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Abstract

Background: Biological nitrogen fixation is a prokaryotic process that plays an essential role in
the global nitrogen cycle. Azorhizobium caulinodans ORS571 has the dual capacity to fix nitrogen
both as free-living organism and in a symbiotic interaction with Sesbania rostrata. The host is a fast-
growing, submergence-tolerant tropical legume on which A. caulinodans can efficiently induce
nodule formation on the root system and on adventitious rootlets located on the stem.

Results: The 5.37-Mb genome consists of a single circular chromosome with an overall average
GC of 67% and numerous islands with varying GC contents. Most nodulation functions as well as
a putative type-1V secretion system are found in a distinct symbiosis region. The genome contains
a plethora of regulatory and transporter genes and many functions possibly involved in contacting
a host. It potentially encodes 4717 proteins of which 96.3% have homologs and 3.7% are unique for
A. caulinodans. Phylogenetic analyses show that the diazotroph Xanthobacter autotrophicus is the
closest relative among the sequenced genomes, but the synteny between both genomes is very
poor.
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Conclusion: The genome analysis reveals that A. caulinodans is a diazotroph that acquired the
capacity to nodulate most probably through horizontal gene transfer of a complex symbiosis island.
The genome contains numerous genes that reflect a strong adaptive and metabolic potential. These
combined features and the availability of the annotated genome make A. caulinodans an attractive
organism to explore symbiotic biological nitrogen fixation beyond leguminous plants.

Background

Biological nitrogen fixation is carried out by a limited
number of prokaryotes that all possess a nitrogenase
enzyme complex that reduces molecular dinitrogen to
ammonia. Nitrogen-fixing bacteria can be divided in two
major groups: free-living nitrogen fixers or diazotrophs
that directly assimilate ammonia for growth and symbi-
otic nitrogen fixers that pass ammonia to a eukaryotic
host and indirectly profit from nitrogen fixation by occu-
pying a particular ecological niche or by supporting the
population through better feeding. In the latter group, the
symbiosis between leguminous crop plants and rhizobia
is of great importance for agriculture. The term "rhizobia"
is used for bacteria that induce the formation of new
organs, nodules, on the roots of a specific legume host.
Inside the nodule, rhizobia are internalized in plant cells
where they differentiate into nitrogen-fixing bacteroids
[for a recent review on legume nodulation, see [1]].

Nitrogen-fixing nodules typically occur on roots; how-
ever, some members of the subfamilies Papilionoideae
(Aeschenomyne sp., Sesbania sp., and Discolobium pulchel-
lum) and Mimosoideae (Neptunia oleracea) form stem-
located, aerial nodules [2]. These legumes grow in water-
logged soils of tropical regions and are characterized by
dormant, stem-located adventitious root primordia that
can develop into stem nodules upon inoculation with an
appropriate microbial partner. Although stem and root
nodulation are similar, in the latter the nodular vascular
system is connected to that of the stem via the vascular
bundles of the adventitious root primordium [3].

A particularly well-studied case of stem nodulation occurs
in Sesbania rostrata Brem. upon inoculation with the
microsymbiont Azorhizobium caulinodans [4]. S. rostrata, a
fast-growing annual shrub from the Sahel region of West-
Africa, carries numerous adventitious root primordia that
protrude through the stem cortex and epidermis, creating
a circular fissure, where bacteria can invade and prolifer-
ate [5]. The growth properties and the high rate of nitro-
gen fixation of stem-nodulated plants make S. rostrata
well fit as green manure in rice cultivation and, possibly,
as a pioneer plant for wetland improvement [6].

The bacterium, isolated from stem nodules [4] and origi-
nally designated Rhizobium sp. strain ORS571, was
renamed Azorhizobium caulinodans inspired by the stem

(cauli-)nodulating capacity and by the diazotrophic prop-
erties of the strain (azo-rhizobium). Its host range for
effective nodulation is very narrow: although nodulation
of several Sesbania sp. has been reported, nitrogen-fixing
nodules are formed only on S. rostrata and S. punctata |7].
A. caulinodans also induces Fix nodules on Phaseolus vul-
garis and Leucaena leucocephala [8]. Two features distin-
guish A. caulinodans from other rhizobia: its taxonomic
position and its dual capacity for free-living and symbiotic
nitrogen fixation. The latter is exceptional [9] and implies
a regulatory mechanism to either assimilate the ammonia
or donate it to the plant in the symbiotic interaction. The
first taxonomic study of A. caulinodans strain ORS571 [10]
showed that it belongs to the Rhodopseudomonas palustris
rRNA branch of purple bacteria, but that it is quite distinct
from both Rhodopseudomonas and Bradyrhizobium spp.
Based on numerical analysis of phenotypes, protein pat-
terns, and DNA-DNA and DNA-rRNA hybridizations, A.
caulinodans was considered as a separate genus with Xan-
thobacter as closest relative [11]. Xanthobacter sp. are diazo-
trophic bacteria found in diverse soil habitats and in
association with rice (Oryza sativa) roots [12,13]. Compar-
ison of 16S rRNA sequences indicated that X. flavus and A.
caulinodans are strongly related [14].

