Dubos et al. BMC Genomics 2014, 15:317

http://www.biomedcentral.com/1471-2164/15/317
p BMC

Genomics

RESEARCH ARTICLE Open Access

Integrating bioinformatic resources to predict
transcription factors interacting with cis-sequences
conserved in co-regulated genes

Christian Dubos'*?", Zsolt Kelemen'*", Alvaro Sebastian®, Lorenz Biilow”, Gunnar Huep®, Wenjia Xu',
Damaris Grain', Fabien Salsac', Cecile Brousse', Loic Lepiniec', Bernd Weisshaar®, Bruno Contreras-Moreira™’
and Reinhard Hehl®

Abstract

Background: Using motif detection programs it is fairly straightforward to identify conserved cis-sequences in
promoters of co-regulated genes. In contrast, the identification of the transcription factors (TFs) interacting with
these cis-sequences is much more elaborate. To facilitate this, we explore the possibility of using several
bioinformatic and experimental approaches for TF identification. This starts with the selection of co-regulated gene
sets and leads first to the prediction and then to the experimental validation of TFs interacting with cis-sequences
conserved in the promoters of these co-regulated genes.

Results: Using the PathoPlant database, 32 up-regulated gene groups were identified with microarray data for
drought-responsive gene expression from Arabidopsis thaliana. Application of the binding site estimation suite of
tools (BEST) discovered 179 conserved sequence motifs within the corresponding promoters. Using the STAMP
web-server, 49 sequence motifs were classified into 7 motif families for which similarities with known cis-regulatory
sequences were identified. All motifs were subjected to a footprintDB analysis to predict interacting DNA binding
domains from plant TF families. Predictions were confirmed by using a yeast-one-hybrid approach to select
interacting TFs belonging to the predicted TF families. TF-DNA interactions were further experimentally validated in
yeast and with a Physcomitrella patens transient expression system, leading to the discovery of several novel
TF-DNA interactions.

Conclusions: The present work demonstrates the successful integration of several bioinformatic resources with
experimental approaches to predict and validate TFs interacting with conserved sequence motifs in co-regulated
genes.

Keywords: Databases, Arabidopsis thaliana, Physcomitrella patens, Yeast one-hybrid, Microarray, Transcription factor,
cis-element

Background

In recent years large numbers of novel cis-regulatory se-
quences have been described that are conserved in
stress-response genes, but the role of these elements and
their binding transcription factors (TFs) remains un-
known [1-3]. The identification of the binding TFs is
therefore a major challenge for bioinformaticians and
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experimentalists. Using database-assisted analysis of cis-
sequences it is possible to generate hypotheses on the
nature of the binding TF [4], but the experimental valid-
ation of these predictions is often missing. The current
work investigates how efficient a database-assisted
approach leads to the prediction of the correct TF or
TF-families that bind to conserved cis-sequences in co-
regulated genes.

The identification of cis-regulatory sequences has been
facilitated using bioinformatic and web-queryable re-
sources [4-9]. One approach is the detection of cis-
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elements annotated in existing resources by performing a
database-assisted analysis [10-12]. Another approach is
the de novo discovery of conserved sequence patterns in
sets of co-regulated genes without knowing if these se-
quences have been associated with a function before. This
involves detection of over-represented sequences in the
upstream region of co-regulated genes by using pattern
mining programs such as MEME, AlignACE, CONSEN-
SUS, Co-Bind, BioProspector, MITRA, or integrative
frameworks such as BEST [13-19].

To discover conserved sequence motifs in promoters
of up-regulated A. thaliana genes, BEST was applied in
the work presented here. Co-regulated genes were iden-
tified using drought responsive microarray expression
data annotated to the PathoPlant database [20,21]. The
identified motifs were classified with STAMP [22] and
compared to known cis-regulatory sequences annotated
to the AthaMap, PLACE and AGRIS databases [23-28].
Furthermore, the newly developed footprintDB reposi-
tory, built on top of 3D-footprint, was employed to pre-
dict interacting TFs [29,30]. To confirm bioinformatic
predictions, 15 cis-sequences were used for the isolation
of interacting TFs in a yeast one-hybrid screening. The
specificity of each TF-DNA interaction was further vali-
dated in yeast. Furthermore, two TFs were used for the
generation of synthetic factors that activate reporter
gene expression under the control of synthetic pro-
moters harbouring corresponding cis-sequences in a P.
patens expression system.

Results

Identification of seven motif families in
drought-responsive A. thaliana genes

The goal of this work was the identification of transcrip-
tion factors binding to cis-regulatory sequences con-
served in promoters of drought-responsive genes. Thus,
the first part aimed to identify sequence motifs harbour-
ing such cis-sequences. Figure 1 gives an overview of the
workflow. In a first step, microarray experiments anno-
tated to the PathoPlant database were employed to iden-
tify gene sets two- to tenfold up-regulated by drought in
roots and shoots. A total of 32 queries were performed.
Additional file 1 lists the parameters for these queries
and also the number of induced genes obtained in each
of the 32 queries. The 32 queries yielded 32 up-
regulated gene groups containing up to 34 co-regulated
genes. In a second step, conserved sequence motifs
within the upstream region of the 32 co-regulated gene
groups were identified with the software package BEST
[19]. For motif detection, 1,000 bp upstream of all genes
in a co-induced gene group were screened with this soft-
ware. This analysis resulted in 179 sequence motifs, 22
from roots, 46 from shoots, and 111 from combinations
of timepoints or tissues. In a third step, all sequences
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1. Step

32 PathoPlant database queries for genes upregulated
two- to tenfold by drought in roots and shoots

!

32 upregulated gene groups containing 7-34 genes
identified

2. Step

Identification of conserved sequence motifs within
1,000 bp upstream sequence of 32 upregulated
gene groups using BEST

!

179 motifs identified,
22 from roots, 46 from shoots,
111 from timepoint or tissue combinations

3. Step

In silico expression analysis of
genes harbouring motif sequences

!

49 motifs pass in silico expression
analysis criteria (5 from roots,
14 from shoots, 30 from timepoint
or tissue combinations)

4. Step

Motif classification using STAMP

!

7 motif groups identified

Figure 1 Workflow to identify sequence motifs conserved in

drought responsive genes.

from the 179 motifs were subjected to an in silico ex-
pression analysis [31]. With this tool, motifs specific for
drought responsive genes were identified. A total of 49
motifs containing cis-sequences that pass this analysis
remained, 5 from roots, 14 from shoots and 30 from
combinations of timepoints or tissues. These sequences
and the alignments generating the 49 sequence motifs
are shown in Additional file 2. Single sequences that
pass the in silico expression analysis criteria are shown
in bold in this file.

