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Abstract

P. tabuliformis genomic information.

Background: The Chinese pine (Pinus tabuliformis) is an indigenous conifer species in northern China but is
relatively underdeveloped as a genomic resource; thus, limiting gene discovery and breeding. Large-scale
transcriptome data were obtained using a next-generation sequencing platform to compensate for the lack of

Results: The increasing amount of transcriptome data on Pinus provides an excellent resource for multi-gene
phylogenetic analysis and studies on how conserved genes and functions are maintained in the face of species
divergence. The first P. tabuliformis transcriptome from a normalised cDNA library of multiple tissues and individuals
was sequenced in a full 454 GS-FLX run, producing 911,302 sequencing reads. The high quality overlapping
expressed sequence tags (ESTs) were assembled into 46,584 putative transcripts, and more than 700 SSRs and
92,000 SNPs/InDels were characterised. Comparative analysis of the transcriptome of six conifer species yielded 191
orthologues, from which we inferred a phylogenetic tree, evolutionary patterns and calculated rates of gene
diversion. We also identified 938 fast evolving sequences that may be useful for identifying genes that perhaps
evolved in response to positive selection and might be responsible for speciation in the Pinus lineage.

Conclusions: A large collection of high-quality ESTs was obtained, de novo assembled and characterised, which
represents a dramatic expansion of the current transcript catalogues of P. tabuliformis and which will gradually be
applied in breeding programs of P. tabuliformis. Furthermore, these data will facilitate future studies of the
comparative genomics of P. tabuliformis and other related species.
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Background

Conifers are widely distributed globally as the largest
and most diverse group of gymnosperms [1] that evolved
independently from angiosperms >300 million years ago
[2]. Modern conifers are divided into eight families in-
cluding 68 genera and 630 species, which form an inte-
gral part of the economy in many parts of the world [3].
Chinese pine (Pinus tabuliformis Carr.) is a widespread
indigenous conifer species and an economically and eco-
logically important hard pine in northern China [4,5].
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Because of its irreplaceable economic development and
environmental protection status, a genetic improvement
program for P. tabuliformis was initiated in the 1970s,
and considerable progress has been made in many basic
physiological aspects [4]. The study of natural genetic
variation in P. tabuliformis has traditionally been investi-
gated using a common garden approach, whereas the
pace of development of genomic resources has been
slow, as only 288 P. tabuliformis entries are included in
the NCBI database. Information regarding the genetic
control of many important traits and fine-scale genetic
variations is extremely limited, and more is needed given
the renewed emphasis to accelerate the pace of P.
tabuliformis breeding and shorten the breeding cycle.
Despite the economic and ecological importance of the
genus Pinus, the progress of entire genome sequencing
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and associated marker development has been limited
[6,7]. Huge genomes with highly heterozygous and large
amounts of repetitive DNA elements are the major obsta-
cles towards sequencing the genomes of all Pinus spp.
[8,9]. The genome sizes of conifers are larger than those of
most other plant species. The genome in all extant mem-
bers of the genus Pinus is 18,000-40,000 Mbp [10]. In
contrast, several representative genera of angiosperm trees
have genome sizes of 540-2,000 Mb [1]. Therefore, re-
searchers have focused on the transcribed part of the ge-
nome using dedicated technologies [6,7]. Transcriptome
analysis and construction of large-scale expressed se-
quence tag (EST) collections in pines are a promising
means of providing genomic resources [2,9,11], as this
technique produces expressed sequence portions of chro-
mosomes at a fraction of the cost of sequencing the
complete genome [12]. It also facilitates the analysis of the
transcribed part of the genome, which is not easy to
predict from the entire genome [13]. Next-generation se-
quencing is a viable and favourable alternative to Sanger
sequencing and provides researchers with a relatively
rapid and affordable option for developing genomic re-
sources in non-model organisms [14-16]. The Roche 454
massively parallel pyrosequencing platform, GS FLX
Titanium, can generate one million reads with an average
read length of 400 bases at 99.5% accuracy per run
[17,18].

In addition to the discovery of new genes and inves-
tigations of gene expression, thousands of simple se-
quence repeats (SSRs), single nucleotide polymorphisms
(SNPs) and insertions and deletions (Indels) have been
detected in transcriptome data [6,19]. It is possible to
use these genome-wide and abundant markers to de-
velop very dense genetic maps that can be applied to
conduct marker-assisted selection breeding programs
[20].

