences of MAPKs used for construction of the tree are deposited to the GenBank
database under the following accession numbers: AtMPK3 (NP_190150); NtWIPK (BAA09600); PsMAPK3 (AAF73236); OsMPK5 (AAL87689); AtMPK6
(NP_181907); NtSIPK (AAB58396); NtNTF6 (CAA58760); AtMPKS (NP_567378); AtMPK4 (NP_192046); OsMPK6 (NP_922504); AtMPK7 (NP_179409);
OsMPK3 (ABHO1189); NtNTF3 (CAA49592); AtMPK1 (NP_172492); GhMAPK (ABA00652); AtMPK18 (NP_175756); OsMPK8 (CAD54742); AtMPK17
(NP_001030941); AtMPK15 (NP_565070); AtMPK9 (NP_566595); OsMPK12 (AAD52659); AtMPK16 (NP_197402); GhMPK16 (F1966889); OsMPK15
(ACD76441); ZmMPK6 (NP_001105238); OsMPK16-1 (ACF06191); TaMAPK2 (ABC54585). At, Arabidopsis thaliana; Nt, Nicotiana tobacum; Ps, Pisum
sativum; Ta, Triticum aestivum; Zm, Zea mays; Os, Oryza sativa; Gh, Gossypium hirsutum. The Ser/Thr kinase domain is indicated as gray and
contains part of the activation-loop motif; the CD domain required for MAPK docking is indicated in black. GAMPK16 is boxed in the diagram

based on the GhEMPKI16 cDNA sequence, and the cot-
ton genomic DNA was used as the template to gener-
ate two PCR fragments. These two fragments were
further linked together through their overlapping
region and the full-length GhMPKI6 genomic
sequence of 5520 bp (GenBank accession number:
FJ966896) was deduced. A comparison between the
GhMPKI16 genomic and cDNA sequences indicated
that ten introns were present in the gene (Additional
file 1: supplementary Figure S1). Interestingly, exon 8
was only 5 bp, intron 7 did not contain a 3’-splice
acceptor AG signal, and intron 8 did not contain the
conserved 5’-splice donor GT signal. A comparative
analysis of the homologous genes from Arabidopsis
thaliana, Oryza sativa and Vitis vinifera was per-
formed (Additional file 1: supplementary Figure S1).

This analysis indicated that the size of the exons was
conserved, but the length of the introns for each mem-
ber was different. To date, the most noticeable differ-
ence in GhMPKI6 was the number of exons.
GhMPKI6 has 11 exons, and the others have 10.

Southern blots were used to investigate the genomic
organization of the GhMPKI6 gene. Genomic DNA was
completely digested with EcoR V, Xba I, Hind III and
EcoR 1 and hybridised to the 3’ partial sequence of
GhMPK16, which contains no restriction sites of EcoR
V, Hind III and EcoR I and only one Xba I site presents
in the probe region. As shown in Figure 2, only one
band was observed for the EcoR V, Hind III and EcoR 1
digestions, and two bands were observed for the Xba I
digestion. These results imply that there is a single
GhMPK16 gene in the cotton genome.


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ966896
http://www.ncbi.nlm.nih.gov/pubmed/190150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/09600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/73236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/87689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/181907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/58396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/58760?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/567378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/192046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/922504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/179409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/01189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/49592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/172492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/00652?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/175756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/54742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/001030941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/565070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/566595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/52659?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/197402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/966889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/76441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/001105238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/06191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/54585?dopt=Abstract

Shi et al. BMC Molecular Biology 2011, 12:22
http://www.biomedcentral.com/1471-2199/12/22

Figure 2 Southern blot analysis for GhMPK16 in the cotton
genome. Genomic DNA (30 mg/sample) was digested with £coR V,
Xba |, Hind 1l and EcoR | respectively, followed by hybridization with
the partial a->?P -labeled genomic GhMPK16 fragment. Molecular

weight marker is shown on the right.

Subcellular localization of GhMPK16

To reveal the cellular localization of GhMPK16, a repor-
ter gene encoding GFP was fused to GhMPKI16 and
placed under the control of the CaMV35S promoter,
and immunoblot analysis indicated that GhMPK16::GFP
was an integrated fusion protein (Additional file 2: sup-
plementary Figure S2). The biolistic transformation sys-
tem was used for a transient assay in onion epidermal
cells. The nuclear localization of GFP-conjugated
GhMPK16 was confirmed in individual transgenic cells
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by GFP fluorescence, using DAPI staining to detect the
nuclei and interference contrast images to detect whole-
cell structures. As shown in Figure 3B, the 35S-
GhMPK16::GFP construct localized to the nucleus, and
the 35S-GFP control construct showed GFP signals in
both the cytoplasm and the nucleus. In addition, a pro-
gram that predicts the subcellular localization of pro-
teins (http://www.bioinfo.tsinghua.edu.cn/SubLoc/)
predicted that GhMPK16 is localized in the nucleus
with an expected accuracy of nearly 74%. These results
indicate that the GhMPK16 protein is likely localized in
the nucleus.