These 49 sequence motifs were further analysed using
STAMP (Step 4, Figure 1). STAMP determines the
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relationship between the motifs and also calculates simi-
larities to known cis-regulatory sequences [22]. To illus-
trate the similarities among the 49 sequence motifs, a
tree was generated and illustrated by the program
MEGA [32], which is shown in Figure 2. Based on the
relationship between the motifs, 7 motif groups were
designated. STAMP was also employed for the identifi-
cation of motif similarities by comparing the 49 motifs
with known cis-elements from plant databases AthaMap,
AGRIS and PLACE [23-25]. Additional file 3 summa-
rises these results. Several motifs from group I, that har-
bours 29 motifs, show significant similarities (low E-
value) to a G-box motif and to abscisic acid-responsive
elements (ABRE) known as bZIP binding sites. For ex-
ample with the PLACE database eight motifs show simi-
larities with the GBOXLERBCS sequence [33] and nine
motifs show similarities to four different ABREs from
PLACE (ABREATRD22, ABREAZMRAB28, ABRETAEM,
ABREMOTIFIIIOSRAB16B). These ABREs are associated
with abiotic stress response [34-37]. Twenty motifs cluster
within the remaining groups (II to VII) and display less
significant similarities (higher E-value) to a wide array of
cis-elements, with many of them so far not being associ-
ated with abiotic stress response (Additional file 3).

Bioinformatic prediction of TFs interacting with

conserved cis-sequences

The collection of sequence motifs detected with BEST
were further analysed with footprintDB, which currently
contains over 5,000 unique TFs and their experimentally-
associated DNA motifs [30]. The flowchart in Figure 3
illustrates this approach. This strategy retrieved A. thali-
ana candidates for all motif groups but group V. These
predictions further confirm that 29 group I motifs display
obvious similarities to G-box, ABRE-binding motifs recog-
nised by TFs of the ABF family (with bZIP domains), and
in general reproduce the STAMP analysis explained earl-
ier. The remaining groups do not have a clear resemblance
to any documented DNA binding specificity, and thus
proteins from a variety of families were retrieved. In total,
865 unique A. thaliana protein sequences were retrieved
for the 49 drought-related motifs (Additional file 4, sheet
[A.th.homologues]).

Isolation of TFs interacting with conserved cis-sequences

Sequences from the identified DNA motifs, which are
conserved in the promoter of genes simultaneously in-
duced by drought were cloned (six repeats) into the
yeast pHISi vector with the aim to carry out yeast one-
hybrid (Y1H) screens, in order to identify TFs that are
able to activate the transcription from these putative cis-
regulatory sequences. Out of these 49 sequence motifs,
15 individual cis-sequences shown in Table 1 and repre-
senting all seven motifs groups, were used for YI1H.
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Additional file 5 shows the result of the YIH screen. A
total of 49 different TFs belonging to 12 different fam-
ilies were identified. Amongst the identified factors, 11
were already described as playing a role in various stress
responses. Five were found to be associated with abiotic
stresses (e.g. drought, salt), three with biotic stresses
(e.g. pathogens), and three with both types of stress
(Additional file 5). Moreover, this analysis led in most of
the cases to the identification of specific associations
between a motif group and a TF family. Table 2 and
Figure 4A summarise these findings. Table 3 shows all
selected TFs that were able to activate the screened se-
quence but unable to activate the mutated sequence in
yeast (Figure 4B, C, D, and E, left panel). Sequence 2
from motif group I and sequence 10 from motif group V
preferably select bHLH TFs (Table 2). Instead, both se-
quences from motif group II preferably select NAC fac-
tors. Interestingly, sequences from motif group III and
VI, which are closely related (Figure 2), preferably select
MYB TFs. For the other sequences, no preferred TF
family members were selected (Table 2).

Within motif group I, two different sequences were
assayed. For the first one, AACGTGGG, no specific class
of TF was found to preferentially activate transcription
in yeast. In this assay, five different TFs, belonging to
five different families (ie. bHLH, GATA, MADS, 3R-
MYB and NAC), were identified (Table 3). Conversely,
seven bHLH TFs (i.e. bHLH31, 48, 64, 72, 74, 79 and
115) were able to activate the transcription from the
second sequence, GCACGTGGAG, revealing some tran-
scriptional specificity (Table 3). Interestingly, both ele-
ments contain the ACGT core sequence, which once
mutated (AACCTCGG and GCAGCTGGAG) prevented
the identified TFs to activate transcription in yeast, indi-
cating its preponderant role in these interactions. The
Y1H analysis of group V motifs, which belong to the
cluster showing the highest level of sequence similarity
with group I, led to the identification of four bHLH TFs.
In fact, these bHLH factors were found to activate tran-
scription in yeast from the ATGTGATGC sequence, but
not from the GCATCACCC sequence, for which TFs
from two other families (i.e. G2-like and Zn finger) were
identified. The careful analysis of these group V motif
sequences and their corresponding mutated versions
ATGCAATGC and GCATAGCCC) exposed that when
the ATGTGATGC sequence is concatenated, an E-box
(CANNTG) is created, whereas this is not the case with
the GCATCACCC sequence. The fact that sequences
from group I and V display strong similarities with ei-
ther the well described G ([GC] ACGT [GC]) or E boxes
probably explains why bHLH TFs were found to be asso-
ciated with these two motif groups. Group II is closely
related, at the sequence level, to group I and V. How-
ever, unlike groups I and V, only two NAC TFs were
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Figure 2 Relationship tree for 49 sequence motifs identified bioinformatically in co-regulated gene groups.
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49 sequence motifs from drought-
induced gene promoters

49 position-specific scoring matrices
(PSSMs)

footprintDB TFs that recognise similar
motifs (E-value<1E-3)

BLASTP

Arabidopsis thaliana similar TFs (E-|
value<1E-10 and
>50% conserved interface)

(~27000 longest translated protein

Figure 3 Workflow to predict binding TFs for 49 cis-elements/sequence motifs.

footprintDB database
(~5000 PSSMs and TFs)

Arabidopsis thaliana proteome

sequences from TAIR9)

found to interact with the two sequences tested (i.e.
GCTGCCGGAGA and GCCACGTCAGC), with one
(At3g12910) being identical for both sequences (Table 3).
From group III, four sequences were analysed, namely
CACCTAAC, ACCACAACC (GGTTGTGGT), ACCAA
ACAT and TCGGACCAA. From these AC-rich sequences

only R2R3-MYB TFs were identified as able to activate
transcription in yeast (Table 3), with the exception of
TCGGACCAA, for which no interacting TF was identi-
fied (Table 3).