Here, we present the genome sequence of the A. caulin-
odans strain ORS571 and discuss the annotation in func-
tion of the organism's biology with reference to
comparative genomics. This information will stimulate
the research on an organism that has real potential for
novel applications in agriculture.

Results

Genome organization

Sequencing of the genome of A. caulinodans strain
ORS571 (hereafter designated A. caulinodans) revealed a
single circular chromosome of 5,369,772 base pairs [15].
Relevant genome features generated with the BLASTatlas
tool [16] are presented in Figure 1 and can be viewed in
detail as a web-based resource [17]. The putative origin of
replication was predicted based on the position of a GC
skew shift (Figure 1) [18] and coincided with the occur-
rence of a gene cluster typically associated with origins of
replication in circular chromosomes of a-proteobacteria
(Figure 2A) [19]. The specific distribution and orientation
of the FtsK Orienting Polar Sequences (KOPS) motif 5'-
GGGNAGGG-3', which is involved in loading the FtsK

Page 2 of 14

(page number not for citation purposes)



BMC Genomics 2008, 9:271 http://www.biomedcentral.com/1471-2164/9/271

UniProt Rpalustris_HaA2 GC Skew

Avg, synteny Rpalustris_BisA53

ercent /
.M |

Rpalustris_BisB18

Atumefaciens_C58_1-2

B

Xautotrophicus_Py2 Rpalustris_BisB5

48

Smeliloti_1021

: Intrinsic Curvature
B}.\pnmmm__USDr\__l 10 Stacking Energy
| . . l“““;
FIT N . jeRRE2E2E2 §T°E

g I = A. caulinodans i Riepuminesnim 5541 Faition Preference

geii-iarmasas i = 5,369,772 bp ] HEFEH £ E_ l;.";
e i} = iy - = s B
| | ) =y E[.r r ) n
1 ) \ ]
Y ’,’l Retli CFN_42 T) Annotations:
” 1 - 1
: S B -
\ ; . i —
" ; § .
.‘5 W2 7 . )/ S8 - Msp_BNC1 : e
- 7 / e 3l b
® P4 & -
\ % o > /,
. e £3 .
, i TN N S & 1
“ e T N > &
~ s = g SEL e Mloti_MAFF303099
3 ALY
'/ % L 4 - \ \"-“
\ ~ x R - s . .
N ~ : - & ! Nwinogradskyi Nb-  Global Direct Repeats
2 e, ' e s
o 5 &
X

Rpalustris_CGA00¥

Global Inverted Repeat:
e -“h—

.
-
E
B
- 1

Eon mam o

-

™~
i .

1
Terminus

Figure |

Snapshot of the output generated after analysis of the A. caulinodans genome with the Genome Atlas tool. The
output is accessible as a web-based resource [17] that can can be used as a tool to zoom in on specific regions of interest. Hits
within the UNIPROT database, a comparison at the protein level between 14 o-proteobacteria and A. caulinodans, and the syn-
teny between these genomes, the genome annotation, and structural features are represented. The origin and terminus of rep-
lication are indicated and the symbiotic region is boxed. From the outer to the inner circle: circle 1, protein hits in the
UNIPROT database; circle 2, synteny between |5 a-proteobacterial genomes; circle 3, Agrobacterium tumefaciens C58; circle 4,
Xanthobacter autotrophicus Py2; circle 5, Sinorhizobium meliloti 1021; circle 6, Bradyrhizobium japonicum USDA 110; circle 7, Rhizo-
bium leguminosarum 3841; circle 8, Rhizobium etli CFN42; circles 9 and 10, Mesorhizobium loti strains BNCI and MAFF303099,
respectively; circle ||, Nitrobacter winogradskyi Nb225; circles 12, 13, 14, 15, and 16, Rhodopseudomonas palustris strains
CGAO009, HaA2, BisA53, BisB18, and BisB5, respectively; circle 17, intrinsic curvature; circle |8, stacking energy; circle 19, posi-
tion preference; circle 20, genome annotation; circle 21, global repeats; circle 22, inverted repeats; circle 23, GC skew; circle
24, percent AT. The structural DNA parameters in circles 21 and 22 relate to the occurrence of repeats that might indicate
inserted sequences, and circles 18 and 19 designate the accessibility and flexibility of the DNA as a measure for the capacity to
interact with proteins.

DNA translocase and directing it to the replication termi-
nus in a-proteobacteria [20], confirmed the predicted
location of the origin between AZC_4717 and AZC_0001
(Figure 2B).

Although the overall GC content of the A. caulinodans
genome is 67% and the average GC incidence at the third
position of the codon (GC3) is 85%, the chromosome has
many islands of varying size with different GC (Figure 3A)
and GC3 contents (Figure 3B). In accordance with the
overall high GC content, the codon usage is shifted

toward GC-rich codons (Figure 4A) and, consequently,
GC-coded amino acids are overrepresented (Figure 4B).