Expression pattern of GhMPK16 under diverse abiotic and
biotic stresses in cotton

To determine whether GEMPK16 expression is triggered
by abiotic stresses, cotton seedlings were exposed to low
and high temperatures, mannitol, NaCl and wounding
treatments. GhMPKI16 showed a slightly response to low
and high temperatures (Figure 4A, B, C). GhEMPKI6 tran-
scripts accumulated within 6 h following mannitol treat-
ment, and the induction was still present 12 h after
treatment (Figure 4D). As shown in Figure 4E, GhMPK16
expression increased and reached the maximum at 8 h
after the NaCl treatment. Wounding rapidly and transi-
ently enhanced the expression level of GZMPK16 (Figure
4F). Taken together, the expression profiles indicate that
GhMPK16 is induced by various abiotic stresses.

To explore the roles of GZMPK1I6 in plant biotic stres-
ses, cotton seedlings were inoculated with pathogens,
including Xanthomonas campestris pv. malvacearum
(X. campestris pv. malvacearum), Colletotrichum gossypii
(C. gossypii) and Fusarium oxysporum f. sp. vasinfectum
(F. oxysporum f. sp. vasinfectum). As shown in Figure 4
(G, H, I), infection by all of these pathogens elevated the
transcription level of GEMPK16, although the induction
kinetic was variable. There was no significant change in
GhMPKI6 transcript level without pathogen treatment
during 7 days (Figure 4]). These results indicate that
GhMPK16 may be intimately involved in the plant patho-
gen defense response.

Additionally, we examined the response of GAMPKI6
to exogenously applied salicylic acid (SA), methyl jasmo-
nate (MeJA) and ABA, which are plant signaling mole-
cules involved in plant defense signaling pathways. The
expression of GhMPK16 was induced by all of these sig-
nal molecules (Figure 4K, L, M). Furthermore, the sol-
vent control (Ethanol) did not significantly induce the
expression of GhMPKI16 (Figure 4N)

GhMPK16 promoter analysis

Inverse-PCR (I-PCR) was used to obtain a 785 bp frag-
ment of the 5’ flanking region upstream of the transcrip-
tional start site, as determined by the GEMPKI16 cDNA
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Figure 3 Subcellular localization of the GhMPK16 protein in onion epidermal cells. (
355-GFP fusion construct. (B) Transient expression of 355-GFP and 35S-GhMPK16:GFP in onion eplderma\ cells. Cells were analyzed by laser
confocal microscopy 12 h after particle bombardment. The nuclei of the onion cells were visualised by DAPI staining. Bar = 20 pm.

A) Schematic diagram of the 355-GhMPK16:GFP and

sequence. In order to find cis-acting elements, the Plant-
CARE databases were analyzed. Sequence analysis
revealed that the GhMPKI16 promoter contains TATA
and CAAT motifs located at nucleotides -38 and -64
relative to the transcriptional start site, respectively,
which is characteristic of eukaryotic gene promoters. As
shown in Figure 5, the 785 bp promoter region contains
several motifs probably related to pathogen and drought
signals, such as a Box-W1 element (fungal elicitor
responsive element), an ERE element (ethylene-respon-
sive element), two TCA-element (cis-acting SA-respon-
sive element) and a MBS element (MYB binding site
involved in drought-inducibility). This suggests that
these putative cis-acting elements are responsible for
enhanced expression of GhMPKI6 during stress
conditions.

Enhanced resistance of GhMPK16 transgenic plants to
pathogenic infections

In order to further explore the function of GEMPKI6 in
plant defense, the coding sequence of GhMPKI6 was

cloned into the plant binary vector pBI121 and trans-
formed into Arabidopsis. A total of 32 independent
transgenic lines were obtained by kanamycin-resistance
selection and confirmed by PCR (data not shown). RNA
blot analysis was performed to determine the transgenic
expression levels in 7 randomly selected lines (Figure
6A). Two representative lines (#2 and #5) exhibiting dif-
ferent expression levels were selected and their T3 trans-
genic plants used to evaluate disease resistance.