Moreover, the increasing availability of transcrip-
tome data represents an excellent resource for com-
parative genomic analysis. Although there has been
much work on the chloroplast DNA sequences
(cpDNA) and mitochondria DNA sequences (mtDNA),
based on phylogenetic analysis of Pinus [21-23], less

Table 1 Sequencing, assembly and data analysis
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emphasis has been placed on multi-gene phylogenetic
analysis and on determination of how conserved genes
and functions are maintained despite species diver-
gence.

In the current study, we used the Roche 454 GS-FLX
Titanium pyrosequencing platform to obtain a com-
prehensive transcriptome of P. tabuliformis from nor-
malised cDNA libraries of adult trees (xylem, phloem,
vascular cambium, needles, cones and strobili). As a
result, thousands of molecular markers were charac-
terised. Evolutionary studies based on these data and
other shared transcriptome data of five pine species and
one spruce species were conducted. These data provide
compelling new insights into the transcriptome of
P. tabuliformis and evolution of genes in the Pinus

phylogeny.

Results

Transcriptome sequencing and de novo assembly

Prior to sequencing, the cDNA samples obtained from
multiple tissues and individuals were normalised to in-
crease the sequencing efficiency of rare transcripts. Sub-
sequently, 911,302 raw reads with an average length of
382 bp were generated from a full 454 GS-FLX run.
After a trimming process removed adaptors, primer se-
quences, poly-A tails as well as short, long and low qual-
ity sequences, 822,891 (84.7%) high-quality reads were
obtained with an average length of 358 bp covering a
total of 21,076,176 bases (Table 1, Figure la). Cleaned
and qualified reads were de novo assembled using CAP3
and Newbler. This process produced a set of 31,623
isotigs and 17,853 remaining as singletons. More than
half of the total assembly length of isotigs was >700 bp
(N50 = 744) (Table 1, Figure 1b).

The unigene coverage distribution revealed that most
unigenes had a read-depth coverage <20-fold (Figure 1c,
d). The steep decline in read-depth coverage suggests
that cDNA normalisation was effective, which is typical
for a normalised library [24]. Isotig lengths were related
to the number of sequences assembled into each isotig.
The average unigene length exhibited a gradual increase
with increasing read depth (Figure 1c, d).

Raw results (after trimming)

Assembly results

Total number of reads 822 891 Total number of isotigs 31623
Total read length (bp) 295 125 234 Total isotigs length (bp) 21076 176
Minimum read length (bp) 50 Isotig N50 (bp) 744
Median read length (bp) 384 Maximum isotig length (bp) 3537
Maximum read length (bp) 578 Mean depth 282

Mean read length (bp) 358 Number of singletons 17 853

GC content (%) 432 Total number of unigenes 46 584
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Figure 1 Overview of Pinus tabuliformis transcriptome sequencing and assembly. (a) Frequency distribution of 454 sequencing read
lengths after filtering and trimming adapters. (b) Length distributions for isotigs and singlets following the de novo assembly process. The
abscissa has been truncated at 2 kb. The longest isotig was 3,537 base pairs. An isotig is meant to be analogous to an individual transcript.
(c) The average read-depth coverage for assembled unigenes. The y-axis label refers to the total length of all unigenes with the same
read-depth coverage. Coverage values from 50 to 6,765 have been binned together. The size of the bubble is proportional to the average
unigene length at the corresponding read-depth coverage. (d) A density scatter-plot showing the relationship between unigene length
and coverage.

Functional annotation of the transcriptome

The unigenes were annotated with gene names and
Gene Ontology (GO) terms based on sequence com-
parisons between P. tabuliformis transcripts and the
NCBI non-redundant protein database. We examined
the taxonomic distribution of BLASTx best hits. As a
result 99.3% (21,041) of the unigenes had a best hit to
Pinaceae, but 95% were unknown functional proteins.
Of the 3,151 genes with specific functional annotation,
18.9% were within Pinus and 9.7% were within Picea
(Figure 2). The even distribution of assignments of
proteins to more specialised GO terms further indi-
cates that the P. tabuliformis 454 sequences represent
proteins from a diverse range of functional classes
(Figure 3).

