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Abstract

Background: We have previously demonstrated that alcohol exposure at early neurulation induces growth
retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression
changes which may underline these developmental defects, microarray analyses were performed in a whole
embryo mouse culture model that allows control over alcohol and embryonic variables.

Result: Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also
showed cranial neural tube defects. In microarray analysis (accession number GSM9545), adopting hypothesis-
driven Gene Set Enrichment Analysis (GSEA) informatics and intersection analysis of two independent experiments,
we found that there was a collective reduction in expression of neural specification genes (neurogenin, Sox5,
Bhlhe22), neural growth factor genes [Igfi, Efemp]1, KIf10 (Tieg), and Edil3], and alteration of genes involved in cell
growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding
protein 1 (Rbp1), and de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1). Remarkably, four key
hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin) were absent after
alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the
neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile
demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an
open (ALC-NTO) and a closed neural tube (ALC-NTC). Further, the epidermal growth factor signaling pathway and
histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes

with neural tube defects during early neurulation.

were down-regulated in the ALC-NTO than in the ALC-NTC embryos.
Conclusion: This study revealed a set of genes vulnerable to alcohol exposure and genes that were associated

Background

Children born to women who drink heavily during preg-
nancy are at risk for various developmental disorders,
collectively called Fetal Alcohol Spectrum Disorder
(FASD). Fetal Alcohol Syndrome (FAS) is a severe form
of FASD in which the affected child is diagnosed with
growth retardation, abnormal central nervous system
development (typically including microencephaly), and a
characteristic pattern of abnormal facial features [1-4];
organ dysmorphology, particularly of the eye and heart,
may be evident in FAS cases as well [5,6]. Disruption of
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complex molecular cascades that regulate embryonic
morphogenesis likely are responsible for the teratogenic
effects of alcohol. Potential mechanisms include meta-
bolic stress, reduced signaling by transcription factors,
retinoic acid or growth factors, disrupted cell-cell interac-
tions, impaired cell proliferation, and apoptosis [7-16].
Several of these mechanisms may have direct roles in
causing the cell death and growth retardation in multiple
systems, including brain and head (for review see [17]).
Expression of a number of genes during development
was reported to be affected by alcohol in different
experimental paradigms, including homeobox genes
such as Msx2 [18] and sonic hedgehog [19,20], neuro-
trophic molecules (e.g. ADNP gene [21]), fetal liver
kinase 1 (Flk1) [22]), retinol-related genes (e.g. Crabpl
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and Fabp4; [20]), nucleotide excision repair gene,
(Ercc6l) [23], stress-related genes (e.g. heat shock pro-
tein 47 [24]), and differentiation and apoptosis genes
such as Timp4, Bmpl5, Rnf25, Aktl, Tulp4, Dexrasl
[25]. These altered genes suggest potential mechanisms
for the abnormal development in FASD. However, the
wide-ranging developmental abnormalities in FASD are
likely a consequence of the interaction of multiple
genes. Examination of global gene expression provides a
holistic view of genes that potentially interact and colla-
boratively contribute to the abnormal development.
Alcohol exposure induced changes in a group of cellular
adhesion genes (e.g. LIcam and integrin) in neuroblas-
toma cells [26]. A brief ethanol exposure (3 h) at gesta-
tion day 8 (E8) in mouse embryos altered expression of
genes of metabolic, cell programming and cytoskeletal
signaling pathways [27]. An earlier alcohol exposure at
E6-E8 also altered a set of genes related to PLUNC,
neurofilament, and pale ear [28].

In animal models of prenatal alcohol exposure,
sources of variability include the pattern, concentration,
amount, and developmental stage of alcohol exposure,
maternal stress, embryonic growth and maturation of
embryos between litters and even within a given litter
and within inbred strains of mice [29]. Control of all
these variables in rapidly developing embryos is virtually
unattainable in vivo. To limit these variables, a whole
embryonic culture [30,31] was adopted, including stage
alignment based on somite number, in which the pat-
tern, amount and concentration of alcohol and embryo-
nic staging were controlled. Inbred C57BL/6 mice, with
known susceptibility to ethanol teratogenesis [32,33],
were used for this study.