Combined computer prediction and similarity searches
(Methods) revealed 4717 protein-encoding genes with an
average coding density of one gene in every 1123 bp
(89%). With the BLASTP program (Methods), the amino
acid sequences were compared with the sequences in the
nonredundant protein database at NCBI. A putative func-
tion could be assigned to 3588 genes (76.1%), 954 genes
(20.2%) were similar to hypothetical genes, and the
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Predicted position of the origin of replication. A. Con-
servation of a cluster of 12 genes located around the origin
of replication in several a-proteobacteria: (1) Azorhizobium
caulinodans, (2) Agrobacterium tumefaciens, Sinorhizobium
meliloti, Rhizobium leguminosarum, and Rhizobium etli, (3) Mes-
orhizobium loti, Brucella abortus, and Brucella suis, (4)
Bradyrhizobium japonicum and Rhodopseudomonas palustris, (5)
Caulobacter crescentus, and (6) Xanthobacter autotrophicus. The
putative proteins and the origin of replication are indicated.
B. Cumulative distribution in forward and reverse orienta-
tion of the 8-base KOPS motif 5'-GGGNAGGG-3' in the
genome of A. caulinodans. The orientation of this motif is
strongly biased toward dif sites at the terminus of replication
(Terminus).

remaining 175 (3.7%) had no significant similarity to any
registered gene (Figure 1; Table 1; Additional file 1).

Three rRNA clusters are ordered as 5S-23S-16S (located
between the protein-coding genes AZC_0613-AZC_0614,
AZC_4195-AZC_4196, and AZC_4435-AZC_4436) and
all have an insertion of a tRNA-Ile and a tRNA-Ala

http://www.biomedcentral.com/1471-2164/9/271

between the 16S and 23S genes. A total of 53 tRNA genes
representing 44 tRNA species for all 20 amino acids were
assigned by sequence similarity and computer prediction
with the tRNAscan-SE program [21]. Most of the tRNA
genes are dispersed on the genome and are probably tran-
scribed as single units. Thirty out of 57 ribosomal protein
genes occur in a cluster (AZC_2529-AZC_2559), whereas
the others are scattered over the genome (Additional file

1).

Phylogeny and comparative genomics

For phylogenetic analysis (Methods), the genomes of A.
caulinodans and of 44 o-proteobacteria were compared
(Additional file 2). The data set was assembled based on
the available complete genome sequences (closure date
August 15, 2007) and ecological or phylogenetic related-
ness. The resulting maximum-likelihood tree (Figure 5A)
showed a great concordance with a-proteobacterial trees
based on complete 16S rRNA genes [22] or sets of protein
families [23]. Our analysis placed A. caulinodans closest to
X. autotrophicus, Nitrobacter winogradskyi, Rhodopseu-
domonas palustris, and Bradyrhizobium japonicum, consist-
ent with previous taxonomic studies [9,10,13]. With A.
caulinodans as a reference genome, a graphical representa-
tion of the BLAST hits of the proteins encoded by the
genomes of the 13 closest relatives was generated with the
BLASTatlas tool (Figure 1) [16,17].

For a broader view of the gene relationships, the occur-
rence and organization of the proteins encoded by these
45 genomes were evaluated (Methods). Each gene of a
total data set of 146,315 was classified in one of four
groups: orphans, genes without homologs in other bacte-
ria of the data set; singletons, genes with one representa-
tive in the genome and homologs in other genomes;
phage or integrase-related genes; and duplicated genes or
paralogs with more than one paralog in the genome. The
distribution of each of these categories differed in the sur-
veyed genomes (Figure 5B). Paralog representation
ranged from 5% for the Neorickettsia sennetsu strain Miya-
yama (genome size 0.86 Mb) to 44% for Rhizobium legumi-
nosarum bv. vicae (strain 3841) (genome size 7.79 Mb),
whereas A. caulinodans had 36% paralogs (genome size
5.37 Mb). The data confirmed the observation that the
number of paralogs strongly correlates with the genome
size in a linear regression [24].

Altogether, these analyses demonstrate that currently X.
autotrophicus is the closest sequenced relative of A. caulin-
odans. However, a comparison of the genomes with the
ARTEMIS comparison tool [25] revealed a very low degree
of synteny (Additional file 3). Although short sequence
stretches are conserved, extensive rearrangements have
taken place. The occurrence of four prophages and numer-
ous transposases in the A. caulinodans genome suggests a
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Nucleotide composition of the A. caulinodans genome. The GC and GC3 contents for each open reading frame were
calculated and positioned on the genome. Every gene was classified in one of four classes: orphans, genes of the A. caulinodans
genome without homolog in other bacteria of the data set (44 genomes) (red squares); singletons, genes with one representa-
tive in A. caulinodans and homologs in the data set (green stars); phage- or integrase-related genes (yellow triangles); duplicated
genes with more than one paralog in the A. caulinodans genome (blue diamonds). GC (A) and GC3 (B) distribution across the
genome; GC (C) and GC3 (D) distribution across the symbiotic region. Circles (C and D) indicate the location of the three nod

loci.

high genome plasticity. In A. caulinodans, 1412 proteins
have no counterpart in X. autotrophicus of which 544
(38%) are catalogued as unknown or hypothetical (Addi-
tional file 4). In the remaining group of functionally clas-
sified proteins, 46% have GC and GC3 contents different
from the genome averages, suggesting recent acquisition.