Identification of SSRs, SNPs and Indels

Di- to hexa-nucleotide SSRs with a minimum repeat unit
size of five (for tri- to hexa-nucleotide) or six (for di-
nucleotide) were identified based on the analysis of as-
sembled isotig templates. A total of 724 distinct loci
were identified, and the incidences of different repeat
types were determined. The tri-nucleotide repeats were
most abundant (62.2%), followed by di-nucleotides (33.7%),
among the various classes of SSRs (Figure 4).

More than 92,000 SNPs/Indels were identified (61,454
SNPs and 31,030 Indels) from the P. tabuliformis ESTs.
The number of SNPs/Indels detected per transcript was
highly variable; however, approximately 40% of the tran-
scripts contained only one or two SNPs/Indels (Figure 5a).
Among all SNPs, transitions (69.5%) were more frequent
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Figure 2 Summary and taxonomic source of BLASTx matches to unigenes. Number of unique best BLASTx matches of unigenes grouped
by genus. The best matches of the unigenes to Pinaceae sequences accounted for 28.6% of the total.

than transversions (30.5%) (Figure 5b). A and T were the
most frequent insertion (76.7%) and deletion (79.5%) types
of InDels (Figure 5c). The distribution of alternate allele
frequencies in all contigs containing InDels was less fre-
quent in total transcripts, but the SNPs were distributed
evenly (Figure 5d).

Orthologue identification and functional characterisation
between six conifer species
Large-scale transcriptome characterisations have been
carried out for Pinus taeda [3], Pinus contorta [25],
Pinus sylvestris [26] and Pinus pinaster [2]. The shared
transcriptomes of Pinus in the PlantGDB and NCBI da-
tabases are valuable sources of information for multi-
gene comparative and phylogenetic analyses [27].

A comparative analysis of the transcriptomes of P.
tabuliformis, P. contorta, P. pinaster, P. sylvestris, P. taeda

and Picea glauca yielded 191 putatively orthologous sets
of ESTs (Additional file 1). The orthologues were anno-
tated with GO terms, and 54 orthologues were involved in
biological processes, 33 orthologues were involved in
cellular components, 54 orthologues were involved in mo-
lecular functions and the other 50 orthologues had un-
known biological functions (Figure 6).

Phylogenetic and speciation analysis

Phylogenetic analyses of Pinus species and Picea glauca
as an out-group were conducted from 191 clusters of
orthologous transcripts, using non-synonymous substi-
tution rates as a distance metric. The results in Figure 7
show good agreement with classical taxonomy. Similar
concordance was observed in the cpDNA and mtDNA-
based reconstructions of the Pinus phylogeny [21,22].
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We estimated the level of synonymous substitutions for
191 pairs of orthologues identified among the six species
and 6,053 pairs of orthologues identified between P.
tabuliformis with P. taeda as a control to assess the rela-
tive age of these species separations. The Ks peaks (Picea
glauca = 0.1, P. taeda and P. contort = 0.03, P. pinaster and
P. sylvestris < 0.01) indicate the speciation time between P.
tabuliformis and these species (Figure 8). Considering a
clock-like synonymous mutation rate of 0.68 x 10° sub-
stitutions/site/year in conifer genes based on pairwise
comparisons of 3,723 spruce (Picea sitchensis) and pine
(P. taeda) orthologues [28], the speciation between spruce
and pine was estimated to have occurred ~147 million
years ago (mya) and between section Trofoliae and section
Pinus ~44 mya ago.

Evolutionary pattern of Pinus spp. genes

We estimated evolutionary measures at 6,053 ortho-
logues of P. tabuliformis and P. taeda. The number of
pairwise synonymous (Ks) and non-synonymous (Ka)
substitutions per site was inferred (Figure 9). The results
show that a majority of sequence pairs (85%) had a Ka/
Ks ratio < 1, suggesting that these evolved under purify-
ing selection without altering the encoded amino acid
sequence during the speciation period. We also identi-
fied 938 fast evolving sequences with a Ka/Ks ratio > 1
and 207 sequences with Ka/Ks ratios > 2 (Additional file 2).
These sequences are related to several biological processes,
cellular components and molecular functions. Therefore,
these ESTs may be useful for identifying genes that may
have evolved in response to positive selection and might
be responsible for speciation in the Pinus lineage.