Differences in the dose and timing of alcohol exposure
are known contributors to variation in the phenotypic
spectrum in FASD. Understanding the pattern of gene
alterations that co-vary with different outcomes pro-
duced by different alcohol doses or developmental tim-
ing of exposure would provide valuable insights into
mechanisms underlying this phenotypic variability. As
development is highly dynamic throughout gestation, we
asked how alcohol exposure might affect genome-wide
gene expression at the critical stage of neurulation (E8-
10), when the nervous system (and other major organs)
are actively forming in mouse. We have shown that at
this key stage, neural tube formation was highly sensi-
tive to the alcohol insult [29]. DNA methylation was
altered, with the degree of change commensurate with
severity of neural tube defect [34]. In the current study,
in an initial experiment, cluster analysis indicated dis-
tinct differences in gene expression not only between
control- and alcohol-treated embryos, but also between
two phenotypic subsets of alcohol-treated embryos dis-
cernable at the end of alcohol treatment, one group
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which had a closed neural tube (ALC-NTC) and the
other group with an open neural tube (ALC-NTO). A
second study with a larger set of arrays was then per-
formed in which alcohol-treated embryos of both neural
tube phenotypes were specifically compared. We report
here the correlation of alcohol-induced embryonic
growth retardation and neural tube abnormalities with
changes in expression in networks of genes known to
regulate embryonic growth, organ development, and
neural specification processes.

Results

Embryonic Growth Retardation/Abnormalities

As was seen in our previous report [29], the size and
somite number varied (from 1-6) among embryos within
a litter at the time of harvesting from the mother. We
selected embryos of similar developmental stages (3-5
somites) and randomly assigned them to the two treat-
ment groups (alcohol or control). The alcohol concen-
tration profile of the culture media over the 46 hours
was similar to that in our previous report [29]. The con-
centration of ethanol in the medium was ~88 mM at
the start of each day (when first added to the media)
and declined to ~44 mM by the end of each day.
Among all cultured embryos, more than 95% maintained
active heartbeats and blood circulation over this time,
and only those were used for analysis. Development of
the heart, caudal neural tube, brain vesicles, optic sys-
tem, and limb buds in the embryos were significantly
compromised in the alcohol treated group (Table 1).
Brain vesicle development was retarded and the brain
vesicles were smaller in size in the alcohol group. The
significant effects in multiple organs and regions and in
total scores (Table 1) demonstrated that alcohol treat-
ment resulted in retardation of the overall growth and
interfered with development of several specific struc-
tures, including brain, heart, and limb development, in
this embryonic culture model.

The overall growth retardation was accompanied by
varying degrees of abnormality in organ system develop-
ment (Figure 1). These abnormalities included an
increased size of the heart and ventricular chambers,
reduced size of lung buds, flattened forebrain, small/
slanted eyes, abnormal tail morphology, abnormal limb
web, and unfinished turning of neural axis. A reduced
blood/vascular system was also evident by less vasculari-
zation in yolk sac (Table 1), and lower red coloration
apparent in many blood vessels of yolk sacs and
embryos in the alcohol-treated than the control embryos
(Figure 2).

Among 127 samples of alcohol-treated embryos, 34
(27%) had various degrees of incomplete neural tube
closing (Figure 1); this compares to 3 (2%) out of the
139 controls. These openings in the neural tube mostly
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Table 1 Embryonic dysmorphology after alcohol exposure, scored according to Maele-Fabry et al, 1992

Region Control Alcohol ALC-NTC ALC-NTO
Allantois 3+0 280 +£ 0.08 286 £ 0.10 270+ 014
Branchial bars 2.77 £ 009 215+ 021 217 £026 211 +£039
Brain: Forebrain 476 £ 0.10 381 +0.27* 457 £ 0.14 229 + 0.29%* AN
Brain: Midbrain 452 £ 0.11 371 +0.27 450 £ 0.14 214 £ 0.14%% AN
Brain: Hindbrain 471 £0.10 3.86 + 0.24* 450 £ 0.14 2.57 £ 030" AN
Caudal Neural Tube 476 £0.12 411 £ 0.19% 4.09 £ 0.26* 4.14 + 0.26*
Flexion 4.80 £ 0.09 433 £0.19 459 £ 0.19 381 + 0.36*
Heart 480 +0.10 4.0 £ 0.16** 415 + 0.19* 400 + 031*
Limb: Forelimb 201 + 0.06 1.51 £ 0.13* 148 £ 0.18* 157 + 0.20
Limb: Hindlimb 0.53 = 0.10 0.20 + 0.08* 0.21 = 0.09 0.19 + 0.14
Mandibular process 208 £ 0.11 1.99 + 0.09 212 £ 008 1.71 £0.18
Maxillary process 241 £0.14 206 +£0.16 221 £018 1.76 £ 0.30
Olfactory system 047 £ 0.08 0.26 + 0.08 0.29 £ 0.1 0.20 £ 0.13
Optic system 359+ 0.14 287 + 0.14%* 3.02 £ 0.17% 257 + 0.20%*
Otic system 395+ 0.12 368 + 0.1 3.88 + 0.10 329 £ 0.18% A
Somites 481 £ 0.09 438 £ 0.16 450 £ 0.17 4.14 £ 034
Total score 5397 + 0.66 4583 + 1.54** 49.14 £ 1.54* 3923 + 1.72%% AA