To analyze bacterial resistance responses in wild-type
and GhMPKI6-overexpressing plants, 3-week-old plants
were inoculated with P. solanacearum and monitored
daily for the appearance of typical disease symptoms. P.
solanacearum caused more severe chlorotic symptoms
in the wild-type plants compared to the transgenic
plants 6 d after inoculation (Figure 6B). As shown in
Figure 6C, the bacterial titres in the inoculated leaves of
the transgenic plants were significantly reduced as com-
pared to those in wild-type plants at 3- and 6-day post-
inoculation, which is consistent with the observed symp-
toms. The rate of bacterial growth in the inoculated
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Figure 4 Expression profiles of GhMPK16 under abiotic/biotic stresses. RNA blots were performed with total RNA extracted from leaves at
the indicated times, and treated with low temperature (12°C) (A), high temperature (37°C) (B), normal temperature (25°C) (C), 200 mM mannitol
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Figure 5 Nucleotide sequence of the promoter region of GhMPK16. The predicted transcription initiation site is indicated (+1, A). The start
codon is marked with an asterisk, and the putative core promoter consensus sequences (TATA-box and CAAT-box) are highlighted in grey. The
putative cis-acting elements are indicated by boxes and their corresponding names are given above each element. Arrows indicate the direction

of the cis-element. Box-W1 is a fungal elicitor responsive element, ERE is an ethylene-responsive element, the MBS binding site is involved in
gene induction in response to drought-inducibility and the TCA-element is a cis-acting element involved in SA-responsive.

leaves was lower for transgenic line #2 than for trans-
genic line #5. These results indicate that GEMPKI6 can
enhance resistance to P. solanacearum in a dose-depen-
dent manner in transgenic plants. In order to better
understand the role of GEMPKI6 in disease resistance
in transgenic plants, three marker genes associated with
pathogen responses (AtPRI, AtPR4, and AtPDF1.2) were
selected, and the transcript levels of those genes were
analyzed by reverse transcription-PCR (RT-PCR). The
expression of the three marker genes, especially AtPR4
and AtPDF1.2, was more rapidly and strongly induced
by the P. solanacearum infection in transgenic plants
than in wild-type plants (Figure 6D). These results
demonstrate that the overexpression of GEMPKI16 acti-
vates defense-related gene expression when plants are
challenged with P. solanacearum.

As shown in Figure 7, GhMPKI6-overexpressing
plants were evaluated for their resistance to fungal
pathogens (C. nicotianae and A. alternate). Detached
leaves were inoculation with C. nicotianae and A. alter-
nate, and after 5 days, the lesions in the wild-type leaves
were larger than those in the transgenic leaves, and line
#2, which displayed the highest level of GEMPKI16
expression, exhibited the least severe disease symptoms.
To quantify the lesions, the diameters of the disease
spots were measured, and the data were consistent with

the visual observations. These results indicate that
GhMPKI6 can enhance resistance to infections by
pathogenic fungi in transgenic plants. After inoculating
whole plants with C. nicotianae and A. alternate, the
expression of AtPR1, AtPR4 and AtPDF1.2 was observed
at 3- and 6-day post-infection in both the wild-type and
transgenic plants, and the expression patterns of the
three marker genes were similar to those observed with
the P. solanacearum challenge (data not shown).

Reduced drought tolerance and rapid H,0, accumulation
in GhMPK16-overexpressing plants

Compared with wild-type plants, the GhIMPKI6-overex-
pressing plants exhibited obvious drought sensitivity. As
shown in Figure 8A, the leaves began to turn yellow and
curl in both the 3-week-old wild-type and transgenic
plants after a 15-day drought treatment. Additionally,
drought treatment led to more serious damage in the
transgenic plants than in the wild-type plants. Under nor-
mal conditions, no overt morphological differences were
observed between wild-type and transgenic plants (data
not shown). We tested the seed germination capacity on
1/2 MS agar medium with 50 mM mannitol to mimic
drought conditions and found that the germination per-
centage was higher for wild-type plants than for transgenic
plants (Figure 8B, C). The root lengths of both wild-type
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Figure 6 Enhanced resistance of GhMPK16-overexpressing Arabidopsis to P. solanacearum infection. (A) RNA blot analysis of GhMPK16
expression in Ty transgenic plants. (B) Disease symptoms of wild-type (WT) and transgenic plants (#2 and #5) at 6 d post-inoculation with P.
solanacearum (10° cfu/ml). Magnified images are shown in the lower photographs. (C) Growth of P. solanacearum in wild-type and transgenic
plants (#2 and #5) after infecting the plants using the dipping method. Data are the mean + SE (n = 6) from three independent experiments.
Different letters at 3- or 6-d data points indicate significant differences with P < 0.05 according to Duncan’s multiple range test. (D) RT-PCR
analysis of the expression of Arabidopsis AtPR1, AtPR4 and AtPDF1.2 genes in wild-type and transgenic plants (#2 and #5) inoculated with P.
solanacearum. Arabidopsis elongation factor £F-Tax was used as an internal control.

and transgenic plants were used as indicators of drought
stress tolerance. Root growth was inhibited by mannitol
treatment to a greater extent in transgenic seedlings than
in wild-type seedlings (Figure 8D, E). These results suggest
that the overexpression of GhEMPK16 in Arabidopsis
results in reduced drought tolerance.

