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Abstract

with mainstream alignment software.

associated with diseases.

Background: The data released by the 1000 Genomes Project contain an increasing number of genome sequences
from different nations and populations with a large number of genetic variations. As a result, the focus of human
genome studies is changing from single and static to complex and dynamic. The currently available human
reference genome (GRCh37) is based on sequencing data from 13 anonymous Caucasian volunteers, which might
limit the scope of genomics, transcriptomics, epigenetics, and genome wide association studies.

Description: We used the massive amount of sequencing data published by the 1000 Genomes Project Consortium
to construct the Virtual Chinese Genome Database (VCGDB), a dynamic genome database of the Chinese population
based on the whole genome sequencing data of 194 individuals. VCGDB provides dynamic genomic information,
which contains 35 million single nucleotide variations (SNVs), 0.5 million insertions/deletions (indels), and 29 million
rare variations, together with genomic annotation information. VCGDB also provides a highly interactive user-friendly
virtual Chinese genome browser (VCGBrowser) with functions like seamless zooming and real-time searching. In
addition, we have established three population-specific consensus Chinese reference genomes that are compatible

Conclusions: VCGDB offers a feasible strategy for processing big data to keep pace with the biological data explosion
by providing a robust resource for genomics studies; in particular, studies aimed at finding regions of the genome

Keywords: Chinese population, Dynamic genome, Database, 1000 Genomes Project, Big data

Background

The 1000 Genomes Project Consortium has used the
dramatic increase in sequencing power that has become
available to sequence the genomes of 1092 individuals
from 14 populations in different parts of the world [1,2].
Other approaches, like genome-wide association studies
(GWAS), combine several hundred thousand variants from
different individuals known to have a particular disease
and related clinical traits, thereby associating genome-wide
genotyping with the phenotypic disease for gene discovery
[3,4]. The amount of healthcare-related data that are being
digitally collected and stored, especially disease-related
sequence variations that are used widely in personal
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medicine studies, are vast and expanding rapidly [5,6].
As a result, data management and analysis tools to con-
vert this vast resource into information and knowledge are
also advancing [7,8]. Third-generation high-throughput
sequencing technology with its extraordinarily higher
throughput and lower cost is now available [9,10]. Mean-
while, traditional sequencing platforms are still producing
about five petabytes of sequencing data annually. These
two technologies are driving the exponential growth of
the genomics data “ocean” [11-13], which raises urgent
problems on how to handle such huge amounts of data,
including their storage, transfer, integration, and mining
[14-18]. Sequencing data from different sample preparation
protocols and various sequencing platforms with variable
read lengths and sequencing coverage are often handled
with different analysis tools and parameters. Thus,
the standardization of sequencing studies and their
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interpretation are challenges that researchers are begin-
ning to pay more attention to [19].

The current Genome Reference Consortium human
genome (build 37), GRCh37, is derived from 13 anonymous
Caucasian volunteers from Buffalo, New York [20]. This
sequence is used as a standard template and a guiding
principle for the discovery of low-frequency variants in
different individuals from different populations, the de-
velopment of computational software, and for building
clinical genomic resources [21,22]. Although the reference
genome has been revised several times, it still offers
limited information for the study of population- and
individual-specific variants. The human reference genome
sequence is unable to meet the precise investigative re-
quirements of genomics, transcriptomics, epigenetics,
and genome-wide association studies (GWAS) [23]. Sev-
eral efforts have been made to generate specific complete
human genome sequences of different populations. Levy
et al. reported the whole genome sequence of a Caucasian
individual of Western European ancestry (CEU) sequenced
using Sanger methodology [24]. Bentley et al. used the
short reads sequenced on a next-generation sequencing
platform to determine the genome sequence of a Yoruba
individual from Ibadan, Nigeria (YRI) [25]. Wang et al.
sequenced the genome of a Han Chinese individual using
combined strategies for alignment and assembly [26].
Other population-specific genome sequences, including
the genomes of a Korean and an Irish individual, have
been released [27,28]. Each of these genome sequences
represent individuals from a particular population and
are annotated with information about single nucleotide
polymorphisms (SNPs), insertions/deletions (indels), and
large structure variations based on the human reference
genome sequence. These data are for one individual’s
genome only and do not represent or characterize popula-
tion-specific differences [29].