* P-Value <0.05, ** <0.01; compared to control.
A P-Value <0.05, M <0.01; compared to NTC.

Control n = 21; Alcohol (all alcohol-treated, n = 21; ALC-NTC, n = 14; ALC-NTO, n = 7).

occurred in the head fold, although delayed or incom-
plete neural tube closure in midbrain and hindbrain was
also seen. The abnormalities and developmental delays
are clearly more severe in ALC-NTO than in ALC-NTC
subgroups, particularly in development of the neural
axis including hindbrain, midbrain, forebrain, otic
vesicle.

Differences in Gene Expression

At the end of the culture period, the total RNA
extracted from alcohol-treated embryos was approxi-
mately half that of controls: controls = 2.8 + 0.5
(n = 13), ALC-NTC = 1.6 + 0.5 (n = 13, P < 0.05 com-
pared with control), ALC-NTO =12 + 0.5 (n =8, P <
0.05 compared with control). In Experiment 1, 14,243
out of 22,690 probe sets (62.7%) were present in at least
half of the samples in either control or alcohol treated
groups. Hierarchical clustering by arrays (Figure 3.
Exp 1) clearly separated the samples into three groups,
control, ALC/NTC, and ALC/NTO, rather than just two
(ALC vs. control). In Experiment 2, 26,674 out of 45101
probe sets (59.1%) were present in at least half of the
samples in either control or alcohol treated group.
Again, the hierarchical cluster analysis (Figure 3. Exp 2)
separated the samples into the same three groups, con-
trol, ALC/NTC, and ALC/NTO.

In Experiment 1, 850 probe sets (6% of the probe sets
that were present) were differentially expressed in alco-
hol-treated embryos as a group (p < 0.05). In Experi-
ment 2, which had more power due to the larger
number of arrays and also examined twice as many

probe sets, 2519 probe sets (9.4% of the probe sets that
were present) were differentially expressed in alcohol-
treated embryos considered as a group (p < 0.05). These
relaxed stringencies were employed to reduce false nega-
tives when comparing genes across the two experiments.
The probe sets on the Mouse Genome 430A GeneChip
were a subset of those on the Mouse Genome 430 2.0
GeneChip. Comparing this common subset across the
two experiments, 87 probe sets were significant in both
experiments and consistent in direction; because there
are 13810 genes present in both experiments, the null
expectation is that only 17 genes would be expected to
be in common with the same direction of change. 49
probe sets were lower in alcohol-treated embryos and
38 were higher (Table 2). Among these were genes for
alcohol metabolism, epigenetics (histone and histone
variants), hematopoiesis, neurotrophic factors, retinol
metabolism, cell cycle, cell adhesion, homeobox genes,
and oncogenes.

Furthermore, in Experiment 2 (which had more power
to detect differences), a number of genes in addition to
the above list were present in the controls but were
absent in the alcohol treated samples (Table 3). Notably,
glycophorin A (Gypa) and beta-2 microglobulin (B2m)
genes were absent in ALC-NTO, and ceruloplasmin
(Cp), adducin 2 (Add2), B2 m, and ceruloplasmin (Cp)
genes were absent in ALC-NTC. All of these are critical
in hematopoiesis and/or red blood cell function [35-39].
In contrast, the aldehyde dehydrogenase 1 family, Bl
(Aldh1bI), which catalyzes oxidation of retinaldehyde,
was present only in the alcohol-treated embryos with
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CONTROL

fold. Scale bars: a, b, ¢, e, f = 0.05mm; d = 0.25 mm.