Discussion

A large number of ESTs for pines have been sequenced
to date (Table 2). Due to the economic value of wood
and pulp products, the initial EST projects on pine fo-
cused primarily on the transcriptional regulation of
wood formation [29]. Large numbers of ESTs have been
sequenced and analysed in pine to discover wood forma-
tion and wood quality trait related genes [30-33]. Se-
quencing novel genes expressed during wood formation
represents a powerful approach to understanding wood
formation at the molecular level and identifying the
mechanisms that control this important differentiation
pathway. A total of 260 differentially expressed se-
quences have been identified across six cDNA libraries
from the xylem of P. taeda [34]. A large number of rep-
resented gene sequences from xylem-forming tissues of
loblolly pine have been compared with the inferred gene
sequences of Arabidopsis thaliana [33]. In addition, 42
EST resembled gene products important for drought
tolerance have been identified from root tissue libraries
[35]. To study similarities between angiosperm and
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orthologous transcripts as a distance metric (not from multiple sequence alignments) and the neighbour-joining method [66]. Branch lengths
indicate the non-synonymous substitution rates between different species.

gymnosperm embryo development, 83 embryogenesis- Despite the fact that a large number of pine ESTs have
related genes were identified from embryo cDNA librar-  been obtained from cDNA libraries based on traditional
ies [3]. Most genomic studies of pines have focused on  sequencing technology, the methods used were ineffi-
loblolly pine, while additional sequencing efforts are cient. Four P. taeda cDNA libraries were sequenced and

needed to develop genomic resources for other pines. yielded a total of 142,533 ESTs (Table 2); however, only
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Figure 8 Distribution of Ks values of orthologous pairs for identifying speciation events. Data were grouped into bins of 0.02 Ks units for
graphing. The upper right graph shows the Ks distribution of the 6,053 pairs of orthologues identified between P. tabuliformis and P. taeda. Given
the rate of substitutions/synonymous site per year, the peaks (Picea glauca=0.1, P. taeda and P. contort =0.03, P. pinaster and P. sylvestris < 0.01)
indicate the speciation time between P. tabuliformis and these species.
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one normalised cDNA library yielded 822,891 ESTs in
P. tabuliformis (Table 1). Although traditional sequen-
cing yields longer EST sequences, it has little advantage
compared to new assembly technology based on the
large-scale ESTs. Additionally, most previous studies
used a cDNA library of one tissue (Table 2), whereas we
used a normalised cDNA library comprising multiple
tissues and individuals. These large-scale ESTs will pro-
vide more comprehensive pine transcriptome informa-
tion and facilitate the assembly of Pinus spp. ESTs in the
future.

Next-generation sequencing technology yields a large
number of sequences at considerably lower costs com-
pared to traditional sequencing methods, and, therefore,
provides a valuable starting point to expedite analysis of
less-studied species [18,36,37]. Normalised cDNA libraries
were used to sample large numbers of transcripts to maxi-
mise sequence diversity. Next-generation sequencing of
normalised libraries is more efficient than that of non-
normalised libraries, particularly for rare transcripts [38].

Table 2 Transcriptome sequencing in Pinus spp.

The capacity to deliver large numbers of gene-based mar-
kers from transcriptome sequencing projects is a major
advantage of next-generation sequencing technology
[18,20,36]. Because of cost and throughput, conventional
markers such as restriction fragment length polymorphism
and random amplified polymorphic DNA are being re-
placed with SSRs and SNPs [20]. The genome-wide and
abundant EST-based SSRs and SNPs/Indels markers
obtained by next-generation sequencing represent an
effective approach to marker discovery in many plant spe-
cies, as these markers facilitate generation of dense genetic
maps and have the advantage of higher cross-species
transferability [6,39-41]. However, relevant studies in Pinus
spp. are limited. In this study, 724 distinct EST-SSR loci
and more than 92,000 SNPs/InDels were identified. It is
possible to use these markers in a broad range of applica-
tions, including genetic mapping, genotype identification,
marker-assisted selection breeding, and molecular tagging
of genes. Among the EST-derived SSRs, tri-nucleotide re-
peat units were predominant. Considering the importance