Functional protein classes and metabolic pathways

The putative protein-encoding genes were ordered into 17
classes [26] (Table 1) and the metabolic potential of A.
caulinodans was analyzed with the PathoLogic tool of the
BioCyC/MetaCYC suite [27].

These analyses revealed the presence of many regulatory
genes (8%) and several RNA polymerase ¢ factors, among
which two household 670 factors (AZC_3643 and
AZC_4253), two o5* factors (AZC_2924 and AZC_3925;
see below), and five & factors of the extracytoplasmic sub-
class (AZC_0389, AZC_1202, AZC_2427, AZC_2453, and
AZC_3238), implying responsiveness to many environ-
mental triggers. As A. caulinodans is a motile bacterium, a
large gene cluster is present (AZC_0615-AZC_0666) for
the formation of a type-III flagellum. A significant number
of chemotaxis genes predicts the capacity to respond to a
wide array of molecules (Additional file 5). While no
complete quorum sensing system could be detected, the
presence of no less than five LuxR-type response regula-
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tors suggests that A. caulinodans has the potential to listen
in on acyl-homoserine lactone-mediated communication

in its surroundings.

Table I: Overview of the functional categories of proteins
present in the A. caulinodans genome according to the
classification of Riley [26].

Functional classification Noa %P
Amino acid biosynthesis 132 28
Biosynthesis of cofactors, prosthetic groups and carriers 159 3.4
Cell envelope 174 3.7
Cellular processes 200 43
Central intermediary metabolism 161 34
Energy metabolism 303 64
Fatty acid, phopholipid, and sterol metabolism 136 29
Purines, pyrimidines, nucleosides, and nucleotides 66 1.4
Regulatory function 384 8.1
DNA replication, recombination and repair 79 1.7
Transcription 49 1.0
Signal transduction 39 0.8
Translation 227 438
Transport and binding proteins 714 152
Other categories 765 16.2
Hypothetical protein 954 202
Unknown protein 175 3.7
Total 471 100.
7 0

2 Number of proteins that belong to a specific class.
b Percentage of total proteins that belong to a specific class.

A variety of encoded proteins might offer protection
against toxic compounds in the environment (Additional
file 6). Examples are two cytochrome P450 monooxygen-
ases and pathways to degrade or modify plant-derived
molecules, such as protocatechuate, and xenobiotics, such
as cyanate, 1,4-dichlorobenzene, octane, and gallate. Sev-
eral multidrug efflux pumps, antibiotic-modifying
enzymes, and heavy metal translocation systems probably
confer resistance to deleterious compounds. The produc-
tion of the siderophores enterobactin and aerobactin
might guarantee iron acquisition from the surroundings.

The surface of bacteria is important for recognition,
attachment, and colonization during the interaction with
a host. Exopolysaccharides and lipopolysaccharides are
involved in nodulation as protective compounds against
defense molecules generated by the plant and as commu-
nication signals [28-30]. Other functions could relate to
surface structures, important for interaction with the host
(Additional file 7), e.g. putative adhesion proteins, anti-
gens, and 29 genes that code for proteins with GGDEF/
EAL domains. The latter typically play a role in the transi-
tion from a motile planktonic form to a sessile biofilm by
controlling the formation and degradation of the second-
ary messenger cyclic di-GMP [31]. Hormones also play an
important role in plant-microbe interactions. Both a struc-
tural (AZC_0267) and a regulatory gene (AZC_0266)
mediating degradation of the ethylene precursor 1-amino-
cyclopropane-1-carboxylate, are present in the genome.
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Over 15% of the genes are dedicated to "transport and
binding", of which more than 50% belong to the ATP-
binding-cassette (ABC) transporter class. With 118 com-
plete systems (consisting of a solute-binding protein, a
permease, and an ABC component for the uptake systems,
or an ABC component and a permease for the export sys-
tems), and numerous orphan subunits scattered over the
genome, the transporter complement of A. caulinodans
equals that of many other soil bacteria. These high-affinity
transport systems are dedicated to the uptake of peptides,
amino acids, sugars, polyamines, siderophores, nitrate/
sulfonate/bicarbonate, or C4-dicarboxylate and many
unknown substrates (Additional file 8). Accordingly, cat-
abolic pathways are predicted for compounds, such as
amino acids (including citrulline and ornithine), glucuro-
nate, galactonate, galactarate, gluconate, quinate, L-ido-
nate, creatinine, and 4-hydroxymandelate. Sugars, such as
glucose, fructose, sucrose, ribose, xylose, xylulose, and lac-
tose are not metabolized by A. caulinodans; instead, dicar-
boxylic acids are used as primary carbon source [10], as
reflected by the presence of multiple C4-dicarboxylic acid
transport systems. The occurrence of 16 putative alcohol
dehydrogenase genes suggests that ethanol could be a
major carbon source under flooded conditions. A. caulin-
odans is also capable of oxidizing hydrogen, an obligatory
by-product of the nitrogenase, and the required hup, hyp,
and hoxA genes are located in a large gene cluster
(AZC_0594-AZC_0613) [32]. Encoded energy metabo-
lism pathways include glycolysis, Entner-Doudoroff, and
TCA cycle. The absence of a gene encoding phosphofruc-
tokinase indicates the lack of a functional Emden-Meyer-
hof pathway.