The analysis of the CTCTCTCAC element from group
IV concluded with the identification of three factors: one

Table 1 Cis-sequences selected for further experimental and bioinformatics analysis

Seq. Nr. Selected cis-element Motif group Query Gene Position
1 AACGTGGG | rootséh_1 At4g22610 —491

2 GCACGTGGAG I shootsThr_9 At4g15210 -312

3 GCTGCCGGAGA I shoots24hr_2 At4g17470 —295

4 GCCACGTCAGC Il shoots24hr_2 At5g05250 -526

5 GGTTGTGGT M1l roots24hr_5 At1g21100 —-839

6 ACCAAACAT Il shoots0.25hr_16 At5g42760 -26

7 CACCTAAC I roots0.5hr_16 At2g22880 —288

8 TCGGACCAA Il rootsshootsThr_2 At5g20230 —638

9 CTCTCTCAC v roots0.5hr_8 At5g20230 —934
10 ATGTGATGC shootsbhr12hr_2 At1g52410 -15
11 GCATCACCC shootséhr12hr_3 At2g43510 —-873
12 CCAACTAA Vi shoots12hr24hr_6 At2g43510 —-355
12a CAAACAAA Y shoots12hr24hr_6 At3g28220 —155/-924
13 TCTCCTCCAC Vil shootsThr_32 At5g45340 —49
14 CTTTCCCC VI rootsshoots0.5hr_36 At1g76650 -9

15 CCTCCTICT VI rootsshoots0.5hr_21 At1g20510 —37/-745

Proveniences of selected motif sequences. Query refers to Figure 2. The genes and positions relative to transcription start refer to the genomic context of the

cloned cis-elements.
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Seq. Cis-sequence Interacting transcription factors
Nr Group Sequence Main family All families
1 I AACGTGGG N.D. bHLH (1), GATA (1), MADS (1), 3R-MYB (1), NAC (1)
2 | GCACGTGGAG bHLH (7/7) bHLH (7)
3 Il GCTGCCGGAGA NAC (2/2) NAC (2)
4 Il GCCACGTCAGC NAC (1/1) NAC (1)
5 Il GGTTGTGGT MYB (14/14) MYB (14)
6 Il ACCAAACAT MYB (4/4) MYB (4)
7 Il CACCTAAC MYB (16/16) MYB (16)
8 M1l TCGGACCAA None
9 Y CTCTCTCAC bZIP (2/3) bZIP (2), NAC (1)
10 \Y ATGTGATGC bHLH (4/4) bHLH (4)
11 V GCATCACCC N.D. G2-like (1), Zn finger (1)
12 Vi CCAACTAA MYB (17/17) MYB (17)
13 Vil TCTCCTCCAC N.D. bHLH (1), bZIP (1), NAC (1)
14 Wl CTTTCCCC N.D. C3HC4 (1), MYB (1), WRKY (1)
15 VI CCTCCTTCT None

N.B.: MYB refers to the R2R3-MYB class of MYB TF.

NAC and two bZIP (subgroup I) TFs ([38,39]; Figure 4E,
Table 3).

Finally, three different sequences belonging to group VII
were also analysed, namely TCTCCTCCAC, CTTTCCCC
and CCTCCTTCT, from which no clear pattern of bind-
ing emerged. The screening of the TCTCCTCCAC se-
quence led to the identification of three different classes
of TFs (bHLH, bZIP and NAC). Three additional factors
belonging to three further classes (C3HC4, MYB and
WRKY) where identified with the CTTTCCCC element.
Finally, no binding TFs for the CCTCCTTCT element
were retrieved from Regia in yeast (Table 3).

Validation of transcription factor predictions with
yeast-one-hybrid experimental data

In order to benchmark the accuracy of bioinformatically
predicted candidate TFs, they were compared to those ex-
perimentally identified by Y1H screening. Key search pa-
rameters were tuned as explained in Methods and in
Figure 3, and a trade-off between precision and sensitivity
could be achieved. In summary, we were able to lower the
BLASTP E-value threshold to 1E-10 without a significant
sensitivity loss, but fixed the STAMP cutoff to 1E-3 to
avoid a major sensitivity drop while ensuring reliable short
cis-element alignments [30]. We also found that filtering
out candidate TFs with poorly conserved interface resi-
dues, those directly contacting DNA nitrogen bases, was
helpful in order to discard false predictions. A cutoff of
50% interface similarity was observed to be adequate, in-
creasing specificity to 0.921, as shown in Additional file 4
[PredictionSummary]. Tested cis-elements were classified

as predictable if the footprintDB repository contained at
least one annotated TF with a significantly similar motif
(STAMP E-value < 1E-3), which was homologous to the
experimental Y1H-inferred factors. Thirteen of the 15
cis-elements tested in the Y1H experiment were accord-
ingly called ‘predictable’, but only 5 of them (2, 5, 6, 7,
12) yielded true positives among footprintDB results. The
rest had significantly divergent DNA motifs annotated in
the database, with E-values over the cutoff, and there-
fore could not be identified (see Figure 5). It is import-
ant to note that in all predictable cases the correct
binding TFs were identified by homology to annotated
plant regulatory proteins, including A. thaliana, Petunia
hybrida, Oryza sativa or Phaseolus vulgaris. On the
other hand, group II (sequence 4), III (sequence 8) and VII
(sequence 15) elements could not be successfully matched
as the IDEF2 and GCN4-like motifs (see Discussion)
were not part of footprintDB when the predictions
were made. Overall, after conducting the benchmark
experiment using as input the 15 cis-sequences in
Table 1, we conclude that we correctly predicted 56 out
of 81 (69%) of the TFs isolated in the Y1H assays, find-
ing on average 1 validated TF every 24 predictions. If
only predictable sites are considered, these numbers
improve to 56 out of 58 (97%) and 1 confirmed TF
every 13 predictions, respectively. Finally, when the
complete analysis was repeated with input DNA
motifs (as produced by BEST) instead of individual
cis-sequences, the fraction of successfully recovered TFs
dropped to 39 out of 81 (48%), yielding 1 confirmed TF
every 35 predictions. These results and the complete
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(See figure on previous page.)

domain. Error bars + SE. t-test significance: *, P < 0.05 and ***, P < 0.001.

Figure 4 Identification and functional characterization of TFs interacting with conserved cis-sequences. (A) Simplified similarity tree
(based on STAMP analysis) displaying the main associations observed between the different groups of conserved cis-sequences and the different
class of TFs identified in yeast one-hybrid (Y1H) experiments. (B-E) Transcriptional activity and interaction of selected TFs with sequences 3 (B), 7
(C), 5 (D) and 9 (E) in YTH experiments (left panels). Six repeats of the tested sequence, or their mutated versions (bold characters indicate the
mutated nucleotides), fused to the HIS3 auxotrophic gene were tested. Upper part, growth on control media deprived of W amino acid, allowing
the selection of yeast that express the studied TFs (i.e. NAC, NAC42, PIF7, MYB61 and MYB31). Lower part, growth on selective media deprived of
W and H amino acids. Physcomitrella patens protoplasts transient expression assays (right panels). Green fluorescent protein (GFP) intensity
measured in P. patens protoplasts cotransfected with sequences 3, 7, 5 and 9 fused to the 35S cauliflower mosaic virus minimal promoter and the
GFP reporter gene with either, the NAC (sequences 3 and 9) or the MYB31 (sequences 7 and 5) DNA binding domain fused to the VP16 activation

benchmark reports can be found in Additional file 4
[PredictionSummary].