ALC-NTC

Figure 1 Alcohol causes dysmorphology of growing embryos. Control embryos (a), Alcohol-treated (b-f). There are many dysmorphologies
including microencephaly of forebrain (b, ¢, f), failure of closure of midbrain (mb; ¢) or hindbrain (hb; f), dysmorphic optical vesicle (optic; d), flex
tail (ft; e) in caudal neural tube, delay formation of heart (H) chamber (b) and occasional detachment of epicardium (epic; b and e), neural tube
opening at midbrain (mb; ¢, arrowheads) and hindbrain (hb; f, arrowheads) in the alcohol group. Majority of the brain vesicles in alcohol-treated
group were closed (ALC-NTC; b, e). Approximately 30% of the embryos were found with a neural tube opening (ALC-NTO), usually in the head

X Y y ALC-NTO
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-

open neural tubes (ALC-NTO) (Table 3 last row). No
gene was found to be absent in Control but present in
ALC-NTC. Another retinol regulating gene, cellular reti-
nol binding protein 1 (Crbp1), was reduced by alcohol
exposure (Table 2).

Gene Set Enrichment Analysis (GSEA) Analyses

Four GSEA analyses were conducted within each experi-
ment: control versus all alcohol-treated (ALC), control
versus ALC-NTC, control versus ALC-NTO, and ALC-
NTC versus ALC-NTO. As 415 GO gene sets and 191
stem cell related gene set were pre-selected, there were
totally 4 x (415+191) = 2424 GSEA tests. We found 15
gene sets that were significant at 5% and shared the
same enrichment direction in both experiments. By

chance, one would expect only 2424 x (0.05 x 0.05 x
0.5) = 3; therefore, the FDR is 3/15 = 20%. The signifi-
cant gene sets common to the two experiments are out-
lined below.

a. Early Developmental Biology Gene Sets

GSEA analysis using the GO biological function cate-
gories selected as being related to development (Addi-
tional files 1 and 2.) identified 20 enriched sets in
Experiment 2. Of these 20 sets, 9 were also identified by
Experiment 1 (Table 4). Included in these shared gene
sets are multiple GO categories related to growth, eye and
heart development, and epigenetics. When comparing the
control embryos to all alcohol treated embryos, there
were 7 GO categories that were enriched in the control
groups (i.e., down-regulated in the alcohol-treated
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Figure 2 The red blood vessels were less distinguishable in the yolk sac (arrow, left) and embryo (arrow, right) in the alcohol-treated
group as compared with those of the Control. All embryos examined for red blood vessels had active heart beat at the termination of
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Figure 3 Hierarchical clustering by arrays in Experiment 1 and
Experiment 2.

-

groups): five growth-related GO sets, one epigenetics
(histone and chromatin regulator) GO set, and one
angiogenesis GO set (Table 4). No gene set was enriched
in the alcohol-treated group. An example of gene enrich-
ment analysis is shown in Figure 4 for GO:0040007,
Growth. This gene set contained 75 genes. The GSEA
p-values for this enrichment score were 0.010 in Experi-
ment 1 and 0.005 in Experiment 2.

The growth-related genes represented the largest group
of affected genes. There were 5 GO sets of growth-
associated genes (Table 4). Many of these genes, identi-
fied by GSEA in both experiments, were also identified
in Experiment 2 at the single gene level; e.g. the Growth
gene set (GO:0040007): Ctgf, Igfbp2, Empl, Osm, Cyr6l,
Gap43, Criml, Tgfb3, Nov, Socs2, and Wrn were signifi-
cantly reduced in Experiment 2, and Igfbp7, Emp3,
Bmp4, Bmp6, Inhbb, Wigl, and Cish were reduced but
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Gene symbol UniGene  Source.id Exp. 1 Exp. 2  Category/Function Description
Fold Fold
Change Change

Al415282 Mm.254704 1415793_at -1.1 -1.6 expressed sequence Al415282
Atpbap2 Mm.25148  1439456_x_at -1.2 -1.2 Energy ATPase, H+ transporting, lysosomal protein 2
BC008163 Mm.11473  1425328_at -1.2 -1.2 CDNA sequence BC008163
Cask Mm.253779 1427692_a_at -15 -1.1 MAGUK family calcium/calmodulin-dependent serine protein kinase
Clk1 Mm.1761 1426124 _a_at -16 -13 Cell cycle CDC-like kinase 1
Clk4 Mm.239354 1427663_a_at -1.7 -1.3 Cell cycle CDC like kinase 4
Cril Mm.44244  1448406_at -12 -12 DNA transcription/  CREBBP/EP300 inhibitory protein 1