Pinus spp. Platform or approach Libraries Reads or ESTs Mean length Unigenes References
P. taeda cDNA clones xylem 1097 510 736 [32]
P. taeda cDNA clones xylem 59 797 364 20 377 [33]
P. taeda cDNA clones root 12 918 555 6 202 [35]
P. taeda cDNA clones embryos 68 721 689 12 154 [3]
P. radiata cDNA clones xylem 6 389 624 3304 [29]
P. contorta GS XL R70 needles and conelets 586 732 306 17 000 91
P. pinaster Sanger and GS-FLX different tissues 951 641 597 55 332 [21
P.densata lllumina needles 3968 794 84 950 [67]
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of maintaining reading frames to generating a polypeptide
within a partially or fully active, it is no surprise that this
observation is common for tri-nucleotide expansions (or
their multiples) within translated regions [6,42,43]. As
usual, comparisons of P. tabuliformis transcriptome SNPs
show an excess of transitional over transversional substitu-
tions. Similarly, A and T were the most frequent insertion
and deletion types of Indels. Part of this bias is due to the
relatively high rate of mutation of methylated cytosines to
thymines [44,45].

Comparative phylogenetic analysis at the genome level
dramatically improves the precision and sensitivity of
evolutionary inference [46]. However, comparative ge-
nomics in plants has been limited by the considerable
phylogenetic distances between sequenced organisms
[47]. Transcriptome sequencing using massively parallel
sequencing technologies provides an attractive approach
to obtaining large-scale sequence data for non-model
organisms necessary for comparative genomic analysis
[24,48]. Phylogenetic utility of transcriptome sequence
data yields well-resolved and highly supported tree to-
pologies for many groups of animals [49-51]; however,
few such studies have been conducted with plant taxa
[27]. Phylogenetic analysis of the genus Pinus has been
limited mostly to plastid genome (cpDNA and mtDNA)
sequences [21-23]. The results of this study are consis-
tent with previous data on plastid genome phylogeny
[21,22], but transcriptome analyses, producing more ro-
bust results, are presented for the first time. Given that
this study was not limited to particular genes or motifs,
the results presented here are more representative of
Pinus evolution than previous studies.

Understanding the factors that affect the evolutionary
patterns and rates of genes is central in many research
fields [52]. For the past 30 years, it was thought that the
rate of gene evolution was determined by protein func-
tion [53]. Studies on yeast and bacteria indicate that the
expression level of a protein affects the evolution rate
more than its functional category, at least in unicellular
species [54,55]. In this study, we have shown that se-
quence polymorphisms of the 191 putatively orthologous
sets of ESTs of six Pinus species are widespread using
GO terms. This suggests that selection of protein func-
tion does not contribute to the variation in the rates of
gene evolution. However, most of the important factors

Table 3 Samples used for sequencing
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are correlated with each other. More systematic analyses
of genomic data are required to further demonstrate the
effect of a range of factors on the evolutionary patterns
and rates of genes.

Conclusions

This study is the first comprehensive sequencing effort
and analysis of gene function in the transcriptome of
P. tabuliformis and represents the most extensive
expressed sequence resource available for P. tabuliformis
to date. GO and KEGG analyses were carried out, and
all unigenes were classified into functional categories so
as to understand their functions and regulation path-
ways. An enormous number of SSR and SNP/Indel loci
were detected. These data can be used to develop oligo-
nucleotide microarrays or serve as a reference transcrip-
tome for future RNA-seq experiments in large-scale
gene expression assays. These data will accelerate our
understanding of genetic variation in populations and
the genetic control of important traits in P. tabuliformis.
Additionally, the generation of such large-scale sequence
data is a potentially invaluable scientific resource for
mapping, marker-assisted breeding and conservation-
genetic-oriented studies in P. tabuliformis and compara-
tive evolutionary analysis of Pinus plants.

Methods

Sample collection, cDNA library creation and 454
sequencing

P. tabuliformis tissues were collected from 4—20 individual
trees selected at random (genetically distinct) in a primary
clonal Chinese pine seed orchard located in Xingcheng
City, Liaoning Province, China (40°44’'N, 120°34’E, 100 m
above sea level) [4]. The sampling time and number of in-
dividuals of each tissue type are listed in Table 3. Develop-
ing xylem tissues were scraped from the exposed xylem
surface at breast height (1.5 m) after removing the bark
from the sampling area. Samples were immediately placed
in liquid nitrogen in the field until storage at -80°C.