Functional analysis of TFs interacting with conserved
cis-sequences

In this study, some factors were found to be able to acti-
vate transcription in yeast from various cis-sequences con-
served in the promoters of genes that are simultaneously
induced by drought. Amongst these, two were selected for
more detailed analysis, NAC protein At3g12910 and
MYB31 Atlg74650. These selected TFs were able to in-
duce transcription in Y1H experiments from three (group
II, GCTGCCGGAGA and GCCACGTCAGC; group 1V,
CTCTCTCAC; and group VII, TCTCCTCCAC) and two
(group III, CACCTAAC and ACCACAACC; and group
VI, CCAACTAA) different motif groups, respectively
(Table 3).

The ability of these two factors to interact with their
DNA target in vivo was analysed in transient expression
assays, using Physcomitrella patens protoplasts. In this
experiment, the DNA binding domain (DBD) of the
NAC protein and MYB31 was fused to the VP16 activa-
tion domain, resulting in the formation of two synthetic
TFs. These chimeric proteins were then assayed against
different conserved cis-sequences, namely CTCTCTCAC
and GCTGCCGGAGA (TCTCCGGCAGC), and CACC
TAAC and ACCACAACC, for the NAC and MYB31
DBD, respectively (Figure 4).

This analysis confirms the results obtained in Y1H ex-
periments. Interestingly, the transcriptional activity sup-
ported by the NAC DBD was a lot stronger with the
GCTGCCGGAGA sequence than with CTCTCTCAC,
strengthening the idea that the GCTGCCGGAGA elem-
ent is most probably a new NAC target sequence
(Figure 4B, E). Conversely, similar activity was observed
when MYB31 DBD was assayed against either, CACC
TAAC or ACCACAACC, suggesting that MYB31 could
activate the transcription from a wide variety of AC-rich
cis-sequences (Figure 4C, D).

The cis-sequences and transcription factors identified
in the present study may play a role in drought-
responsive gene expression in A. thaliana. In the context
of this assumption, several cis-sequences were used to

generate synthetic promoters, which were tested in
transgenic A. thaliana plants. However, no drought-
responsive reporter gene expression has been observed
in these transgenic lines so far (data not shown). It will
be interesting to see if overexpression or knock-down
mutations of the identified transcription factors will have
any effect on drought-responsiveness of the plants.

Discussion

The application of bioinformatic resources has led to the
identification of large numbers of novel cis-regulatory
sequences conserved in stress response genes [1-3].
Often the role of these elements and their binding tran-
scription factors has remained unknown. The primary
goal of the present work was the identification of TFs
interacting with cis-sequences conserved in co-regulated
genes. A total of 49 sequence motifs classified into 7 motif
families were identified from microarray data on drought
responsive gene expression. These motifs were bioinfor-
matically predicted to interact with TFs belonging to spe-
cific TF families. These predictions were then tested
experimentally using yeast one-hybrid screenings leading
to the identification of novel TF-DNA interactions. Ini-
tially, the two bioinformatic approaches employed, prefer-
ably predicted TFs interacting with putative binding sites
for motif group I that harbours 29 of a total of 49 motifs.
Using the STAMP web server as well as footprintDB,
these show significant similarities (low E-value) to G-box
and ABRE elements. However, no consistency in TF pre-
dictions was obtained with these database-assisted ana-
lyses using the other motifs. This first set of results
exposed the natural limitations of this approach, mainly
associated with the data content of the underlying scanned
databases. For example, predictions using the STAMP
webserver depend on previously annotated data derived
from databases such as TRANSFAC, JASPAR, PLACE,
AGRIS, and AthaMap ([23,28,40-42]. The content of
these repositories is primarily derived from functionally
known regulatory sequences, which are expected to be
only a tiny fraction of all cis-elements. Similarly, foot-
printDB  (http://floresta.eead.csic.es/footprintdb) contains
TFs and their experimentally-associated DNA motifs from
these and other databases. A main difference to the
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Studied cis-sequences

Identified transcription factors

Motif group Screened sequence Mutated sequence Gene ID Family Name
I AACGTGGG AACCTCGG AT3G09370 3R-MYB MYB3R3
I AACGTGGG AACCTCGG AT5G43650 bHLH bHLH92
| AACGTGGG AACCTCGG AT4G32890 GATA GATA9
I AACGTGGG AACCTCGG AT5G51870 MADS AGL71
| AACGTGGG AACCTCGG AT3G12910 NAC -
| GCACGTGGAG GCAGCTGGAG AT1G59640 bHLH bHLHO031, ZCW32
I GCACGTGGAG GCAGCTGGAG AT2G42300 bHLH bHLH048
| GCACGTGGAG GCAGCTGGAG AT2G18300 bHLH bHLHO64, HBI1
I GCACGTGGAG GCAGCTGGAG AT5G61270 bHLH bHLHO72, PIF7
I GCACGTGGAG GCAGCTGGAG AT1G10120 bHLH bHLHO74
I GCACGTGGAG GCAGCTGGAG AT5G62610 bHLH bHLH079
I GCACGTGGAG GCAGCTGGAG AT1G51070 bHLH bHLH115
I GCTGCCGGAGA GCTGACTGAGA AT2G43000 NAC ANACO042, JUB1
I GCTGCCGGAGA GCTGACTGAGA AT3G12910 NAC -
Il GCCACGTCAGC GCCATATCAGC AT3G12910 NAC -
Ml GGTTGTGGT GGTACTGGT AT5G52260 R2R3-MYB MYBO19
M1l GGTTGTGGT GGTACTGGT AT1G74650 R2R3-MYB MYB031, ATY13
Il GGTTGTGGT GGTACTGGT AT3G48920 R2R3-MYB MYBO045
M1l GGTTGTGGT GGTACTGGT AT5G54230 R2R3-MYB MYB049
M1l GGTTGTGGT GGTACTGGT AT1G57560 R2R3-MYB MYBO50
Il GGTTGTGGT GGTACTGGT AT1G16490 R2R3-MYB MYBO058
M1l GGTTGTGGT GGTACTGGT AT1G08810 R2R3-MYB MYBO60
M1l GGTTGTGGT GGTACTGGT AT1G09540 R2R3-MYB MYBO61
Il GGTTGTGGT GGTACTGGT AT1G56650 R2R3-MYB MYBO75, PAP1
M1l GGTTGTGGT GGTACTGGT AT5G26660 R2R3-MYB MYB086
M1l GGTTGTGGT GGTACTGGT AT5G10280 R2R3-MYB MYB092
Il GGTTGTGGT GGTACTGGT AT3G47600 R2R3-MYB MYB094
M1l GGTTGTGGT GGTACTGGT AT1G63910 R2R3-MYB MYB103
M1l GGTTGTGGT GGTACTGGT AT3G02940 R2R3-MYB MYB107
Il ACCAAACAT ACGATACAT AT2G47190 R2R3-MYB MYBO002
I ACCAAACAT ACGATACAT AT3G24310 R2R3-MYB MYBO71, MYB305
M1l ACCAAACAT ACGATACAT AT3G06490 R2R3-MYB MYB108, BOS1
Ml ACCAAACAT ACGATACAT AT1G48000 R2R3-MYB MYB112
Il CACCTAAC CTCCTTAC AT2G47190 R2R3-MYB MYBO002
M1l CACCTAAC CTCCTTAC AT5G52260 R2R3-MYB MYBO19
11l CACCTAAC CTCCTTAC AT1G74650 R2R3-MYB MYBO31, ATY13
M1l CACCTAAC CTCCTTAC AT5G54230 R2R3-MYB MYB049
M1l CACCTAAC CTCCTTAC AT1G57560 R2R3-MYB MYBO50
Il CACCTAAC CTCCTTAC AT1G16490 R2R3-MYB MYBO058
M1l CACCTAAC CTCCTTAC AT1G08810 R2R3-MYB MYBO60
M1l CACCTAAC CTCCTTAC AT1G09540 R2R3-MYB MYBO61
Ml CACCTAAC CTCCTTAC AT1G56160 R2R3-MYB MYBO072
M1l CACCTAAC CTCCTTAC AT5G26660 R2R3-MYB MYB086
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\%
Vil
Vil
W
W
W
W
Vil