The huge amount of human genome sequence data
[30-32] has made it possible to detect high- and low-
frequency variants across the whole human genome.
As a result, the focus of human genome studies are
changing from single and static to complex and dynamic
[33]. The 1000 Genomes Project Consortium has gener-
ated and published a massive amount of human genome
sequencing data. Using some of this data, we have con-
structed the Virtual Chinese Genome Database (VCGDB),
a dynamic genome database of the Chinese population
based on whole-genome sequencing of 194 individuals.
VCGDB is “virtual” because the reference genome pro-
vided in the database is the statistical result of terabases
of sequencing data from hundreds of Chinese individuals
that describe the genetic variation features specific to the
Chinese population. VCGDB is “dynamic” because dynamic
variations of individual characters and genomic annotation
information, such as reference genes, genomic duplications,
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and GWAS clinical traits are integrated in the database.
VCGDB offers a strategy for processing large amounts of
genomic data and is a robust database for genomics and
disease-related studies in the Chinese population.

Construction and content

To handle terabase amounts of data, we strictly organized
the data processing workflow and optimized the algorithms
to run using limited calculating resources (Figure 1). The
workflow was divided into six steps: data preprocessing,
candidate dynamic information extraction, virtual gen-
ome dynamic information statistics, dynamic informa-
tion validation, virtual genome annotation, and database
construction.

Data sources

We collected all the whole genome low-coverage (2—4x)
alignment results of 194 individuals from two typical
Chinese populations released by 1000 Genomes Project.
The data included samples from 100 Southern Han Chinese
individuals (CHS) and samples from 94 Han Chinese indi-
viduals in Beijing (CHB). All the data can be downloaded
from mirror FTP sites of NCBI (ftp://ftp-trace.ncbi.nih.gov/
1000genomes/ftp/) or EBI (ftp://ftp.1000genomes.ebi.ac.uk/
voll/ftp/). The sequencing data were generated in different
laboratories using a variety of different platforms; therefore,
all the data were standardized based on “Bavarva Theory”
[19]. The raw sequencing reads have been mapped to the
human reference genome using a consensus strategy
based on different sequencing platforms, and the output is
in binary BAM format [34]. The raw data and alignment
data have been compressed to about 3.3 and 4.8 terabytes,
respectively.

Data preprocessing and candidate dynamic information
extraction

In the data preprocessing step, we used SAMtools to
multi-pileup all the samples to convert read-based align-
ment information into position-based data by splitting the
reads into bases [34]. The process was optimized by piling
up the samples in parallel. The resulting files from the 194
samples were about 70 gigabytes each and 12.6 terabytes
in total.

The raw sequence data of the 194 whole genomes con-
tained 3 billion nucleotide positions; therefore, a specific
algorithm was required to extract meaningful information
in a short time using limited storage space. We designed a
two-step candidate dynamic information-extraction strategy
to filter out irrelevant or redundant data and select the data
for further data analysis and database construction. First,
we built a candidate dynamic position list containing all
the positions with variant probability within at least one
sample. Assuming the samples to be independent from
each other, we ran a parallel search and calculated the
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Figure 1 Data processing workflow used to construct the virtual Chinese genome database (VCGDB).

candidate dynamic positions (CDPs) from all the samples
simultaneously. As a result, we obtained a non-redundant
CDP hash dataset with a total of 55,549,120 CDPs from
the 194 Chinese genome samples. Next, we developed a

cross-chromosome data searching and extracting algorithm
(Additional file 1: Figure S1) to filter the redundant
data. The output of this process contained the mapped
nucleotide information from each CDP together with the
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sample information. This candidate dynamic information-
extraction strategy reduced the size of the data by 98%,
which significantly decreased the programming difficulty
and CPU time required for subsequent analysis.

Virtual genome dynamic information statistics
The common SNP/SNV (single nucleotide polymorphism/
single nucleotide variation) calling algorithms generally
use parameters such as read quality to evaluate and filter
variations caused by sequencing errors. This strategy is
useful for sequencing data with a reasonable level of
coverage from a single individual, because false positives
of base positions will be quite low and differentiation
between individuals does not need to be considered.
However, for the massive amounts of low-coverage se-
quencing data from the large number of samples from
different individuals in VCGDB, false positives could
be higher and harder to detect, and difficult to distinguish
from normal variations in each sample. Further, the
samples were generated using different platforms under
slightly different conditions, which may cause unequal
weighting when the data are merged. To address these
problems, we developed a data analysis strategy especially
for large-scale data samples with low coverage, to preserve
the independence and maintain equal weighting of each
sample when handling the dynamic variation information.
First, we considered each base position on each sample
as a unit; every selected unit had to have at least two
mapped reads to ensure the accuracy of the sequencing.
We used the comentropy of each unit to determine which
nucleotide was dominant for that unit. Comentropy is a
parameter that can be used to measure the uncertainty of
the information in a thermodynamic system [35]. Here, a
high comentropy value indicated that more information
was included and the consensus of the data in the cor-
responding unit was less determinate. The comentropy
equation was as follows:

Hx) = E[logt ] = -3 plaiog! ™
i=1

where, x; is one of the detected nucleotide types (A/T/
G/C); n is the number of detected nucleotide types; and
p(x;) is the occurrence probability of each nucleotide type
in a given unit. The units were filtered by their comentropy
values against a threshold of binary unit <0.95, ternary
unit £1.50, and quaternary unit <1.92.