Nitrogen fixation and related functions

Table 2 lists the genomic position of A. caulinodans genes
related to free-living and symbiotic nitrogen fixation.
These genes code for known functions, such as formation
of the nitrogenase, assembly and stabilization of the com-
plex, synthesis of the MoFe cofactor and the FeS clusters,
electron transport, ammonium assimilation, and regula-
tion of gene expression by nitrogen and oxygen, but also
for proteins whose exact role await experimental confir-
mation. Several nif genes occur in more than one copy and
are scattered over the genome as solitary loci or clusters of
varying size with GC and GC3 contents matching the aver-
ages of the genome (Additional file 1). The NifH phylog-
eny was congruent with the phylogenetic relationships
based on 16S rRNA [33] or on core protein families [Fig-
ure 5A]. The same holds true for the other genes listed in
Table 2 (data not shown).

The transcriptional activator NifA (AZC_1049) acts
together with a o54 factor RpoN (AZC_3925) to control
the nif/fix gene expression [34]. Nitrogen regulation of
nifA expression is under control of the NtrBC (AZC_3086-
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AZC_3087) and NtrYX (AZC_3083-AZC_3084) two-com-
ponent systems [35,36] that respond to the intracellular
and extracellular nitrogen status, respectively. The expres-
sion of these two loci depends on a hypothetical 654 factor
RpoF [34], which presumably corresponds to AZC_2924.
Oxygen control of nifA expression is mediated by FixL]
(AZC_4654 and AZC_4655) [37], and the transcription
factor FixK (AZC_4653) [38]. The nifA gene is further con-
trolled at the transcriptional level by a LysR-type regulator
[39] and at the translational level by the nrfA gene product
(AZC_3080) [40]. FixK also activates transcription of the
cytNOQP operon (AZC_4523-AZC_4526), encoding the
high-affinity terminal oxidase cytochrome cbb3 that is
induced under microaerobiosis [41,42]. Mutants in cyt-
NOQP still fix nitrogen under free-living conditions, sug-
gesting the occurrence of another terminal oxidase
[41,43]. The survey of the genome excluded the presence
of a second cytochrome cbb3 complex, but revealed two
cytochrome bd complexes (AZC_1353-AZC_1354 and
AZC_3759-AZC_3760).

A symbiosis region

A region of 87.6 kb, delimited by a Gly-tRNA (position
4346061) and an integrase (AZC_3882) and flanked by
direct repeats (Figure 6), is characterized by an overall
lower GC (Figure 3C) and GC3 contents (Figure 3D) than
the genome averages, and a different preferential codon
usage (Figure 4A). No less than 18 putative transposases
and three integrases are present, suggesting a complex his-
tory of horizontal gene transfer events. The region con-
tains the three nod loci that are involved in the synthesis
and secretion of the lipochitooligosaccharide Nod factors
(NFs) [44], but also genes related to chemotaxis, amino
acid uptake, and a putative type-IV secretion system
(Additional file 1).

The three nod loci are not adjacent and have a GC content
lower than that of the surrounding sequences (Figure 3C).
The shifts in GC content correspond to the location of
repeated elements that are flanked by insertion sequences
or tRNAs (Figures 1 and 6). The constitutively expressed
nodD gene (AZC_3792) [45,46] codes for a LysR-type reg-
ulator that activates transcription of the two other flavo-
noid-inducible nod loci. The inducible operon
nodABCSUIJZnoeCHOP (AZC_3818-AZC_3807) [47-49]
encodes most of the enzymatic machinery for NF back-
bone synthesis, decoration, and secretion. The biochemi-
cal role of these proteins has been extensively described,
except for the last four open reading frames noeCHOP that
are involved in NF arabinosylation and are still under
study. Based on similarity with proteins involved in arab-
inosylation of the cell wall in Mycobacterium tuberculosis,
noeC (AZC_3810), noeH (AZC_3809), and noeO
(AZC_3808) might encode the synthesis of a D-arabinose
precursor [50-52]. The third locus encodes the inducible
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Table 2: Nitrogen fixation-related genes
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Identifier Gene Description
AZC_0344 ptsN PTS IlA-like nitrogen-regulatory protein
AZC_1036 nifX Nitrogenase MoFe cofactor biosynthesis
AZC_1037 nifN Nitrogenase MoFe cofactor biosynthesis
AZC_1038 nifE Nitrogenase MoFe cofactor biosynthesis
AZC_1039 nifK Nitrogenase MoFe protein B-chain
AZC_1040 nifD Nitrogenase MoFe protein a-chain
AZC_1041 nifH Dinitrogenase reductase
AZC_1049 nifA Transcriptional activator
AZC_l1601 glnA Glutamine synthetase
AZC_1602 glnB Nitrogen regulatory protein
AZC_2280 ntrB/ntrY Signal transduction histidine kinase
AZC_2924 rpoF RNA polymerase ¢34 factor
AZC_3080 nfrA Translation regulator of nifA
AZC_3083 ntrX Transcriptional regulator
AZC_3084 ntrY Signal transduction histidine kinase
AZC_3086 ntrC Transcriptional regulator
AZC_3087 ntrB Signal transduction histidine kinase
AZC_3088 nifR3 Nitrogen assimilation-regulatory protein
AZC_3410 nifUu Mobilization of Fe for Fe-S cluster synthesis and repair
AZC_3411 nifS Nitrogenase cofactor synthesis protein
AZC_3412 fixU Unknown function
AZC 3414 nifB Fe and S donor for MoFe cofactor biosynthesis
AZC_3420 nifZ Unknown function
AZC_3443 nifH Dinitrogenase reductase
AZC_3444 nifQ Nitrogenase MoFe cofactor biosynthesis
AZC_3446 nif W Nitrogenase-stabilizing/protective protein
AZC_3447 fixA Electron-transferring flavoprotein oxidoreductase
AZC_3448 fixB Electron-transferring flavoprotein
AZC_3449 fixC Electron-transferring flavoprotein oxidoreductase
AZC_3450 fixX Ferredoxin protein
AZC_3925 rboN RNA polymerase c54factor
AZC_4523 cytN/fixN Cytochrome c oxidase subunit |
AZC_4524 cytO/fixO Cytochrome c oxidase subunit 2
AZC_4525 ytQ/fixQ Cytochrome c oxidase subunit 3
AZC_4526 cytP/fixP Cytochrome c oxidase subunit 4
AZC_4527 fixG Assembly and stability of the FixNOQP complex
AZC_4528 fixH Assembly and stability of the FixNOQP complex
AZC_4653 fixkK Transcriptional activator
AZC_4654 fixL Sensor protein
AZC_4655 fix) Transcriptional regulatory protein
Partial
RNAGY /15 S TR (RNA-Gly