CACCTAAC
CACCTAAC
CACCTAAC
CACCTAAC
CACCTAAC
CACCTAAC
TCGGACCAA
CTCTCTCAC
CTCTCTCAC
CTCTCTCAC
ATGTGATGC
ATGTGATGC
ATGTGATGC
ATGTGATGC
GCATCACCC
GCATCACCC
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
CCAACTAA
TCTCCTCCAC
TCTCCTCCAC
TCTCCTCCAC
CTTTCCCC
CTTTCCCC
CTTTCCCC
CcrccrTcT

CTCCTTAC
CTCCTTAC
CTCCTTAC
CTCCTTAC
CTCCTTAC
CTCCTTAC
TCGGGTCAA
CTCGCTCAC
CTCGCTCAC
CTCGCTCAC
ATGCAATGC
ATGCAATGC
ATGCAATGC
ATGCAATGC
GCATAGCCC
GCATAGCCC
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
CCAGTTAA
TCTCGACCAC
TCTCGACCAC
TCTCGACCAC
CTTGACCC
CTTGACCC
CTTGACCC
CCTCAGTCT

AT5G10280
AT3G47600
AT5G62320
AT1G63910
AT3G02940
AT3G06490
None

AT2G21230
AT1G06850
AT3G12910
AT4G17880
AT2G42300
AT2G18300
AT5G61270
AT2G40970
AT5G15840
AT5G52260
AT1G74650
AT5G06100
AT3G48920
AT5G54230
AT1G57560
AT1G16490
AT1G08810
AT1G09540
AT4G37260
AT2G26960
AT5G26660
AT5G10280
AT3G47600
AT4G21440
AT1G63910
AT5G49330
AT5G61270
AT2G21230
AT3G12910
AT4G11680
AT3G12720
AT5G43290

None

R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
bzIP

bzIP

NAC
bHLH
bHLH
bHLH
bHLH
G2-like

Zn finger
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
R2R3-MYB
bHLH
bzIP

NAC
C3HC4
MYB
WRKY

MYB092
MYB094
MYB099
MYB103
MYB107
MYB108, BOS1
bZIP30

bZIP52
bHLH004, MYC4
bHLH048
bHLHO064, HBI1
bHLH072, PIF7
MYBC1

co

MYBO19
MYBO31, ATY13
MYB033
MYB045
MYB049
MYBO50
MYB058
MYBO60
MYBO61
MYB073
MYBO81
MYB086
MYB092
MYB094
MYB102, AtM4
MYB103
MYB111, PFG3
bHLHO72, PIF7
bZIP30

MYB67
WRKY49

Bold characters: Mutated nucleotides; X: Interactions tested in transient assays using Physcomitrella patens protoplasts.

STAMP webserver is that footprintDB motifs are associ-
ated to their cognate binding TFs, and their DNA-binding
interfaces are annotated using 3D-footprint structural data
[29]. However, STAMP as well as footprintDB detect and

predict TF-DNA interactions based on known data.
Therefore, TF-DNA interactions not readily predicted
with STAMP and footprintDB may represent novel or to
date unknown TF-DNA interactions. This was substantiated
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Figure 5 Comparison between bioinformatically predicted and experimentally isolated TFs. Cis-elements were classified as ‘predictable’
(left) or as unpredictable (right) when the footprintDB repository contained at least one annotated TF homologous to the experimental
Y1H-inferred binding proteins. Left vertical axis: columns report the number of TFs assigned to each tested cis-element by either footprintDB
(blue) or the Y1H assay (purple), showing in green those assigned by both methods. Right vertical axis: line shows STAMP E-values for all

15 cis-elements aligned to the first hit validated by Y1H assays. Note that both vertical axes are in logarithmic scale.
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in the present study by using sequences enriched in pro-
moters of drought-responsive genes, but not readily as-
sociated with interacting TFs for experimental analysis
using Y1H-screenings. Towards these ends two different
sequences from motif group I were assayed. For the first
one, AACGTGGAQG, no specific class of TF was found to
preferentially induce transcription in yeast. Conversely,
seven bHLH TFs were able to activate the transcription
from the second sequence, GCACGTGGAG. Both ele-
ments contain the ACGT core sequence, which once
mutated (AACCTCGG and GCAGCTGGAG) prevented
transcription to be activated. These observations suggest
that sequences AACGTGGG and GCACGTGGAG are
bona fide binding sites for bHLH31, 48, 64, 72, 74, 79 and
115. Motif group V showed the highest levels of sequence
similarity with group I and drove the identification of four
bHLH TFs. In fact, the bHLH TFs were found to prompt
transcription in yeast from cis-element ATGTGATGC,
but not from GCATCACCC. When sequence ATGT-
GATGC is concatenated, an E-box (CANNTG) is created
(ie. ATGTGATGCATGTGATGC), whereas this is not
the case with GCATCACCC. The fact that sequences
from group I and V contain or display strong similarities
with either the well described G-box ([GC] ACGT [GC])
or E-box probably explains why bHLH TFs were found to
be associated with these two motif groups. In fact, numer-
ous studies have shown that bHLH TFs regulate the activ-
ity of their target gene promoters through these types of
cis-regulatory sequences [43,44]. However, no bZIP TFs
were identified as interacting with the motif that contains
the ACGT core, suggesting that the interactions with the