Second, we calculated the nucleotide distribution of
each CDP in three pre-defined populations, Han Chinese
in Beijing (CHB), Southern Han Chinese (CHS), and an
integrated dataset of CHB and CHS to represent the entire
eastern region of China (CHN), and then used several pa-
rameters such as read depth, nucleotide distribution, major
allele probability, and the population-level comentropy
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value to estimate each dynamic position in the corre-
sponding population. Rare variations and indels are gener-
ally considered to have a high probability of being related
to diseases and they are often the main factors that cause
differences in genome size among different individuals
or populations. We extracted rare variants that occurred
in less than 5% of the samples and grouped them by
population.

Virtual genome annotation

Based on the annotations for the human reference genome
sequence, we annotated the dynamic positions in the
genome sequences of the three pre-defined Chinese
populations to coding regions, intergenic regions, introns,
and untranslated regions (UTRs). Traditional genome an-
notation databases and software such as the Gene Ontology
and the KEGG pathway databases require a gene list as
input and not position information, which makes them
unsuitable for the dynamic positions and indels analysis
that is required for the virtual genome data. Therefore,
we used ANNOVAR, a position- and short region-based
genome annotation software, to annotate the dynamic
positions and indels in our data, especially the major allele
and indel positions against the reference genome (hereafter
referred to as MAIR) [36]. A number of databases, such as
RefGene, genomicSuperDups, and gwasCatalog, were used
to assign the annotations and an enrichment analysis was
performed to reveal the potential biological significance of
the dynamic genomics information [37].

Database construction

To handle the huge amounts of data that were generated,
we used the MySQL database management system to con-
struct VCGDB. We configured the optimal relationships
among the tables and in the data structure to obtain the
best searching efficiency. The information obtained from
the analysis described above was stored in VCGDB in
three parts; dynamic position information, indel informa-
tion, and genomic annotation information. The three parts
were all highly structured, indexed, classified, and properly
stored in MySQL tables. The chromosome name and the
position index were used to build connections between
the tables. The tables were split by chromosome name
and every table was constrained to less than ten million
records, which largely reduced the search region and
the response time. Considering the data characteristics
and search requirements, we constructed VCGDB in four
main parts: “entity”, “annotation”, “dynamic”, and “refer-
ence”. The “entity” part stores basic information that de-
scribes the base positions; the “dynamic” part stores all
the information that corresponds to dynamic positions,
indels, and rare variations; the “annotation” part contains
raw datasets of the annotation database associated with
position-based annotation records; and the “reference”
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part is a structured database of linear references capable
of high performance sequence initiation. We used the
MAIR information to build population-specific consensus
Chinese reference genome sequences named the virtual
Chinese reference genomes (VCGs), for the three pre-
defined populations and tested them by aligning raw
sequencing data to the different genomes and comparing
the mapped reads. The VCGs can be recognized by genome
alignment software like BWA or Bowtie [38,39].

Virtual genome visualization

Traditional genome browsers are not designed to visualize
the dynamic genomics information in VCGDB. There-
fore, we developed the Virtual Chinese Genome Browser
(VCGBrowser), a highly flexible, region-based genome
browser to display the virtual and dynamic genomes in
VCGDB. VCGBrowser was built using the Java Swing
Applet and the Genoviz software development kit (Genoviz
SDK), an open source library of re-usable components
for genomics data visualization [40]. VCGBrowser can
be installed as a client-based application running in a
personal computer, or it can be used online through the
Java applet web interface. To ensure data transfer security,
we have implemented a servlet so that users do not have to
change their local security policy for a remote connection.
The object-based methodology in VCGBrowser accelerates
the transfer speed of visualized data (Additional file 1:
Figure S2). Compatible testing was approved under
mainstream operation systems like Windows XP, Windows
7, Ubuntu 12.04, and CentOS 6.0 and in browsers like
Internet Explorer, Mozilla Firefox, and Google Chrome.