One of the important responses of plants under osmo-
tic stress is the accumulation of reactive oxygen species
(ROS). Among the different ROS, only H,O, can cross
plant membranes and thus directly function in cell-to-
cell signaling. Therefore, we examined endogenous
H,0O, accumulation in wild-type and transgenic plants
in response to mannitol treatment. Mannitol (200 mM)
was used to treat one-week-old seedlings, and the leaves
were collected after 0, 1, 3 and 6 h. Staining with 3,3’-
diaminobenzidine (DAB) revealed different levels of
H,O, production in the leaves of wild-type and trans-
genic plants after osmotic stress treatment. Specifically,
H,0, accumulated in transgenic plants at a significantly
faster speed than that in wild-type plants (Figure 9).
These results suggest that the overexpression of
GhMPK16 leads to the rapid production of ROS or inef-
fective scavenge of excess ROS after osmotic stress.

Discussion and Conclusion
In this study, we isolated and characterised GhMPK16, a
gene whose product belongs to the family of group D
MAPKs. GEMPKI6 is the first characterized MAPK
gene from cotton belonging to the group D MAPKs.
The corresponding protein is characterized by the pre-
sence of a TDY activation motif in its T-loop, the lack
of a CD domain and an extended C-terminal region
compared to the TEY subtypes of MAPKs (Figure 1A).
These structural differences suggest that group D
MAPKs may function differently from other MAPKs.
The subcellular localization of group D MAPKs has
not been established. OsBWMKI1, a group D MAPK
from rice, is found in the nucleus and mediates patho-
genesis-related gene expression by activating the OsER-
EBP1 transcription factor [11]. Intriguingly, the
alternative splicing of OsBWMK1 generates three differ-
ent transcriptional variants that produce proteins with
different subcellular localizations [15]. In Arabidopsis,
AtMPK18 is located in the cytoplasm [14]. Analysis of
the subcellular localization of a GFP-tagged GhMPK16
protein in transiently transformed onion epidermal cells
revealed that GhMPK16 is likely localized in the nucleus
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Figure 7 Inhibition of fungal pathogen infections in GhMPK16-overexpressing Arabidopsis lines. (A) Disease symptoms of leaves from
wild-type (WT) and transgenic plants (#2 and #5) 5 d after inoculation with C. nicotianae (10° conidia/ml). (B) The diameter (mm) of the lesions
was measured 5 d after inoculation with C. nicotianae. Data are the mean + SE (n = 6) from three independent experiments. Different letters
indicate significant differences with P < 0.05 according to Duncan’s multiple range test. (C) Disease symptoms of the leaves from wild-type (WT)
and transgenic plants (#2 and #5) 5 d after inoculation with A. alternate (10° conidia/ml). (D) The diameter (mm) of the lesions was measured 5
d after inoculation with A. alternate. Data are the mean + SE (n = 6) from three independent experiments. Different letters indicate significant
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(Figure 3). Therefore, we speculated that GhMPK16 may
act as a transcriptional activator by activating the
expression of a set of target genes in the nucleus.

Gene expression patterns are usually an indicator of
gene function. Notably, GZMPK16 can be induced by
various pathogens, including X. campestris pv. malva-
cearum, R.solani and C. gossypii. RNA blot analyzes
revealed that the expression of GEMPKI6 could be
induced by signal molecules such as SA, MeJA, and
ABA (Figure 4). These results imply that GEMPKI16
may play a role in plant defense responses and in the
regulation of certain components of multiple stress-sig-
naling pathways. Consistent with this hypothesis,
sequence analysis of the GhMPKI16 promoter revealed
several motifs, such as Box-W1 element, ERE element
and TCA-element, related to motifs with important
roles in defense signaling.

Recently, a variety of MAPK genes have been identi-
fied and subsequently explored by both genetic and bio-
chemical approaches. Increasing evidence has shown
that the MAPK cascade is an important pathway in
pathogen-triggered signal transduction [16,17]. Signal
molecules such as SA, jasmonic acid (JA) and ethylene
(ET), regulate distinct sets of pathogenesis-related (PR)

genes in different pathogen defense pathways. SA and
MeJA are involved in two major defense signaling path-
ways, the SA-dependent and JA/ET-dependent defense
mechanisms, which act against different types of patho-
gens [18]. In Arabidopsis, AtMPK4 responds to the bal-
ance between SA and MeJA through the EDS1/PAD4
module and regulates the SA and JA/ET-related defense
responses [19]. When GhMPK16 is ectopically expressed
in Arabidopsis, the transgenic Arabidopsis show
enhanced disease resistance against bacteria (P. solana-
cearum) and fungi (C. nicotianae and A. alternate) (Fig-
ure 6, 7). PRI is known as a marker gene for the SA
signaling pathway, and AtPR4 and A¢PDF1.2 are mar-
kers for the JA/ET signaling pathway. Along with the
enhanced disease resistance in GEMPKI16-overexpres-
sing plants, the expression of the examined defense-
related genes AtPRI1, AtPR4, and AtPDF1.2 was elevated.
Thus, it is reasonable to speculate that GEMPKI16 may
be involved in the crosstalk between the SA- and JA/
ET- mediated pathogen defense pathways.