bHLH TFs are quite specific and that the full-length se-
quence of the motifs may have a role in this specificity
[38]. Group II is closely related, at the sequence level, to
group I and V. However, unlike group I and V, only two
NAC TFs were found to interact with the two sequences
tested (GCTGCCGGAGA and GCCACGTCAGC), with
one (At3gl2910) being identical for both sequences
(Table 3). A wide variety of NAC binding sites have been
identified so far in various plant species, revealing the
large diversity of the sequences that can be recognised by
this group of TFs [45-47]. The GCCACGTCAGC se-
quence displays similarities with the core sequence CA
[AC] G [TC] [TCA] [TCA] that is recognised by the rice
(Oryza sativa) and barley (Hordeum vulgare 1.) IDEF2
NAC proteins, suggesting that the identified NAC could
activate the transcription in yeast from it [47]. This asser-
tion was supported by the lack of transcriptional activity
associated with the mutagenesis of this element (GCCA
TATCAGC). Interestingly, the GCTGCCGGAGA se-
quence appears to be quite divergent when compared to
the other described NAC binding sites even though both
NAC TFs were able to activate the transcription in yeast
from it, suggesting that the GCTGCCGGAGA DNA se-
quence could be a new cis-regulatory element that could
be targeted by NAC proteins (Figure 4B).

From group III, the AC-rich sequences CACCTAAC,
ACCACAACC (GGTTGTGGT), ACCAAACAT and TC
GGACCAA identified only R2R3-MYB TFs to be able to
activate transcription in yeast (Table 3). This result is in
agreement with previous studies that have demonstrated
that numerous R2R3-MYB proteins from different plant
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species are able to bind to and induce transcription from
AC-rich sequences [48-50]. One of the studied sequences
(CACCTAAC) contains the well-described AC-I cis-regu-
latory element (ACCTAAC) to which the A. thaliana
MYB61 TF (R2R3-MYB subgroup 13) was shown to bind
to in vitro and activate transcription from it in yeast [50].
This result was confirmed in our screen (Figure 4C). Simi-
larly, we found that two other R2R3-MYB subgroup 13
members (composed of four TF genes), namely MYB50
and MYB86, were also able to activate transcription in
yeast from the same element [51]. The overlap between
the R2R3-MYB proteins that interact with the CACC
TAAC (16 interacting R2R3-MYB) and the ACCACAACC
(14 interacting R2R3-MYB) sequences was quite high, as
12 out of the 18 interacting R2R3-MYBs (67%) were com-
mon to both elements (Table 3, Figure 4C, D). Interest-
ingly, only four R2R3-MYBs prompted transcription in
yeast from the ACCAAACAT element, from which three
belong to the same R2R3-MYB subgroup, namely sub-
group 20 (composed of six members) [51]. Group VI, such
as Goup III, is composed of AC-rich motifs. From this
motif group only one putative cis-regulatory sequence was
assayed, namely CCAACTAA, from which only R2R3-
MYB TFs (17 genes) were also identified (Table 3). Eleven
(64,7%) and 12 (70,6%) of the identified R2R3-MYBs were
identical with the R2R3-MYBs found to interact with the
CACCTAAC and ACCACAACC sequences, respectively.
When concatenated, this motif partially contains the
R2R3-MYB targeted AC-II element (ACCAACC) from
which the identified TFs are likely to induce transcription
in yeast, based on the absence of activation with the mu-
tated version (GTTAAC) of the element [48].

Surprisingly, as no ACGT core sequence (A-box, C-
box or G-box) is present in this motif, the analysis of the
CTCTCTCAC element from group IV leads to the iden-
tification of two bZIP (subgroup I) factors ([38,39];
Figure 4E, Table 3). Nevertheless, a detailed analysis
of this sequence showed that a bZIP-like DNA target
(GGTGAGAGAQG) similar to two GCN4-like (GGTGAG
and TGTGTGACA) motifs found in the promoter of the
wheat storage protein genes was present, suggesting that
this sequence could be mainly recognised by this class of
bZIP factors [52].

While these Y1H results on their own already provide
valuable biological insight, they also served in this work
as a reference dataset. Indeed they were also used to
benchmark the predictive value of the footprintDB ap-
proach for recognizing putative binding TFs with differ-
ent parameter settings. Two STAMP E-value cutoffs
were tested. While a stringent 1E-5 threshold yielded the
most specific predictions, it was at the cost of a signifi-
cantly reduced sensitivity (52%). On the contrary, a re-
laxed 1E-3 cut-off increased the sensitivity (78%) by
compromising specificity. However, this loss of specificity
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could be corrected by lowering the BLASTP E-value cut-
off to 1E-10. In addition, we observed a further gain in
specificity by applying an interface similarity filter for can-
didate TFs, requiring them to have at least 50% similar
interface residues to be considered. Altogether, these set-
tings yield a 69% sensitivity and a 92% specificity. Another
important observation regarding the performance was that
individual input cis-elements worked much better than se-
quence motifs, which presumably increase the chance of
obtaining significant but irrelevant alignments of DNA se-
quences, which are the cornerstone of this approach.

In addition to the Y1H screenings, the in vivo inter-
action of two TFs with their DNA target was analysed in
transient expression assays using Physcomitrella patens
protoplasts. In this experiment, two synthetic TFs were
generated by fusing the DNA binding domain (DBD) of
the NAC protein (At3g12910) and MYB31 (Atlg74650) to
the VP16 activation domain. These chimeric proteins were
then assayed against the conserved cis-sequences, CTCT
CTCAC and GCTGCCGGAGA, and CACCTAAC and
ACCACAACC, for the NAC and MYB31 DBD, respect-
ively (Figure 4). Interestingly, the transcriptional activity
supported by the NAC DBD was a lot stronger with the
GCTGCCGGAGA sequence than with CTCTCTCAC
one, strengthening the idea that the GCTGCCGGAGA
element is most probably a new NAC target sequence
(Figure 4B, E). To date the NAC protein encoded by the
Arabidopsis gene At3g12910 had not been investigated ex-
perimentally. Comparing the proposed novel NAC bind-
ing site GCTGCCGGAGA with known Arabidopsis NAC
binding sites reveals a large variability of binding sites
recognised by NAC proteins. For example, the NAM
(At1g52880) and NAP (At1g69490) proteins bind to the
cis-sequences AAGGGATGA and CACGTAAGT, re-
spectively [53,54]. The high variability of NAC binding
sites is also illustrated by the A-rich binding site of ATAF2
[55]. NAC transcription factors are involved in a wide
array of abiotic stress responses [56]. Interestingly, the
NAC transcription factors ANACO019 (At1g52890),
ANACO055 (At3g15500), and ANACO072 (At4g27410) bind
to the sequence ANNNNNTCNNNNNNNACACGCAT
GT, a drought responsive cis-sequence [45]. Although
this sequence is part of a drought responsive promoter
(ERD1I), overexpression of ANACO019, ANACO055, and
ANACO072 in transgenic plants did not up-regulate ERD1
expression indicating that other interacting factors may be
necessary for the induction of the ERDI gene [45]. In this
context it is interesting to note that none of the cis-
sequences investigated here, although enriched in drought
responsive genes, individually confer drought responsi-
ve gene expression (data not shown). Among these
sequences was also the novel NAC binding site
GCTGCCGGAGA. Similarly it may be suggested that
the investigated cis-sequences are each part of a
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combinatorial element that requires a second binding
site for an interacting transcription factor in close vicin-
ity for its functionality [57].