Database content

After multi-level filtering and analysis, all the dynamic
information for the three pre-defined populations, CHB,
CHS, and CHN, was organized in 129 database tables.
Several specific terms were defined to interpret the dy-
namic genomics information. A dynamic position was
defined as a base position with nucleotide variation in
the genomes of certain populations compared with the
corresponding position in the GRCh37 reference genome.
This situation can arise under four circumstances: one,
major allele for a base position in a population that is
different from the base in the corresponding position in
the GRCh37 reference genome; two, indel position with
a high probability (no less than 50%) in a population
compared with the GRCh37 reference genome; three,
variation for a base position in a population with at least
one minor allele with low probability (but more than
5%); and four, rare variation position in a population
with at least one minor allele with low probability (no more
than 5%). Note that the first two of these dynamic positions
were combined as MAIR. Overall, the non-redundant dy-
namic genomics information in VCGDB comprises around
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35 million single nucleotide variations (SNVs) that include
29 million rare variations and 0.5 million indels along with
annotation information for the genomes. This information
covers 1.18% of the positions across the whole human
genome (Table 1). The CHB population had more dynamic
positions in their genomes than the CHS population, while
the CHS genomes had more indels than the CHB genomes.
The dynamic information in VCGDB is stored in tables that
are organized separately by chromosome. A single table
contains a maximum of 7 million dynamic positions, 90
thousand indels, or 5 million rare variations, which ensured
the high-efficiency of database searches. Figure 2A shows
the distribution of the dynamic positions and indels by
their occurrence probabilities in the three pre-defined
populations. Major alleles with high probability (>50%)
occupy large proportions of the dynamic positions; for
instance, major allele with close to 100% probability
accounts for 81.3% of the dynamic positions. Figure 2B
shows the distribution of indels by their length in the
CHN, CHB, and CHS populations. The short indels
were more abundant in the genomes than the long
indels. Based on the dynamic information in VCGDB,
we built the Chinese genome sequences (VCGs) for the
CHN, CHS, and CHB populations, which can be used as
reference sequences in the currently available alignment
software. The three VCGs were validated against the
current GRCh37 reference genome using real data from
Chinese individuals with higher mapping rates. The re-
sults indicated that the VCGs made better templates for

Table 1 Dynamic position counts for the different
populations in the virtual Chinese genome database
(VCGDB)

Number of dynamic positions

CHN CHS CHB
Autosome 33,780,152 19,591,609 24,109,529
Heterosome 1,747,140 937,088 1,222,844
Chondriosome 1,006 673 654
Total 35,528,298 20,529,370 25,333,027

Number of indels

CHN CHS CHB
Autosome 392,074 454,215 345,647
Heterosome 14,360 17,323 12,346
Chondriosome 25 20 59
Total 406,459 471,558 358,052

Number of rare variations

CHN CHS CHB
Autosome 27,258,690 12,505,097 17,688,051
Heterosome 1,477,821 632,253 939,627
Chondriosome 907 569 536
Total 28,737,418 13,137,919 18,628,214
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indel positions against the GRCh37 reference genome) based on the annotation information.

Chinese genetic variation analysis than the GRCh37 refer-
ence sequence. (See the “Discussion” section for details.)
Position-based annotation information is stored in the
entity tables along with basic position information. We
carried out a statistical analysis of the dynamic annotation
information in different genomic regions, including the
exonic regions, intronic regions, 3’UTRs, and 5'UTRs
(Figure 2C). We found that 43.97 and 40.59% of the dy-
namic positions and indels in the VCGDB, respectively,

were located in the genetic regions, including the ex-
onic regions, intronic regions, 3’'UTRs, and 5UTRs. To
reveal the main differences between the genomes of
the pre-defined Chinese populations and the GRCh37
reference genome, we compared the major allele and
indel positions against the GRCh37 reference genome to
identify the MAIRs. About 6.87% of the dynamics posi-
tions and indels were different in the Chinese genomes
compared with the GRCh37 reference genome, and this
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will be considered further in the “Discussion” section.
Table 2 shows the results of a statistical analysis of the
genetic variations of the MAIR that occurred in the exonic
regions. The three pre-defined populations have similar
trends of genetic variations. For CHN, synonymous and
non-synonymous SNVs were found in 52.80 and 44.24%
of the SNVs, respectively, while the stop-gain and stop-
loss SN'Vs totally made up 0.22% of the SN'Vs. The 1000
Genomes Project Consortium reported 10,000—11,000
non-synonymous variations in an individual genome, which
is twice as high as the non-synonymous variations shown
in Table 2. The reason may be that the non-synonymous
SNVs in Table 2 are intersections of all the non-
synonymous SNVs in the genomes of all the individuals
in a certain population; therefore, they represent the major
variations present in most of the individual genomes,
which will definitely be smaller than the variations in each
individual genome. The enrichment gene lists for the
coding regions that contain the SNVs are presented in
Additional file 2: Table S1. Table 3 shows the results of
an enrichment analysis of the MAIR that match the lo-
cations of GWAS traits that were annotated using the
gwasCatalog. The top matches represent the differences be-
tween the Chinese populations and the Caucasian GRCh37
reference genome. Clearly, Chinese and Caucasians have
distinct physical characteristics; for example, in height (110
hits) and body mass index (34 hits). For the disease-related
traits, there were also distinct differences; for example,
several common ailments in the Chinese population, such
as multiple sclerosis (41 hits), Crohn’s disease (36 hits),
coronary heart disease (34 hits) and type 2 diabetes (33
hits), were detected by this analysis. The analysis revealed
some differences among the three pre-defined Chinese
populations; for example, the CHB population had more
hits for the bipolar disorder and rheumatoid arthritis traits
than the CHS population, which seems to indicate a small
geographical difference between the two populations.