GhMPK16 showed a response to various abiotic stres-
ses, such as low or high temperatures, mannitol and
NaCl (Figure 4). Interestingly, transgenic plants overex-
pressing GhMPK16 exhibited obvious drought sensitivity
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Figure 8 Drought stress analysis of GhMPK16-overexpressing Arabidopsis. (A) Phenotypes of wild-type (WT) and transgenic plants (#2 and
#5) plants withheld from water for 15 d at the vegetative stage. (B) Seed germination of wild-type (WT) and transgenic plants (#2 and #5) after
4 days on 1/2 MS agar medium containing 50 mM mannitol. (C) Germination percentage of seeds on 1/2 MS agar medium containing 50 mM
mannitol. Germination was defined as the emergence of the root radical and was scored daily. Data are the mean + SE (n = 4) from three
independent experiments. (D) Growth of wild-type (WT) and transgenic plant (#2 and #5) seedlings after 100 mM mannitol treatment. Photos
were taken 10 d after mannitol treatment. (E) Root length of wild-type (WT) and transgenic plant (#2 and #5) seedlings after 100 mM mannitol
treatment for 12 d. Data are the mean + SE (n = 6) from three independent experiments. Different letters indicate significantly different at P <
0.05 according to Duncan’s multiple range test.
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Figure 9 DAB coloration assay of H,0, accumulation in wild-type (WT) andGhMPK16-overexpressing transgenic plants after 200 mM
mannitol treatment. Mannitol was used to treat one-week-old plants for 0, 1, 3 or 6 h.

(Figure 8). GhMPKI16 overexpression resulted in a sig-
nificant reduction in both germination percentage and
root growth after mannitol treatment, and seedling
growth was more severely inhibited by drought stress in
GhMPKI16-overexpressing plants than in wild-type
plants. ABA responds to the environmental signals to
protect plants from abiotic stresses, such as cold,
drought and salt stresses [20,21]. The expression of
GhMPK16 was strongly induced by exogenous ABA and
the GhMPK16-overexpressing plants were sensitive to
drought tolerance comparing with wild-type Arabidop-
sis, suggesting that GEMPKI6 may be involved in ABA
signaling and caused negative function for drought

tolerance. DAB staining revealed that H,O, rapidly
accumulation in GZMPKI6-overexpressing transgenic
plants after drought treatment (Figure 9). Excessive ROS
can injure plants. GEMPK16 accelerates the accumula-
tion of H,O,, and this may be the reason that drought
causes more serious damage in the transgenic plants. In
Arabidopsis, MPK9 and MPKI2 function downstream of
ROS to regulate guard cell ABA signaling positively
[13]. Guard cell-specific inhibition of Arabidopsis MPK3
expression causes abnormal stomatal responses to ABA
and H,O, [22] More physiological, biochemical and
molecular experiments are needed to elucidate the
mechanism of GhMPKI16 in response to drought stress.
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On the basis of these observations, we propose that
GhMPKI16 functions in at least two signaling pathways,
one that responds to pathogens and another that is
involved in drought stress. GEMPKI6 may serve as a
point for crosstalk between biotic and abiotic stress
response signaling. Further studies on the function and
regulation of GhMPK16 are required.