SO e e

Figure 6

operon nolK trb

Schematic representation of the symbiosis region. Genes described in the text are indicated by arrows; the others are
not individually represented, but their number is specified in the pentagons. The symbiotic region is flanked by tRNA-Gly (tri-
angles) and interspersed by multiple transposases and integrases (blue lines). Genes in the nodA operon are nodABCSUIJZnoe-
CHOP and genes in the trb operon are trbBCDEJLFGI.
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nolK gene responsible for GDP-fucose synthesis for NF
decoration (AZC_3850) [53,54].

The symbiosis region also contains two conjugation-
related gene clusters with GC and GC3 contents compara-
ble to the genome averages. The cluster AZC_3844-
AZC_3826 - flanked by two transposases — consists of
repA and genes encoding conjugal transfer, partition, and
plasmid stabilization proteins (Additional file 1). In the
cluster AZC_3856-3877, flanked by a transposase and an
integrase, genes are found that are homologous to the trb-
BCDEJLFGI genes, a type-1V secretion system involved in
conjugative transfer of the tumor-inducing plasmid in
Agrobacterium tumefaciens [55] (Figure 6).

The genome annotation indicates the presence of a few
additional nodulation-related genes outside of the symbi-
osis region (Additional file 1). Two response regulators
(AZC_1361 and AZC_2281) homologous to nodW genes
of Bradyrhizobium japonicum and part of a two-component
signal transduction system might be involved in the
response to host-exuded flavonoids [56]. A nodT-related
gene (AZC_3288) [57] might act as the outer-membrane
component in NF secretion together with the inner-mem-
brane NodlI]J proteins. None of these four potential nodu-
lation genes has a different GC or GC3 content, in contrast
to the nod genes of the symbiosis region.

Discussion

Azorhizobium caulinodans is a member of the a-proteobac-
teria, a group with diverse genome architectures. Several
plant-associated representatives, such as Agrobacterium
and Sinorhizobium, have quite considerable genomes and
large circular or linear plasmids. In contrast, A. caulinodans
has a single circular chromosome of 5.37 Mb and no aux-
iliary replicons. The GC content and the coding density
are in range with other rhizobia and soil bacteria. A.
caulinodans is a motile, nitrogen-fixing, hydrogen-oxidiz-
ing, aerobic bacterium with a preference for organic acids
as carbon source. This lifestyle is reflected in the metabolic
pathways and in clusters for flagellum synthesis, motility,
and chemotaxis. A high number of genes are dedicated to
transport and regulation, indicating that a wide range of
substrates can be taken up, but that the pathways are
tightly regulated to limit the metabolic burden. Besides
the well-described role of surface polysaccharides during
plant-microbe interactions, the genome of A. caulinodans
encodes functions that might be involved in biofilm for-
mation, possibly facilitating the interaction with a host.
Ongoing functional analysis will undoubtedly reveal new
players in the ecology of the dual lifestyle of A. caulinodans
[58,59].