When the MYB31 DBD was assayed against CACC
TAAC and ACCACAACC in Physcomitrella patens pro-
toplasts using a synthetic TF, similar activity was ob-
served with both cis-sequences, suggesting that MYB31
could induce transcription from a wide variety of AC-
rich cis-sequences (Figure 4C, D). MYB31 belongs to
subgroup 1 of R2R3MYB TFs [51]. The gene is known
to be up-regulated by chitin but no further functional
analysis has been carried out to date [58]. There are 126
R2R3-MYB TFs in the genome of Arabidopsis [51] and
random binding site selection experiments with MYB15,
61, 77, and 84 revealed that these factors always bind to
cis-sequences with one or two conserved ACC and/or
AAC core sequences [59,60]. Consequently, the adjacent
nucleotides can vary significantly and Arabidopsis MYB
factors have a relatively degenerate binding site recogni-
tion. Consistent with known MYB binding sites, the syn-
thetic TF containing the MYB31 DBD activates gene
expression from two synthetic promoters harbouring the
ACC and AAC motif (CACCTAAC and ACCACAACCQ).
Although the MYB31 binding site CACCTAAC does not
confer drought responsive reporter gene expression in
transgenic Arabidopsis (data not shown), this motif has
been found in Arabidopsis in the promoter of three
MYB61 target genes that are involved in vasculature de-
velopment, one of the main components of the transpir-
ation stream, which indirectly may participate in plant
adaptation to drought stress [50]. Such observations
reinforce the postulate that a combination of regulatory
elements is required to integrate the environmental sig-
nals on a specific gene promoter [57].

Conclusions

The work presented demonstrates the successful integra-
tion of several bioinformatic resources to predict and
validate TFs interacting with conserved sequence motifs
in co-regulated genes. Predictions were confirmed by
using a yeast-one-hybrid approach to identify interacting
TFs belonging to the predicted TF families. TE-DNA in-
teractions were further experimentally validated in yeast
and with a Physcomitrella patens transient expression
system, leading to the discovery of several novel TEF-
DNA interactions. Our work establishes a novel approach
to identify TFs interacting with conserved cis-sequences.
This approach may facilitate the experimental identifica-
tion of TFs because a candidate TF-family can be pre-
dicted bioinformatically using the footprintDB database.
Although the limitation of this approach is the content of
the databases used, footprintDB is particularly valuable be-
cause it contains data for TF-DNA interactions from
many different species. Therefore, this database may help
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to identify a DNA binding protein domain for any submit-
ted sequence. Afterwards one may check plant TF data-
bases for the predicted DNA binding domain to identify
novel sequence-specific TF-DNA interactions.

Methods

Bioinformatic analysis to identify conserved cis-sequences
in co-regulated genes

In silico identification and bioinformatic analysis of se-
quence motifs overrepresented in drought stress-induced
A. thaliana genes was based on microarray expression
data from the AtGenExpress global stress expression
data set [61]. To identify genes up-regulated by drought,
Affymetrix ATH1 microarray raw expression data were
downloaded from NASCArrays (NASCARRAYS-141)
[62], normalised using MAS5 algorithm [63], and scaled
to a TGT of 100. An untreated control data set (NAS-
CARRAYS-137) was also downloaded and identically
processed. Array elements were assigned to genes ac-
cording to an assignment table based on TAIR release 8
annotations [64]. Expression data were imported into
the PathoPlant database [20]. The annotation procedure
of cDNA microarray data and Affymetrix ATH1 data
has been described earlier [3,21]. All data as well as links
to the microarray source of the expression set can be
found on the PathoPlant site at http://www.pathoplant.de/
documentation.php.

Expression data was used to identify genes up-regulated
upon drought stress. Genes showing at least a 2-fold in-
duction compared to untreated control were defined as
up-regulated. Using an SQL server query tool, 32 drought
stress combinations at different time points and in differ-
ent tissues were queried. PathoPlant’s ‘Microarray expres-
sion’ online tool displays a similar functionality to the
query tool described above and can be used to determine
sets of genes co-regulated upon drought.

For promoter analyses of drought-induced gene sets,
sequences 1,000 nt upstream of the transcription start
site, if known as for the majority of genes, otherwise
1,000 nt upstream of the ATG start codon were ex-
tracted using TAIR release 8 sequence annotation and
converted into FASTA format. To identify overrepre-
sented motif sequences within these promoters, the
BEST software package [19], locally installed on a Linux
SuSE9.2 system was used [3]. The package combines 4
different motif-finding programs (MEME, AlignACE,
CONSENSUS, BioProspector) and an optimization step.
BEST was run with default parameters and predefined
motif lengths of 5 to 10 nucleotides. The application of
these parameters had previously shown to yield optimal
results with promoter sequences from A. thaliana [3].
Overrepresented sequence motifs identified by BEST
were further used if detected by at least 2 out of the 4
motif finding programs.
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Such a BEST analysis with 33 gene sets yields a high
number of enriched sequence motifs. In order to pre-
validate these bioinformatically, a so-called in silico ex-
pression analysis was performed with all motif sequences
(http://www.pathoplant.de/expression_analysis.php). This
analysis is based on PathoPlant’s microarray expression
database and correlates motif sequence occurrences
with stress-specific gene expression data resulting in an
evaluation of the sequence to identify the stress this se-
quence is most likely to be responsive for [31]. Strict
correlation criteria were applied by only considering
motif sequences that displayed at least two stresses as-
sociated with drought among the first 3 highest ranked
stresses.

Identified sequence motifs in which at least one se-
quence was found to be enriched in promoters of drought
stress responsive genes were submitted to the STAMP
web server applying the recommended default parameters
[22,40]. STAMP classified all motifs based on matrix
alignment to a similarity tree given in Newick tree format
that was displayed using MEGA [32]. Groups containing
similar motifs were generally defined by clustering single
motifs on branches with lengths <0.05. In one excep-
tional case a motif (shoots3hr_1) was grouped into
motif group II based on its conserved core sequence
GCC that is characteristic for AP2/EREBP binding pro-
teins. This core sequence is also conserved in the other
two motifs of motif group II. STAMP was also employed
for the identification of motif similarities by comparison
with known cis-elements from plant databases AthaMap,
AGRIS and PLACE [23-25].