Total RNA isolation from samples of all selected plant
tissues, and cDNA library construction and normalisa-
tion were performed as described previously [56]. The
pooled library was sequenced in a full 454 plate run on
the GS-FLX Titanium platform (Roche, Indianapolis, IN,
USA).

Samples in May

Number of individuals

Samples in July Number of individuals

Tissue type Cones 10

Strobili 10

Cambium (stress side)

Cambium (stress side) 4

Cambium (tension side)

Cambium (tension side)

Cambium (stem)

Cambium (stem) 4

Needles (juvenile + mature) 20
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Assembly and annotation

All generated ESTs were pre-screened to remove
adaptor-ligated regions and contaminants by Seqclean
and to trim low-quality regions by LUCY2 [57]. Because
no reference P. tabuliformis genome exists, cleaned and
qualified reads were assembled de novo in Newbler 2.5.3,
which performs best for restoring full-length transcripts
[13,58].

The assembled isotig and singleton sequences were
combined and clustered with CD-HIT (version 4.0)
[59,60]. The sequences with similarity >95% were divided
into one class, and the longest sequence of each class was
treated as a unigene during later processing. Descriptive
annotations and GO classifications were performed as
described previously [56].

We simultaneously instituted a search for putative
unigenes against the NCBI protein database using a
BLASTx and annotated each sequence with GO terms
using Blast2GO.

Identification of SSRs, SNPs and InDels

Assembled isotigs with coverage of at least four reads
were screened for SSRs, SNPs and InDels using Misa
and ssahaSNP software, respectively [61]. Similar criteria
for screening high-quality SNPs have been used in previ-
ous studies [20,62]. Only perfect repeats of two to six
nucleotide repeats were identified. The minimum
repeat-unit size for di-nucleotides was set at six and at
five for tri- to hexa-nucleotide repeats.

Identification of orthologues between six conifer species
The shared transcriptome data of five conifer species in
the PlantGDB and NCBI databases were downloaded.
The numbers of unigenes for each species were as
follows: Picea glauca (48,619), P. contorta (13,570),
P. pinaster (15,648), P. sylvestris (73,609) and P. taeda
(77,540). Along with 46,584 unigenes of P. tabuliformis,
clustering was carried out among the transcribed se-
quences using UCLUST software [63]. Aligned se-
quences (at least 100 bp) showing 90% identity were
defined as pairs of putative orthologues among six spe-
cies. The best-hit sequence of each cluster was then used
in subsequent analyses. Orthologues of P. taeda and P.
tabuliformis were searched using the same approach.
Sequences of P. tabuliformis were annotated with GO
terms using Blast2GO.

Estimation at the level of synonymous substitution and
non-synonymous substitution between orthologues
Because unigenes are derived from EST sequences, have
no annotated open reading frames and may contain
frame shift sequencing errors, each member of a pair of
sequences was searched using BLASTX against all plant
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protein sequences available in GenBank. The approach
used was as described previously [64]. PAML software
was used to estimate the non-synonymous substitutions
per non-synonymous site (Ka) and the synonymous sub-
stitutions per synonymous site (Ks) [65].

Phylogenetic analysis

Because the genus Pinus has a rich history of phylogen-
etic analysis and the relationships among the species in
the genus are well understood [21-23], the precise top-
ology is not critical for the purposes of this study. We
chose to focus our analyses on the evolutionary pattern
and rate of genes. The synonymous substitution and
non-synonymous substitution between the orthologues
of six conifer species were analysed as described previ-
ously. Phylograms were derived using pairwise substitu-
tion rates of orthologous transcripts as a distance metric
with the neighbour-joining method [66]. Picea glauca
was used as an out-group to root trees.

Data availability

The raw 454 EST data obtained in this study were de-
posited in the NCBI Sequence Read Archive (SRA)
under the accession number SRA 056887.
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Additional file 1: The 191 orthologues of six conifer species.

Additional file 2: The 207 sequences with Ka/Ks ratios > 2 of Pinus
tabuliformis and P. taeda.
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