To find other genetic discrepancy between the CHS and
CHB populations, we compared the dynamic information
(Figure 3), including the major/minor alleles and indels
[41]. We found that there was a low proportion of shared

Table 2 Statistical analysis of genetic variations in the
exonic regions of the Chinese and GRCh37 genomes

CHN CHS CHB
Synonymous SNV 6481(52.80%)  6657(52.68%)  6446(52.98%)
Nonsynonymous SNV 5430(44.24%)  5609(44.39%)  5362(44.07%)
Stop-gain SNV 22(0.18%) 21(0.17%) 22(0.18%)
Stop-loss SNV 5(0.04%) 6(0.05%) 5(0.04%)
Unknown 336(2.74%) 343(2.71%) 332(2.73%)
Total 12,274 12,636 12,167

Genetic variations in the major allele and indel positions against the GRCh37
reference genome (MAIR) were analyzed.
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dynamic positions (10,344,099 or 29.09%) in the CHS and
CHB populations (Figure 3A), indicating that although
these two populations are both Han Chinese, they harbor
some genetic mutations. The intersection of dynamic po-
sitions between the CHB and CHS genomes is mostly
from the MAIR, with a high overlap percentage of 81.60%
for the major alleles and 68.17% for the indel positions
(Figure 3B and 3C), which is opposite to the trend seen
for the dynamic positions (Figure 3A). The dynamic posi-
tions come mainly from rare variants (Figure 3D), which
also had a low proportion of shared positions (2,812,415
or 9.51%). Compared to the GRCh37 reference genome,
the CHS genome had greater numbers of dynamics posi-
tions and indels than the CHB genome, which indicates
the longer evolutionary distance and relative conservation
in the CHS population.

Utility

VCGDB is a well-organized, highly structured, and indexed
database that supports real-time high-performance searches
using a web search engine and a genome browser. Users
can launch a query to obtain information from several
different VCGDB tables, including dynamic position
information, MAIR, gene information, and GWAS clinical
traits. For example, a dynamic position search will return
the basic information on position, population, major and
minor allele contribution, and major allele probability and
distribution, and so on. A download page is generated
so that users can download any Chinese-specific genome
sequence generated using the data in the database.

Web search engine

The VCGDB web search engine (Figure 4B) allows users
to input genomic region, gene description, or GWAS trait
as keyword searches. The HUGO Gene Nomenclature
Committee (HGNC) database was integrated into the
search engine to support fuzzy searches that recognize
gene symbols or descriptions, rather than simple gene
names. It is also a smart search engine that automatically
corrects search terms and filters out useless characters.
The search results are output in classified tables of detailed
dynamic information that support ascending and descend-
ing sorting and have symbols like gene name or PubMed
ID hyperlinked to the original sources. Moreover, for a
more convenience use of our VCGBrowser (described
below), a hyperlink is provided at the end of each record
that links directly to the browser so that users need not
re-enter keywords to visualize genomic regions of interest.