Methods
Plant materials and treatments
The cotton cultivar Gossypium hirsutum L. cv Lumian 22
was used for all of the experiments. Germinated seedlings
were grown by aquaculture in tissue culture pots (sterile
water) under greenhouse conditions at 25°C with a 16 h
light/8 h dark cycle. The following treatments were per-
formed on seven-day-old cotton seedlings: 10 mM Sal-
icylic acid (SA), 100 uM methyl jasmonate (MeJA)
(ethanol as a solvent control) or 100 uM abscisic acid
(ABA) was sprayed onto leaves of cotton seedlings; seed-
ling roots were placed in 200 mM NaCl and 200 mM
mannitol solutions for salt and drought stresses, respec-
tively; seedling leaves were cut with scissors for wound
treatment; seedlings were placed in a growth chamber at
37°C or 12°C for the high and low temperature treat-
ments, respectively; roots were dipped into suspensions
of the bacterial pathogen Xanthomonas campestris pv.
malvacearum (X. campestris pv. malvacearum) (OD =
0.001) to cause a bacterial infection and the fungal patho-
gens Fusarium oxysporum f. sp. vasinfectum (F. oxy-
sporum f. sp. vasinfectum) and Colletotrichum gossypii
(C. gossypii) conidial suspensions (10° conidia/ml) in 1%
glucose were dropped onto plant leaves to cause the fun-
gal infections. The plants treated with 1% glucose were
considered as mock. The leaves, roots and stems were
harvested at the appropriate time points as indicated and
frozen in liquid nitrogen for further analyzes.
Arabidopsis (ecotype Columbia, Col-0) and transgenic
Arabidopsis seeds were planted directly in soil or trans-
planted after germinating on 1/2 MS agar medium and
grown in a chamber under SD (8 h light/16 h dark) or
LD (16 h light/8 h dark) conditions at 23°C. All seeds
were treated at 4°C for 2 d before being transferred to a
growth chamber. Arabidopsis were grown in SD condi-
tions for 2-week and then transferred to LD conditions.
3-week-old Arabidopsis plants were used for the disease
resistance assays. The bacterial pathogen Pseudomonas
solanacearum (P. solanacearum) was cultivated in
King’s B medium at 30°C for 2 days, and the bacterial
cells were resuspended in 10 mM MgCl, to a concentra-
tion of 10° colony-forming units/ml (cfu/ml). Plants
were infected using the dipping method, and bacterial
titres were assessed by plating a dilution series of leaves
ground in 10 mM MgCl, on King’s B medium as
described by Liu et al. [23]. Infected leaves were
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sampled immediately and at 3- and 6-d after inocula-
tion. To evaluate resistance against the fungal pathogens
Colletotrichum nicotianae (C. nicotianae) and Alternaria
alternate (A. alternate), two methods were used: the
detached leaf inoculation assay and the whole plant
inoculation assay. A spore suspension (10° conidia/ml)
was prepared in 1% glucose. In the detached leaf inocu-
lation assay, leaves were inoculated with a 10 pl droplet
of conidial suspension. In the whole plant inoculation
assay, a vaporiser was used to inoculate the plants with
the conidial suspension. The inoculated leaves and
plants were kept in a moist chamber under dark condi-
tions at 25°C for 48 h and then incubated under LD
conditions at 25°C.

For the drought stress tolerance analysis, Arabidopsis
were grown in SD conditions for 2-week and then trans-
ferred to LD conditions. For 15 d, 3-week-old Arabidop-
sis plants were completely withheld from water.
Additionally, Arabidopsis seeds were germinated in 1/2
MS agar medium or 1/2 MS agar medium supplemented
with 50 mM mannitol. Analysis of the growth of trans-
genic Arabidopsis after mannitol treatment, Arabidopsis
seeds germinated in 1/2 MS agar medium and incubated
for 3 d. The seedlings were then carefully transferred into
1/2 MS agar medium supplemented with 100 mM man-
nitol, and root lengths were measured over the next 10 d.

Cloning of the GhMPK16 gene

Total RNA was extracted from cotton seedling leaves
using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s protocol. The full-
length GEMPKI16 cDNA was amplified by reverse tran-
scription-PCR (RT-PCR) and rapid amplification of
¢DNA ends-PCR (RACE-PCR).

The first cDNA strand was synthesised using approxi-
mately 2 pg of total RNA, the Oligo(dT),s adaptor pri-
mer and M-MLV reverse transcriptase (Promega,
Madison, WI, USA) for 1 h at 42°C. To clone the inter-
nal conserved fragment, primers MP1 and MP2 were
designed and synthesised based on the conserved amino
acid and nucleotide sequences of the plant group D
MAPK genes. Cloning was performed as described pre-
viously [24], and the primer sequences are provided in
Table 1.

Amino acid and nucleotide sequences of other plant
MAPK genes were retrieved from GenBank (http://
www.ncbi.nlm.nih.gov/Genbank). Amino acid sequence
alignments were performed using the DNAman 6.0 pro-
gram. The phylogenetic tree was constructed by the
Neighbour-Joining method using MEGA 4.

Amplification of the GhMPK16 genomic sequence
Total genomic DNA was extracted from cotton seed-
lings using a modified cetyl-trimethyl-ammonium
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bromide (CTAB) method [25]. The genomic DNA of
cotton was isolated to clone the DNA sequence and the
5’-flanking region of GhMPK1I6.

Two genomic DNA fragments were PCR amplified
with primers designed according to the GhEMPKI6
cDNA sequence. The first fragment was amplified with
primers FL1 and Z1, and the second fragment was
amplified with primers FL2 and Z2.