Genome analysis combined with phylogenetic studies has
shed new light on bacterial evolution and taxonomy. Core
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functions can be identified that are highly conserved
between related groups, but that may acquire individual
characteristics through accessory genes [60]. Analysis of a
family of core proteins and 16S rDNA sequence compari-
son revealed that the closest relative of A. caulinodans is
Xanthobacter autotrophicus. Xanthobacter sp. are free-living
nitrogen fixers and the nif and fix genes can thus be con-
sidered part of the core functions of the Azorhizobium-Xan-
thobacter group. The major difference in the lifestyle of
both organisms is that A. caulinodans has acquired the
ability to establish a symbiosis with S. rostrata.

The nodulation capacities are related to the presence of a
symbiosis region with distinct GC and GC3 contents and
codon usage. The association with tRNA loci, which pre-
sumably act as targets for the integration of foreign DNA,
and multiple transposons suggest a high plasticity of this
region, as reflected in its composition. The symbiosis
region contains three subclusters related to nodulation,
nodABCSUIJZnoeCHOP, nodD, and nolK that are flanked
by sequences suggestive of independent horizontal acqui-
sition. The repeated elements could be the relics of inser-
tion elements that once played a role in the evolution of
the A. caulinodans nodulation genes that have all the char-
acteristics of archetypal accessory genes.

To study the evolution of nod genes, A. caulinodans forms
an interesting case. The azorhizobial nod genes are only
distantly related to their counterparts in other rhizobia.
Phylogenetic comparisons demonstrated that the nodA
and nodC genes from rhizobia that nodulate temperate
legumes (e.g. S. meliloti, R. leguminosarum bv. viciae and
bv. trifolii, and R. galegae) are grouped together and the
genes from rhizobia that nodulate tropical legumes (e.g.
B. japonicum, B. elkanii, R. loti, R. tropici, and R. etli) form
a second cluster [61,62]. However, the nodA, nodB, and
nodC genes of A. caulinodans belong neither to the tropical
nor the temperate clusters [62,63]. Also, the genetic dis-
tance between the nodSU genes of A. caulinodans and their
counterparts in other rhizobia is much greater than the
mutual genetic distance between the nodSU genes of these
rhizobia [8]. The organization of the nod ABCSUIJ genes in
A. caulinodans resembles the situation in B. japonicum, but
the upstream and downstream regions are different
[64,65].

At present we do not know the origin of the symbiotic
genes of A. caulinodans. The Rhizobiaceae, which have
been historically considered a true family in phylogenetic
terms, now seem a rather diverse group of bacteria, includ-
ing Methylobacterium, Ralstonia, and Burkholderia that
share variant, relatively recently acquired, symbiotic gene
clusters. Possibly, the A. caulinodans nod genes are derived
from unexplored rhizobia or even from obligate endo-
phytes. Undoubtedly, the recent and ongoing explosion
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in meta-genomic projects will provide more insight into
the origin of the nodulation functions.

Conclusion

Extension of symbiotic nitrogen fixation to non-legume
cereal plants is a challenging long-standing goal. Espe-
cially, there is a growing interest in nitrogen-fixing organ-
isms that could establish an endophytic, beneficial
relation with important crops, such as rice and wheat
(Triticum aestivum). Interestingly in this context, the occur-
rence of A. caulinodans has been reported in intercellular
infection pockets located in the cortex of roots of Arabi-
dopsis thaliana and wheat [66]. In fields where S. rostrata
and rice are grown as rotation crops, A. caulinodans seems
to survive very well in the rhizosphere of the rice plants
and in the soil [67]. Moreover, the bacterium invades
emerging lateral roots of rice, and rice seedlings inocu-
lated with A. caulinodans have a high nitrogenase activity
[68]. Finally, A. caulinodans fixes nitrogen under relatively
high oxygen tension as a free-living organism, invades the
host via cracks, and establishes intercellular colonies.
Altogether, these features might be advantageous for pri-
mary infection of nitrogen-starved root systems and high-
light the potential of A. caulinodans as a candidate model
organism. The genome sequence data provide new oppor-
tunities for exploring the regulatory aspects of Azorhizo-
bium nitrogen fixation and the essential features that
implement the ability for endosymbiosis.

Methods

DNA sequencing

The nucleotide sequence of the entire genome of A. caulin-
odans ORS571 was determined by the whole-genome
shotgun strategy method. For shotgun cloning, DNA frag-
ments of 2 to 3 kb were cloned into the HinclI site of
pUC118. For gap closing, the pCC1Fos vector (Epicentre,
Madison, WI, USA) was used, and approximately 35-kb
clones were prepared. The accumulated sequence files
were assembled with the Phrap program [69]. A total of
71,424 random sequence files corresponding to approxi-
mately 7.7 genome equivalents were assembled to gener-
ate draft sequences. Finishing was carried out by visual
editing of the sequences, followed by gap closing, and
additional sequencing to obtain sequence data with a
Phred score of 20 or higher [70,71]. The integrity of the
final genome sequence was assessed by comparing the
insert length of each fosmid clone with the computed dis-
tance between the end sequences of the clones. The end
sequence data facilitated gap closure as well as accurate
reconstruction of the entire genome. The final gaps in the
sequences were filled by the primer walking method. A
lower threshold of acceptability for the generation of con-
sensus sequences was set at a Phred score of 20 for each
base. The nucleotide sequence is available in the DDBJ/
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EMBL/GenBank databases under the accession number
AP009384.