Virtual Chinese genome browser (VCGBrowser)

The VCGBrowser is a highly interactive user-friendly
interface that can be used to view the “virtual” and “dy-
namic” genomics information (Figure 4A). VCGBrowser is
both a web-based applet and a client-based cross-platform
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Table 3 Enrichment analysis of MAIR in GWAS trait locations in the Chinese and GRCh37 genomes

Top matches CHN CHS CHB

1 Height (110/324) Height (108/324) Height (110/324)

2 Multiple sclerosis (41/187) Multiple sclerosis (41/187) Multiple sclerosis (41/187)

3 Crohn's disease (36/181) Crohn's disease (40/181) Crohn's disease (38/181)

4 Body mass index (34/109) Body mass index (34/109) Coronary heart disease (37/151)
5 Coronary heart disease (34/151) Coronary heart disease (33/151) Body mass index (36/109)

6 Type 2 diabetes (33/164) Type 2 diabetes (32/164) Bipolar disorder (32/109)

7 Rheumatoid arthritis (31/170) LDL cholesterol (32/114) Type 2 diabetes (31/164)

8 LDL cholesterol (31/114) HDL cholesterol (31/118) Rheumatoid arthritis (30/170)
9 Bipolar disorder (30/109) Type 1 diabetes (29/107) Bone mineral density (30/87)
10 Bone mineral density (30/87) Bone mineral density (29/87) LDL cholesterol (30/114)

MAIR, major allele and indel positions, against the reference genome.

application that can be used as an online browser or can be  creative tool in five main aspects. One, the VCGBrowser
downloaded for use as local software. The VCGBrowser  allows users to browse the GRCh37 reference genome and
consists of five modules: a control module, browser the consensus CHN, CHS, and CHB genome sequences in
module, brief module, detail module, and progress mod-  the same window, making it easier for users to detect dif-
ule. Unlike traditional genome browsers, VCGBrowser is a  ferences among the populations. Two, the VCGBrowser

e N

A B

Dynamic Position Comparison Major Allele Against Reference

(35,528,298 in total) Position Comparison
(2,282,345 in total)

same: 1,862,354 (81.
diff: 537 (0.02%)

Indel Position Comparison Rare Variation Comparison
(489,558 in total) (29,579,347 in total)

same: 333,732 (68.17%)
y_diff: 786 (0.16%)

Figure 3 Differences between the two Han Chinese CHS and CHB populations. A. Venn diagram of a comparison of the dynamic positions.
B. Venn diagram of a comparison of major alleles against the GRCh37 reference genome. C. Venn diagram of a comparison of high-probability
indels against the GRCh37 reference genome. D. Venn diagram of a comparison of rare variations. In B and C, some shared dynamic positions
were substituted by the same nucleotides/indels, others were substituted by different nucleotides/indels; these are marked “same” and

"diff", respectively.
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Figure 4 VCGBrowser interface (A) and VCGDB online search page (B).

integrates the dynamic genomics information onto the
consensus coordinate of genome sequences. For each
dynamic position, multi-colored rectangle bars are used
to indicate the nucleotide distribution at that position,
triangles are used to indicate indels, and colored characters
are used to mark rare variations. Three, the VCGBrowser
supports flexible and seamless zooming and browsing.
Traditional genome browsers like the UCSC Genome
Browser use image-based technologies so that images are
always refreshed when zooming in or out [42]. The effi-
ciency of this methodology depends on internet speed
and bottlenecks can occur when a large number of users

access the site at the same time. VCGBrowser uses servlet
technology to fetch all the information and to calculate all
the symbols in real-time. Thus, VCGBrowser supports
seamless zooming and scrolling to any resolution; from
the genomic level that shows the dynamic distribution of
a region of interest, to the nucleotide level at which the
residues and detailed information can be displayed. Four,
the VCGBrowser provides biological annotations, includ-
ing gene name, gene region, and GWAS traits, and marks
them all in the browser window, so that users can easily
combine these biological factors with the dynamic genom-
ics information. Five, all the symbols shown in the browser
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window are selectable and support real-time searching.
After a query had been initiated, brief information about
the region being queried is displayed in a side window;
then, simply clicking on a symbol of interest triggers
an instant search in the database, producing detailed
information for the users.

Population-specific reference genomes

A download page is provided for users to download the
applications and data in VCGDB. The downloadable ver-
sion of VCGBrowser can be run on different Windows or
Linux operation systems. Moreover, the consensus Chinese
reference genome sequences (VCGs) for the CHN, CHS,
and CHB populations are also provided on this page. The
three VCGs are population-specific linear reference genome
sequences that support alignment software, such as BWA,
Bowtie, and SOAP [38,39,43].

Discussion

VCGDB reflects specific characteristics of the Chinese
population

People from different geographical regions have their
own specific phenotypes. For instance, Southern Han
Chinese (CHS) are generally thinner and shorter, while
Han Chinese in Beijing (CHB) are generally stronger and
taller. We used the information in VCGDB to examine
the potential genotype factors that may lead to these
physical differences. Based on the results of a compari-
son of MAIR in the CHS and CHB genome sequences,
we connected the significant genotypic differences that
we found with GWAS traits, which showed that these
two populations had many specific genotypes related
to height and body mass index. These findings might
explain why Caucasians generally appear taller and stron-
ger than Chinese. For the disease GWAS traits, Crohn's
disease, coronary heart disease, and type 2 diabetes were
found to have higher morbidity rates in the Chinese popu-
lations, which agreed with a previously reported common
ailment investigation [44-46]. Although CHS and CHB are
both Han Chinese populations, differences in the dynamic
genomics information revealed differences in several dis-
ease phenotypes between the two populations.