The promoter region was cloned using the inverse-
PCR (I-PCR) method. Five restriction endonucleases
(Bam 1, Bgl 11, Dra 1, Hind 111 and Xba 1) were used to
digest the genomic DNA. Using T4 DNA ligase
(TaKaRa, Dalian, China), the DNA fragments were self-
ligated to form circles that were used as the template to
amplify the GEMPK16 promoter region. The 5 flanking
region of GhMPKI16 was obtained from the template
digested with Dra I. The exterior primers Wupl and
Wdral and the interior primers Wup2 and Wdra2 were
used for the first and second rounds of PCR, respec-
tively. The sequences of the primers used in this study
are provided in Table 1. The PlantCARE program
(http://bioinformatics.psb.ugent.be/webtools/plantcare/
html) was used to analyze the GhMPKI16 promoter
sequences, which used default parameters.

Subcellular localization and Histochemical Analysis

To observe the cellular localization of GhMPK16, the
GhMPK16::GFP fusion construct was prepared. The
GhMPK16 coding region was amplified with primers
Wbd-1 and W-GFP, containing an Xba I site upstream
and an Xho I site downstream of the deleted stop codon,
respectively. The resulting fragment was inserted into the
Xba 1/Xho 1 site of the binary vector pBI121-GFP, and
the fragment was fused to GFP and placed under the
control of the cauliflower mosaic virus (CaMV) 35S pro-
moter. Particle bombardment was performed according
to the manufacturer’s instructions (PDS-1000, Bio-Rad
Laboratories, Hercules, CA), using gold particles (1.0 ul)
and 1350 psi helium pressure. After bombardment, tis-
sues were incubated on MS agar medium under dark
conditions at 23°C for 12 h. Nuclei were stained with 100
pg/ml of 4’,6-diamidino-2-phenylindole (DAPI) (Solarbio,
Beijing, China) in phosphate-buffered saline for 10 min.
GFP fluorescence and DAPI fluorescence were examined
with a laser scanning microscope (LSM 510 META,
ZEISS, Germany) using excitation wavelengths of 488 nm
and 350 nm, respectively.

Immunoblot analysis

The GhMPK16::GFP recombinant plasmid was intro-
duced into the Agrobacterium tumefaciens strain
GV3101. The A. tumefaciens strains were grown over-
night in YEB media. Pellet and resuspended cells was
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performed as described by Guo [26]. Resuspended cells
were infiltrated into leaves of 4-week-old Nicotiana
benthamiana plants as described previously [27,28]. Epi-
dermal cell layers of plant leaves were assayed for fluor-
escence with a fluorescence microscope (BX51, model
7.3; Olympus) 3 d after injection. Total plant proteins
were extracted as Silverstone described [29]. The pro-
teins were separated by sodium dodecyl sulphate-polya-
crylamide gel electrophoresis (SDS-PAGE) (12%) and
analyzed on immunoblots using a 1000-fold dilution of
anti-GFP polyclonal antibodies (Beyotime, Haimen,
China) and a 5000-fold dilution of horseradish peroxi-
dase-conjugated goat anti-rabbit IgG (Beyotime). The
signals were detected by chemiluminescence.

Southern blot hybridisation

Genomic DNA (30 pg/sample) was digested with EcoR
V, EcoR I, Xba I or Hind III then separated on 0.8%
agarose gels by electrophoresis and transferred onto a
Hybond-N* Nylon membrane (Amersham, Pharmacia,
UK). A gene-specific dCTP-[a-**P]-labelled probe was
synthesised with the GZMPK16 fragment (primers FL1
and 5P2) using the Primer-a-Gene®™ Labeling System
(Promega, Madison, WI, USA) according to the manu-
facturer’s instruction. The hybridisation was carried out
for 24 h at 42°C. After the hybridisation, the blots were
washed two times with 2 x SSC, 0.1% SDS and three
times with 0.2 x SSC, 0.1% SDS for 10 min each at 42°
C, and the radioactive signal was visualised using a
FLA-7000 phosphorimager (FUJIFILM).

RNA blot hybridisation and semi-quantitative RT-PCR
analyzes

Total RNA was isolated from cotton seedling leaves
using the method described above. Total RNA (15 ug)
from each sample was separated on a 1.0% agarose-for-
maldehyde gel and transferred to Hybond-N* Nylon
membranes (Amersham, Pharmacia, UK). Gene-specific
dCTP-[a-**P]-labelled probe was synthesis (primers FL2
and 5P3) and RNA blot hybridisation were performed
using the methods described for the Southern blot
hybridisation.