differentiation
Cyr61 Mm.1231 1416039_x_at -14 -16 extracellular matrix ~ Cysteine rich protein 61
Dach2 Mm.79760  1449823_at -1.3 -1.3 Myogenin Dachshund 2 (Drosophila)
Ebf1 Mm.255321 1416302_at -15 -16 hematopoiesis early B-cell factor 1
Ebf2 Mm.319947 1449101_at -1.2 -14 hematopoiesis early B-cell factor 2
Ebf3 Mm.30282  1428349_s_at -15 -13 hematopoiesis early B-cell factor 3
Edil3 Mm.41716 1433474 _at -1.5 -14 Homeobox EGF-like repeats and discoidin I-like domains 3
Efemp! Mm.44176  1427183_at -14 -19 Neurotrophin EGF-containing fibulin-like extracellular matrix protein 1
Foxd1 Mm.347441 1418876_at -14 -12 Homeobox forkhead box D1
Gypc Mm.292145 1423878 _at -1.2 -14 hematopoiesis glycophorin C
Hist1h3a Mm.221301 1422948_s_at -16 -13 Epigenetic histone 1, H3a
Hist1h4i Mm.14775 1424854 _at -1.7 -15 Epigenetic Histone 1, H4i
Hist3h2a Mm.212549 1435866_s_at =21 -1.7 Epigenetic histone 3, H2a
Igf1 Mm.268521 1419519_at -14 -13 Neurotrophin insulin-like growth factor 1
Lgals1 Mm.43831  1419573_a_at -14 -1.7 Angiogenesis/ Lectin, galactose binding, soluble 1