Bioinformatic prediction of candidate transcription factors
for selected cis-elements

Sequence motifs obtained for drought stress related
genes were used as queries for footprintDB (http://
floresta.eead.csic.es/footprintdb). This repository currently
contains over 5,000 unique TFs and their DNA binding
preferences annotated as position-specific scoring matri-
ces (PSSMs) that capture the occurrence of nucleotides
in different positions of the DNA binding site [65].
When building footprintDB for this analysis, data were
extracted from the literature and other repositories such
as TRANSFAC, JASPAR, 3D-footprint, UniPROBE,
AthaMap, DBTBS, RegulonDB [12,29,40,41,66-68], and
several papers reporting human, murine, and Drosophila
motifs [69,70].

The footprintDB engine searches for similar motifs
using STAMP [22]. The main difference to the STAMP
webserver is that footprintDB motifs are associated to
their cognate binding TFs, and their DNA-binding inter-
faces are annotated using 3D-footprint structural data
[29]. Interface residues are defined for being located
within 4.5 Angstroms with respect to at least one DNA
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nitrogen base in homologous structural complexes de-
posited at the Protein Data Bank. By taking advantage of
these data, footprintDB is able to predict A. thaliana
homologous TFs that are candidates to bind the input
cis-sequences, calculating interface similarity with a cus-
tom scoring matrix motifs [30]. The search parameters
were: 1) STAMP E-value: 1E-3, 2) BLASTP E-value: 1E-
10, 3) Arabidopsis protein source: TAIR9, containing
33,410 protein sequences [64], 4) Interface similarity
cut-off: 50%.

Yeast one-hybrid (Y1H) experiments

All the primers used in this section were purchased from
Sigma-Aldrich (Lyon, France) and are listed in Additional
file 6.

The putative cis-regulatory sequences identified in this
study were synthesised as hexamers, cloned (EcoRI and
Xbal) into the pHISi vector (Clontech, Saint-Germain-
en-Laye, France) and stably transformed into yeast (Sac-
charomyces cerevisiae, EGY48a-type mating strain) at
the URA3 locus. Fifteen different cis-sequences, from
seven motif subgroups, that were not inducing self-
activation in yeast and that were preferentially not
already described in the literature as associated with
drought stress response, were selected for experiments.
For this purpose, a yeast (YM4271, a-type mating strain)
normalised ¢cDNA library of A. thaliana TFs cloned into
pDEST22™ (Invitrogen, Saint Aubin, France) was used
(REGIA library [71]).

Following the mating of both yeast strains, diploid col-
onies growing on a medium lacking the histidine amino
acid were considered as positive clones expressing the
candidate TFs interacting with the studied sequences.
Then, a verification step was carried out, which con-
sisted in testing the candidate TF’s activity from both,
their target sequence, and their corresponding mutated
version. When yeast growth was observed from the un-
modified sequence and not from the mutated version,
the corresponding TF was considered as positive interac-
tor. In order to increase the stringency of the screens,
various concentrations of 3-aminotriazol (3-AT) were
used in all the YIH experiments (from 15 to 60 mM).
The details of the yeast transformation, mating and se-
lection are reported elsewhere [72].

Finally, for each of the confirmed interactions, the
expressed cDNA was amplified from the diploid colonies
by PCR and the resulting amplicons were subsequently
sequenced in order to confirm the identity of the identi-
fied TFs. In order to facilitate the PCR reaction, the yeast
cell wall was hydrolysed by a lyticase (Sigma-Aldrich,
Lyon, France) treatment. Briefly, yeast cells were sus-
pended in 15 ul lyticase solution (2 mg/ml in 0.1 M so-
dium phosphate buffer, pH 7.5), incubated 30 min at 37°C
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and then 10 min at 95°C (heat inactivation), and finally di-
luted by adding 85 pl of sterile water. Five ul lysate was
then used per 50 pl PCR reaction.

Bioinformatic validation of transcription factor predictions
with yeast-one-hybrid experimental data

Y1H experimental results allowed us to assess the per-
formance of footprintDB transcription factor predictions
and to tune the search parameters to increase its effective-
ness. The set of 15 cis-sequences used for Y1H screenings
was analysed in order to predict putative A. thaliana bind-
ing TFs. Different strategies and parameter combinations
were tested and their impact on the results was evaluated,
since we observed that the systematic comparison of short
DNA sequences, such as cis-elements, was troublesome
[73]. Two A. thaliana protein sequence sources were
tested: the list of 995 TFs cloned in the Y1H library
(from REGIA) and the TAIR9 longest transcript prote-
ome [64]. The resulting optimum strategy was employed
in order to predict putative binding TFs. Parameter set-
ting evaluation and the complete predictions are re-
ported in Additional file 4. This file contains several
sheets: 1) the data supporting Figure 5; 2) a table with
performance measurements of footprintDB with differ-
ent parameter settings [PredictionSummary]; 3) the
complete set of predictions for input motifs [Prediction
(motifs)]; 4) the complete set of predictions for input in-
dividual DNA sites [Prediction (sites)]; 5) A file with all
A. thaliana homologous TFs and their annotations [A.
th.homologues]; and 6) a summary of significantly simi-
lar motifs found within footprintDB for each input
DNA motif [MotifSimilarity].

Physcomitrella patens transfection assays

All the primers used in this section were purchased from
Sigma-Aldrich (Lyon, France) and are listed in Additional
file 6.

Four sequences belonging to three different motif
groups were assayed against DNA binding domains from
two TFs (NAC, At3gl2910 and MYB3I, Atlg74650)
fused to the VP16 activation domain in P. patens proto-
plast transient expression assays. These sequences were
synthesised as hexamers fused to the 35S cauliflower
mosaic virus minimal promoter and recombined into
the pBS TPp-B vector [74]. The NAC and MYB31 VP16-
fusions were carried out by PCR using the high-fidelity
Phusion DNA polymerase with the HF buffer (Thermo
Fisher Scientific, Villebon sur Yvette, France) prior to re-
combination into the pBS TPp-A vector [74]. Gateway®
recombination, protoplast transformation and quantita-
tive analysis of reporter gene expression are described in
detail elsewhere [74].
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Additional files

Additional file 1: Parameters for PathoPlant database queries and
number of induced genes obtained in each of the 32 queries.

Additional file 2: Sequences and their alignments generating the
49 sequence motifs.

Additional file 3: Similarities of motifs to known cis-regulatory
sequences in the AthaMap, AGRIS, and PLACE databases.

Additional file 4: Results of the footprintDB analyses.
Additional file 5: Results of the Y1H screen.

Additional file 6: Primers used for the Y1H screen and the
Physcomitrella patens transfection assays.
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