To analyze gene expression in transgenic plants by
RT-PCR, total RNA was isolated from wild-type and
transgenic plants using the method described above for
gene cloning. Amplifications were performed at 94°C for
5 min, followed by 25-30 cycles of amplification (94°C
for 50 s, 50°C for 50 s, and 72°C for 40 s). The PCR
products were separated on a 1.8% agarose gel and
visualised after ethidium bromide staining. To ensure
that equal cDNA amounts were used in each reaction,
EF-1o was used as a loading control. The gene-specific
primers used in RT-PCR analyzes are listed in Table 1.
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Table 1 The primers used in this study

Page 14 of 15

Abbreviation Sequence (5'-3')

Description

MP1 AARGGNAGYTAYGGNGTNGT Degenerate primer, forward

MP2 GCNACRTARTCNGTCCARAAH = A, CorT;N=A C G orT,R=Aor Degenerate primer, reverse
GV=ACorGY=CorT)

3P1 TTCTTTATCAGCTTCTTCGGG 3" RACE reverse primer, outer

3P2 TTCATCGGGATCTAAAGCCG 3" RACE reverse primer, nested

B26 GACTCGAGTCGACATCGAT (T);5 Universal primer, outer

B25 GACTCGAGTCGACATCGAT Universal primer, nested

5P1 GAAGGAGGGAACAATATGTGC 5" RACE reverse primer, outer

5p2 ATGACGTAGGAGCCTGAGAAG 5" RACE reverse primer, nested

AAP GGCCACGCGTCGACTAGTAC (G)14 Abridged anchor primer

AUAP GGCCACGCGTCGACTAGTAC Abridged universal amplification primer

FL1 GATGCTAAGATGCAGCCTGATC Full-length cDNA primer

FL2 GCTTCACTTGTAACTTGTCTGAGC Full-length cDNA primer

Z1 CCGCACTTGGATACATGAAGCC Genomic sequence primer

72 GAGTATCTGGAAGGATCAGAGCC Genomic sequence primer

5P3 GCTGCCAGACCTGGGAAAGTAG primer used for probe synthesized

Wup1 CACGCCATTAAACCAAGTAG I-PCR primer

Wdral GAGGTTGACTAACACTAGTG I-PCR primer

Wup2 GATCAGGCTGCATCTTAGCATC I-PCR primer

Wdra2 AGCGTATGACACGCATACTG I-PCR primer

Whbd-1 GCGC TCTAGAGGGGCTTCCTGTTTGATGCC Xba | Coding region primer

Whbd-2 GCGC GTCGACCCTCAACCAGCAGTAGGAAG Sal | Coding region primer

W-GFP GCGC CTCGAGATACCACTGACTTGATCCAG Xho | Coding region primer

AtEF-Ta-F ATGGGTAAAGAGAAGTTTCACAT RT-PCR primer

AtEF-Ta-R CTTGTTACAACAGCAGATCAT RT-PCR primer

AtPRI-F GACGAGAGGGTTGCAGCCTATG RT-PCR primer

AtPRI-R GATTCTCGTAATCTCAGCTCT RT-PCR primer

AtPR4-F CCACCTACCATTTCTATAATCC RT-PCR primer

AtPR4-R CACAGTCGAGAAATTGGTAGTC RT-PCR primer

AtPDF1.2-F TCATGGCTAAGTTTGCTTCC RT-PCR primer

AtPDF1.2-R AATACACACGATTTAGCACC RT-PCR primer

Vector construction and plant transformation

The GhMPK16 coding region was amplified using pri-
mers Wbd-1 and Wbd-2 (Table 1). The amplified frag-
ment was then subcloned into the binary vector pBI121
under the control of the CaMV 35S promoter. The
recombinant plasmid was introduced into the A. tumefa-
ciens strain GV3101. Arabidopsis was transformed using
the floral dip method [30]. Transformants were selected
on 1/2 MS agar medium containing 30 pg/ml of kana-
mycin. The transgenic T3 lines were used in the
experiments.

Histochemical detection of H,0,

The substrate, 3,3’-diaminobenzidine (DAB), was used to
visually detect H,O, in plants [31]. Arabidopsis plants
(one-week-old) were treated with 200 mM mannitol for
0, 1, 3, and 6 h. The samples were incubated in 1 mg/
ml DAB solution (pH 3.8) for 6 h, and then treated with

95% ethanol to remove chlorophyll. In the presence of
H,0,, DAB is locally polymerised and produces visible
brown stain.

Additional material

Additional file 1: Figure S1 Schematic representation of the genome
structure of GhMPK16. Length of the exons and introns (A) Arabidopsis
thaliana (AtMPK16), (B) Gossypium hirsutum (GhMPK16), (C) Oryza sativa
(0s11g0271100), and (D) Vitis vinifera (Vitis vinifera hypothetical protein
LOC100246022) are indicated according to the scale below. The exons
and introns are highlighted with gray and white bars, respectively. The
start codons (ATG) are indicated by (v), and the stop codons are marked
by ().

Additional file 2: Figure S2. Analysis of the integrity of GhMPK16:GFP
fusion protein. (A) Transient expression of 355-GFP and 355-GhMPK16:GFP
in N. benthamiana cells. Bar = 10 um. (B) Immunoblot analysis of
GhMPK16:GFP fusion protein. 4-week-old N. benthamiana plants were
chosen, and proteins were isolated from wild-type and transgenic plant
leaves. Each lane was loaded with a total of 50 pg protein.
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