neural

development
Mageh1 Mm.6890 1422498 _at -1.3 -1.3 Oncogene Melanoma antigen, family H, 1
Myct1 Mm.33762  1452072_at -1.3 -1.3 Oncogene myc target 1
Napb Mm.274308 1423172_at -16 -14 Synapsis N-ethylmaleimide sensitive fusion protein beta
Ndrg1 Mm.30837  1423413_at -1.9 -1.8 Cell cycle N-myc downstream regulated gene 1
Peli1 Mm.28957  1417371_at -1.2 -1 Kinase Pellino 1
Pim1 Mm.328931 1435872_at -13 -13 hematopoiesis proviral integration site 1
Ppox Mm.300006 1416618_at -13 -13 hematopoiesis protoporphyrinogen oxidase
Ppplrida Mm.2343 1418086_at -1.1 -13 signal transduction  Protein phosphatase 1, regulatory subunit 14A
Ptx3 Mm.276776 1418666_at -1.5 -1.7 plasma proteins pentaxin related gene
Rab11a Mm.1387 1449256_a_at -1.1 -12 Oncogene RAB11a, member RAS oncogene family
Rbp1 Mm.302504 1448754 _at -1.2 -1.2 Retinol metabolism  retinol binding protein 1, cellular
Rpl13a Mm.180458 1433928_a_at -1 -1 Synthesis ribosomal protein L13a
Rpl17 Mm.276337 1453752_at -13 -1.2 Synthesis ribosomal protein L17
Skil Mm.15406  1422054_a_at -1.6 -14 Oncogene SKl-like
Sncg Mm.282800 1417788_at 44 -1.5 Oncogene synuclein, gamma
Stmn2 Mm.29580 1423281_at -17 -18 Neural specification ~ Stathmin-like 2
Stmn3 Mm.2319 1460181_at -1.7 -1.7 Neural specification ~ Stathmin-like 3
Syap1 Mm.44207  1416472_at -12 -1.1 Synapsis Synapse associated protein 1
Timp3 Mm.4871 1419089_at -13 -13 Tissue inhibitor of metalloproteinase 3
Ube2b Mm.280233 1423107_at -1 1.1 Epigenetic ubiquitin-conjugating enzyme E2B, RAD6 homology
Vcam1 Mm.76649  1448162_at -13 -13 Cell adhesion Vascular cell adhesion molecule 1
1110008H02Rik Mm.28311  1436506_a_at -13 -13 Energy RIKEN cDNA 1110008H02 gene
2010011120Rik  Mm.30013  1424695_at -12 -16 RIKEN cDNA 2010011120 gene
2310034L04Rik Mm.41891  1426416_a_at -12 -12 RIKEN cDNA 2310034L04 gene
5033414D02Rik Mm.275511 1460361_at -12 -13 RIKEN cDNA 5033414D02 gene
5230400G24Rik Mm.139176 1451572_a_at -1.3 -1.1 RIKEN cDNA 5230400G24 gene
5730420B22Rik Mm.28129  1427050_at -14 -14 RIKEN cDNA 5730420B22 gene
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A630082K20Rik Mm.293175 1427359_at -1.7 -1.3 RIKEN cDNA A630082K20 gene
Acsle Mm.267478 1451257_at 1.2 14 Lipid metabolism acyl-CoA synthetase long-chain family member 6
Atplal Mm.280103 1451071_a_at 12 1.2 Energy ATPase, Na+/K+ transporting, alpha 1 polypeptide
AW547365 Mm.270088 1433645_at 12 1.2 Membrane expressed sequence AW547365
Transport
78212 Mm.27090  1435369_at 12 1.3 Expressed sequence C78212
Cad Mm.305535 1452830_s_at 12 13 Amino acid carbamoyl-phosphate synthetase 2, aspartate
metabolism transcarbamylase, and dihydroorotase
Cdv3 Mm.261025 1415704_a_at 12 12 Lipid metabolism carnitine deficiency-associated gene expressed in
ventricle 3
Clstn1 Mm.38993  1421861_at 12 12 Cell adhesion Calsyntenin 1
Cpd Mm.276736 1434547 _at 12 12 Protease activity carboxypeptidase D
E130306101Rik ~ Mm.277582 1424419_at 1.1 13 RIKEN cDNA E130306I01 gene
Emb Mm.274926 1415856_at 13 1.2 Cell adhesion embigin
Exosc2 Mm.150972 1426630_at 1.1 12 RNA degradation exosome component 2
Hmga2 Mm.157190 1450780_s_at 1.2 1.1 high mobility group AT-hook 2
Hsd11b2 Mm.5079 1416761 _at 14 14 Steroid Metabolism  Hydroxysteroid 11-beta dehydrogenase 2
Ide Mm.28366  1423120_at 1.2 1.2 Protease activity Insulin degrading enzyme
Ifrg15 Mm.253335 1418116_at 1.1 1.1 interferon alpha responsive gene
Ipol1 Mm.132208 1428096_at 12 12 Nuclear Protein importin 11
Transport
[tgab Mm.225096 1422445_at 1.1 1.2 Cell adhesion integrin alpha 6
KIf16 Mm.41513  1416350_at 13 13 Alcohol metabolism  Kruppel-like factor 16
Ndufs1 Mm.290791 1425143_a_at 1.1 1.1 Energy NADH dehydrogenase (ubiquinone) Fe-S protein 1
Phf13 Mm.25582  1455175_at 12 1.1 Alcohol metabolism PHD finger protein 13
Podx! Mm.89918  1448688_at 13 13 hematopoiesis, Podocalyxin-like
kinase
Psmd3 Mm.12194  1448479_at 1.1 12 Proteasome Proteasome (prosome, macropain) 26 S subunit, non-
ATPase, 3
Ptcd1 Mm.332840 1454970_at 14 13 pentatricopeptide repeat domain 1
Rhou Mm.168257 1449027_at 1.2 1.2 Signal transduction  ras homolog gene family, member U
Rpo1-4 Mm.135581 1417775_at 1.2 1.1 Synthesis RNA polymerase 1-4
Saa2 Mm.200941 1419075_s_at 17 17 Lipid metabolism serum amyloid A 2
Slc27a4 Mm.330113 1424441 _at 1.2 13 Lipid metabolism solute carrier family 27 (fatty acid transporter), member
4
Trp53bpl Mm.215389 1433659_at 1.1 12 Cell cycle transformation related protein 53 binding protein 1
Ttr Mm.2108 1454608_x_at 2 1.6 Retinol Transthyretin
Ube2j1 Mm.259095 1417723_at 12 13 Epigenetic ubiquitin-conjugating enzyme E2, J1
0610007A15Rik Mm.28122  1452132_at 1.8 15 RIKEN cDNA 0610007A15 gene
1110060D06Rik Mm.319964 1430291_at 13 13 Adult male corpora quadrigemina cDNA, RIKEN full-
length enriched library, clone:B230210C03 productu
1300001101Rik  Mm.214574 1428106_at 12 12 RIKEN cDNA 1300001101 gene
1700017B05Rik  Mm.22712 1429758 _at 13 13 RIKEN cDNA 1700017B05 gene
1700054N08Rik Mm.157746 1451483_s_at 14 12 RIKEN cDNA 1700054N08 gene
4632417K18Rik  Mm.1643 1422628_at 12 1.1 RIKEN cDNA 4632417K18 gene
4930485D02Rik  Mm.293449 1424810_at 13 13 RIKEN cDNA 4930485D02 gene
5930416119Rik  Mm.143908 1452313_at 12 1.1 RIKEN cDNA 5930416119 gene
P < 0.05.