VCGDB has higher availability than existing reference
sequence in genetic variation analysis of Chinese
population

VCGDB is a new type of genome database that revealed
possible dynamic variants in the genomes of three Chinese
populations. However, it is different from existing reference
genomes and its database format is not the traditional lin-
ear sequences. Therefore, we used the CHN genome from
the VCGs for the genome alignment and genetic variation
analysis. To test the performance of the VCGs, we used a
real data set to calculate the mapping rate and compared
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the results against the GRCh37 reference genome and the
YanHuang (YH) genome. The real dataset comprised 15
separate samples from Chinese Dai in Xishuangbanna
(CDX), Chinese in Denver (CHD), and Japanese in Tokyo
(JPT), which are all independent of the data that were
used to construct VCGDB. Table 4 shows the results of
mapping each of the 15 data samples onto each of Chinese
and GRCh37 reference genomes. All the samples mapped
to a greater proportion of the VCGs and YH genome
compared with the GRCh37 reference genome. Although
YH is an individual Chinese male, the 15 Asian genomes
mapped to a greater proportion of the VCGs than they did
to the YH genome, which confirms the greater ability of
the VCGs to represent the genome of the Han Chinese
population. This result also reveals the power of large-scale
population-based whole-genome sequencing to improve
the human reference genome.

VCGDB provides a solution strategy for big data

The continuous innovations in high-throughput sequencing
technology, even single-molecule sequencing, have dra-
matically expanded the capacity for description and data
collection; however, a large bottleneck remains in the
efficiency of compiling, organizing, and manipulating
these data. The biggest challenges are in computing re-
source allocation, parallel computing control, algo-
rithm optimization, and the physical structural design
of a database.

VCGDB is considered “virtual” because the reference
genome that we provided here does not belong to any
real human being; it is the statistical result of terabases
of sequencing data from hundreds of Chinese individ-
uals. VCGDB adequately describe the genetic variations,
features, and preferences of the Chinese populations that
they represent. VCGDB and the associated VCGBrowser
provide refined and comprehensive data from the 1000
Genomes Project biological big data, which has been an-
notated and analyzed with the aim of building connec-
tions between human genomic research and medical
diagnosis. The VCGBrowser provides a highly flexible
user-friendly interface for the user to search and work
on. Moreover, users no longer need to deal with massive
amounts of data; rather, they can use mature databases
and analysis tools to classify individuals or patients into
subpopulations that differ in their susceptibility to a par-
ticular disease or in their response to a specific treatment.
Here, we have developed the VCGDB and VCGBrowser
as a support system for researchers and doctors to build
an accurate and precise classification of the human genome
and diseases, and thereby promote the progress in social
healthcare.

The “dynamic” feature in VCGDB can display multiple
levels of genetic variation information in the three Chinese
populations. Individual genomes were examined first to
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Table 4 Mapping of 15 Asian genomes onto the VCG, YH and GRCh37 reference genomes

CDX samples HGO00879 HGO00844 HGO00851 HG00864 HGO00879
Reference GRCh37 46,809,092 54,343,732 58,459,936 41,735,844 46,809,092
(96.14%) (95.58%) (97.78%) (97.80%) (96.14%)
YH 46,963,414 54,578,732 58,711,122 41,929,952 46,963,414
(96.46%) (95.99%) (98.20%) (98.25%) (96.46%)
VCG 47,025,644 54,677,084 58,817,318 42,017,702 47,025,644
(96.59%) (96.16%) (98.37%) (98.46%) (96.59%)
CHD samples NA18698 NA18699 NA18126 NA18126 NA18691
Reference GRCh37 9,570,212 9,900,966 12,832,078 11,818,302 15,160,036
(74.52%) (83.42%) (70.94%) (64.55%) (61.13%)
YH 9,554,028 9,899,632 12,825,240 11,826,910 15,179,378
(74.39%) (83.41%) (70.90%) (64.60%) (61.20%)
VCG 9,590,720 9,931,332 12,870,814 11,880,666 15,228,994
(74.68%) (83.68%) (71.16%) (64.89%) (61.40%)
JPT samples NA18988 NA18985 NA19084 NA18984 NA18960
Reference GRCh37 31,213,781 4,235,400 34,476,427 9,353,246 71,376,941
(89.77%) (97.06%) (98.70%) (96.88%) (89.93%)
YH 31,338,365 4,236,640 34,514,636 9,359,975 71,711,466
(90.13%) (97.09%) (98.81%) (96.95%) (90.35%)
VCG 31,410,518 4,236,680 34,500,530 9,361,169 71,898,286
(90.34%) (97.09%) (98.76%) (96.96%) (90.59%)