Structural and functional annotation

Coding regions were assigned by a combination of com-
puter prediction and similarity search. Briefly, the protein-
coding regions were predicted with the Glimmer 2.02 pro-
gram [72] and all regions equal to or longer than 90 bp
were translated into amino acid sequences that were sub-
jected to similarity searches against the nonredundant
protein database at NCBI with the BLASTP program [73].
In parallel, the entire genomic sequence was compared
with those in the nonredundant protein database with the
BLASTX program [73] to identify genes that had escaped
prediction and/or were smaller than 90 bp, especially in
the predicted intergenic regions. For predicted genes with-
out sequence similarity to known genes, only those equal
to or longer than 150 bp were considered as candidates.
Functions were assigned to the predicted genes based on
sequence similarity of their deduced products to that of
genes of known function. For genes that encode proteins
of 100 amino acid residues or more, an E-value of 10-20
was considered significant, whereas a higher E-value was
significant for genes encoding smaller proteins (E-value
treshold of 10-19). Genes for structural RNAs were
assigned by similarity search against the in-house struc-
tural RNA database that had been generated based on the
GenBank data. tRNA-encoding regions were predicted by
the tRNAscan-SE 1.21 program [21] in combination with
the similarity search.

MetaCyc analysis [27,74] detected 229 metabolic path-
ways, containing 1037 reaction steps. To assess the pres-
ence or absence of a metabolic pathway and to decrease
the likelihood of being misled by the many enzymes that
are shared among multiple pathways, the analysis was
emphasized on the presence of enzymes that are unique
to a pathway.

Construction of a phylogenetic tree

The Maximum-likelihood tree was based on 108 core pro-
teins of 45 o-proteobacteria [23] whose sequence data
and annotation files were available and downloaded from
the NCBI Microbial Genome Resource database [75]. The
set of core genes was determined by an all-against-all
BLAST at protein level. Best reciprocal hits were selected,
taking into account a cut-off value defined as 20% similar-
ity and an overlap of at least 150 amino acids. Only pro-
teins present in all 45 genomes as single copy were
considered as "core proteins" and used to construct the
phylogenetic tree. The total alignment contained 32,327
amino acids. The tree was constructed with the Phyml
program [76] and a WAG substitution model [77] and
100 bootstrap replicates were run. Unless indicated other-
wise, bootstraps are 100 (Figure 5A).
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Overview of the genes, their properties, and translation products
present in the genome of A. caulinodans. From left to right: unique ID
for each A. caulinodans gene; indication of the gene function based on
homology; functional classification of genes according to Riley [26]; GC
content at the third position of codons in percent; GC content of a gene in
percent; start/stop, position of start codon or stop codon of a gene on the
plus or minus strand, respectively; stop/start, position of stop codon or start
codon of a gene on the plus or minus strand, respectively; strand, coding
sequence on the plus or minus strand; protein sequence.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-271-S1.xls]

Additional file 2

Overview of the properties of the 45 a-proteobacterial genomes of the
data set. From left to right: bacterial strain; type of replicon; NCBI data-
base identification code; size in Mbp; GC content of the replicon; number
of proteins encoded by the replicon; number of structural RNA elements
on the replicon.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-271-S2 xls]

Additional file 3

Whole genome comparison of A. caulinodans ORS571 and Xantho-
bacter autotrophicus Py2 using the ARTEMIS Comparison Tool
[25]. Red and blue lines connect similar sequences and similar sequences
that are inverted between strains, respectively.
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|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-271-83.pdf]
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Overview of genes present in the A. caulinodans ORS571 genome
and absent in the Xanthobacter autotrophicus Py2 genome. From
left to right: unique ID for each A. caulinodans gene; indication of the
gene function based on homology; GC content at the third position of
codons in percent; GC content of a gene in percent.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-271-S4 xls]

Additional file 5

Chemotaxis and motility genes in the A. caulinodans genome. From
left to right: unique ID for each A. caulinodans gene; indication of the
gene function based on homology; functional classification of genes
according to Riley [26]; GC content at the silent third base of codons in
percent; GC content of a gene in percent.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-271-S5 xls]

Additional file 6

Putative detoxification genes in A. caulinodans. From left to right:
unique ID for each A. caulinodans gene; indication of the gene function
based on homology; functional classification of genes according to Riley
[26]; GC content at the third position of codons in percent; GC content
of a gene in percent.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-271-S6.xls]

Additional file 7

Genes encoding surface-associated components in the A. caulinodans
genome. From left to right: unique ID for each A. caulinodans gene;
indication of the gene function based on homology; GC content at the
third position of codons in percent; GC content of a gene in percent.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-271-S7 xls]

Additional file 8

Genes in the A. caulinodans genome dedicated to transport. From left
to right: unique ID for each A. caulinodans gene; indication of the gene
function based on homology; functional classification of genes according
to Riley [26]; position of start codon or stop codon of a gene on the plus
or minus strand, respectively; position of stop codon or start codon of a
gene on the plus or minus strand, respectively; coding sequence on the plus
or minus strand.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-271-S8 xls]
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