did not reach the criteria for significance. The additional
growth genes in Epidermal growth factor receptor
(EGFR) signaling pathway GO group appear to be
reduced to a greater extent in ALC-NTO than in ALC-
NTC (Table 4).

b. Stem Cell Related Gene Sets

Three gene sets were enriched in the control embryos
compared to the combined alcohol-treated embryos (i.e.,
down-regulated in the alcohol-treated group): TGF-Beta
activin-responsive genes (important for maintenance of
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Table 3 Genes in Experiment 2 that are turned on or off by alcohol treatment

Gene Symbol Genbank p-value Change in Alcohol-treated Description

Alc-NTC

Add2* NM_013458 0.0196 Off Adducin 2 (beta)

B2m* NM_009735 0.0446 Off Beta-2 microglobulin

Cfi NM_007686 0.0494 Off Complement component factor i

Cp* NM_007752 0.0225 Off Ceruloplasmin

Fbxo2 NM_176848 0.0290 Off F-box only protein 2

Gehi NM_008102 0.0017 Off GTP cyclohydrolase 1

Gfilb NM_008114 0.0007 Off Growth factor independent 1B

Nppb NM_008726 0.0103 Off Natriuretic peptide precursor type B
Pitonm1 NM_008851 0.0272 Off Phosphatidylinositol membrane-associated 1
Ppgb NM_008906 0.0044 Off Protective protein for beta-Galactosidase
Tacr2 NM_009314 0.0108 Off Tachykinin receptor 2

ALC-NTO

Acbd5 NM_028793 0.0292 Off Acyl-Coenzyme A binding domain containing 5
B2m* NM_009735 0.0446 Off Beta-2 microglobulin

Fbxo2 NM_176848 0.0290 Off F-box only protein 2

Frmd3 NM_172869 0.0004 Off FERM domain containing 3

Gypa* NM_010369 0.00001 Off Glycophorin A

Mir1 BB298201 0.0295 Off Mblk1-related protein-1

Ogn NM_008760 0.0363 Off Osteoglycin

Pdcd4 BG230003 0.0468 Off Programmed cell death 4

Sgstm1 NM_011018 0.0357 Off Sequestosome 1

Aldhibl NM_028270 0.0048 On Aldehyde dehydrogenase 1 family, member B1

Off = present in = 75% of arrays in control and in no arrays of alcohol-treated samples.
On = not present in any control, present in > 75% of arrays from alcohol-treated.

Only named genes are shown. * = hematopoiesis gene.

P-value: as compared with Control.

Table 4 GSEA for Early Developmental Biology GO sets

Comparison Keyword Gene Set Gene Set Size p-value Significant Genes p-value
Description Exp. 2 Exp. 1
Control vs Growth, GO:.0016049 ACell growth 47 0.002 (Ctgf, Igfbp2, Emp1, Osm, Cyr61, Gap43, Crim1, 0.010
ALC-NTO/  Growth GO:0040007 AGrowth 75 0.005 Tgfb3, Igfbp7, Nov, Emp3), Gpc3, Csf1, Socs2, 0.010
ALC-NTC Regulation* Bmp6, Bmp4, Inhbb, Leprel, Wrn, Wig1, Cish

(see legends)

GO:.0001558 Regulation of cell 39 0.002 (Ctgf, Igfbp2, Osm, Cyr61, Gap43, Crim1, Igfbp7, 0.006

GO:0040008 growth 56 0016 Nov), Gpc3, Csf1, Socs2, 0017
Regulation of
growth
GO:0005520 Insulin-like growth 14 0.000 Ctgf, Igfbp2, Cyr61, Crim1, Igfbp7, Nov 0.012
factor binding
Heart* GO:0001525 Angiogenesis 53 0022 Ctgf, Anxa2, Cyr61, Thbs1, Vegfa, Tiel, Elk3, 0.022
FIt1, Crhr2, Vegfc, Kdr, Bmp4, Adra2b, Tnfrsf12a
Eye# GO:0001654 Eye Development 26 0.040 Mab2111, Neurod1, Neurod4, Ntrk2, Fkbp8, 0.004
Bmpr1b, Crb1, Stat3, Tspan5, Pax6, Bmp4, Map3k1
Epigenetic  GO:0006334 Nucleosome 30 0021 Hist3h2b, a; Hist1h3f; Hist1h1c; Hist1h2b, c; 0.033
factor~,A modeling Hist1h3a; H1f0; Smarca2; Nap1I3
ALC-NTO vs  Growth, GO:0007173 Epidermal growth 5 0.019 Pdeé6g, Egfr, Hbegf 0.023
ALC-NTC Growth factor receptor (Enriched in ALC-NTC)
retardation (EGFR) signaling
pathway

A= Gene set reduced in ALC-NTO as compared with Control.