detect nucleotide-level variations between individuals and
populations and to evaluate the degree of variation in the
base backbone. Then, all the genetic variation information
was collected for all the individuals in the three popu-
lations. Finally, the dynamic variations of individual
characters and genomic annotation information, such
as reference genes, genomic duplications, and GWAS
clinical traits were integrated into the VCGDB structure.
The data preprocessing that we developed, downsized the
raw data to an analyzable scale without losing any detail
information, and the analyzing algorithms translated se-
quencing data into dynamic genomics information using
limited time and computing resource. The results are out-
put as a big-table-like data structure, which is convenient
for data exporting and follow-up studies. Furthermore, the
optimized VCGDB structure allowed the implementation
of a high-efficiency real-time search of all the dynamic
genomics information in the database along the whole
length of the Chinese genomes. The VCGDB structure is a
novel database scheme that can be used to deal with the
huge amounts of incoming biological data.

Future developments

Although about 8 terabytes of Chinese genome data
have been integrated in VCGDB, it remains just a tiny
piece in the huge data iceberg that will be required to
fully illustrate the complexities of the human genome.

We set a threshold of 5% to define rare variants because of
the limited sample size and the current sequencing error
rate. Usually, a rare variant that may be disease-related will
have an occurrence probability of less than 1% or even one
in a million, which is currently almost impossible to detect.
In the near future, sequencing projects such as UK10K,
The Cancer Genome Atlas (TCGA), and TwinsUK will
generate ultra-large volumes of human genome data
[47-49]. Because the sequencing data are generated in
different laboratories using various platforms, how to
normalize these data, merge it with existing data, and
analyze and interpret it are big challenges that have to
be addressed [19].

Traditional alignment software programs or algorithms
always use the static human GRCh37 reference genome as
the template and dynamic variations are seldom consid-
ered. To overcome this limitation, an advanced dataset
could be used in a dynamic mapping process, but this
approach wastes data and overlooks potential biological
significance. New algorithms with higher mapping speeds
and dynamic variation support need to be developed to
handle the increasing quantities of data [23]. Conversely,
limited computing resources restrain data mining effi-
ciency and its applicability to many investigators. Cloud
computing and supercomputing may be the best solution
in response to the data explosion crisis [50-52]. We
are planning to build a stable data system in the cloud,
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develop user-friendly tools and pipelines, and establish cloud
platforms to accelerate further algorithm development.

Managing and maintenance are critical for databases.
We will continue to provide the computational resources,
debug the programs, and ensure the stable running of
VCGDB and VCGBrowser. In the future, we will continue
to monitor the progress of other human genome projects,
collect and merge Chinese sequencing samples, execute
our data analysis workflow, validate the results, and peri-
odically update VCGDB.

Conclusions

In this study, we constructed a new type of dynamic
genome database of three Chinese populations, including
CHS and CHB, which is very different from any of the
current traditional human genome databases. VCGDB
integrates all the dynamic information generated from
the whole-genome sequencing of hundreds of individuals,
and combines it with the corresponding genomic annota-
tion information. The “virtual” and “dynamic” features of
VCGDB helped reveal genetic variations in the Chinese
genomes. We developed a highly interactive user-friendly
VCGBrowser, which has significant functions like seamless
zooming and real-time searching, for users to search and
compare the dynamic information of the different pop-
ulations in VCGDB. Based on the population-specific
information in VCGDB, we build consensus Chinese
reference genomes to detect nucleotide preferences in
the Chinese populations, and to be compatible with
traditional alignment software. We propose that VCGDB
offers a feasible strategy for processing big data to keep
pace with the growing volume of biological data and
provides a robust resource based on the massive amounts
of genomics data for genomics studies and investigations
into genetic diseases.

Availability and requirements

Database homepage: http://vcg.cbi.ac.cn/
Requirements: Java Runtime Environment (JRE) version
1.6.0 or upper

Additional files

Additional file 1: Figure S1. Cross-chromosome data extracting logic.
Figure S2. Database searching and data transferring framework.

Additional file 2: Table S1. List of coding region SNVs enrichment gene.
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