*= Gene sets reduced in ALC (all alcohol group) and ALC-NTC as compared with Control.
~= Gene set reduced in ALC as compared with Control.

#= Gene set reduced in ALC-NTC as compared with Control.

() = genes in Cell growth related GO set, which is included in Growth GO set; or genes in Regulation of Cell growth related GO set, which is included in
Regulation of Growth GO set.
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Figure 4 lllustration of Gene Set Enrichment Analysis (GSEA) informatics with neurotrophic factor related gene set. (Left panel) Profile
of the running enrichment score (ES) and positions of a prominent neurotrophic factor related gene set, GO:0040007: Growth, on the rank
ordered list GSEA output for the comparison ALC vs. CONTROL. This test is a one-way test, i.e. whether gene expression is higher in control than
in ALC. The x-axis lists all the genes ranked based on their associations with phenotype, i.e. the comparison ALC vs. CONTROL. The blue vertical
bars indicate candidate genes in the target gene set. The ES profile records the cumulative score of the gene ranks from the target gene set. If a
majority of gene ranks from the candidate gene set are high (i.e. toward the start of ranking) compared to the rest of genes, the cumulative
ranking score (profile) will have a high peak, suggesting a significant enrichment of this gene set. The statistical significances (p-value) were
calculated based on the height of this peak through a permutation test (p-value = 0.010 in Experiment 1 and 0.005 in Experiment 2). (Right
panel) The significant genes (enriched in control) are determined by the position of the peak of the profile. There are 21 candidate genes up to
this peak position which are claimed as significant. They are plotted in the Heatmap (green means high expression level, and red means low
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pluripotency and embryonic stem cells [40]), extracellular
matrix (ECM) molecules, and ECM protease inhibitors
(Table 5). Three gene sets were down-regulated in the
ALC-NTC subgroup (i.e., enriched in the control group):
other related growth factors (Neural specification), other
regulators of cell differentiation, and ECM protease

Table 5 GSEA for Stem Cell Related Gene Sets

inhibitors (Table 5). Two gene sets were down-regulated
in the ALC-NTO group (enriched in the control group):
other related growth factor and other ECM molecules
(Table 5). There were no significant gene sets in compari-
sons between ALC-NTC and ALC-NTO. No gene set was
enriched in any alcohol-treated group.

Comparison  Gene Set Size p-value Significant Genes p-value
Exp. 2 Exp. 1

Control vs ALC  Other ECM Molecules~A 9 0.002 Ctgf, Thbs2, Tgfbi, Ecm1 0.016
ECM Protease Inhibitors~,# 7 0.004 Thbs1, Timp3 0.006
TGF-B Activin-responsiv~ e 16 0.010 Junb, Fos, Tgfbi, Pdgfb, Tgfblil, Igf1 0014
Other Regulators of Cell Differentiation 17 0.003 Elavi3, Neurod1, Neurod4, Nhlh1, Neurog]l, 0.004
(Neural Specification) # Nhlh2, Neurog3, Spock2, Neurog2
Other Related growth Factor/ 7 0.005 Ctgf, Igf1 0.015
Other Related growth Factor# 0.040 Ctgf Hgf Igf1 0.008

~= Gene set is reduced in ALC (all alcohol group) as compared with Control.
A= Gene set is reduced in ALC-NTO as compared with Control.

#= Gene set is reduced in ALC-NTC as compared with Control.

ECM: extracellular matrix.
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Validation by Quantitative RT-PCR

Quantitative RT-PCR (qRT-PCR) was used to verify
some of the genes that were significantly affected by
alcohol, including a sample of genes from the functional
gene sets for neural specification and trophic factors
identified in GSEA (Tables 6 and 7). These studies used
independent embryos subjected to identical ethanol
exposure. The qRT-PCR verified that all 11 down-
regulated neural specification genes (Table 6) and
neurotrophic/growth factor genes (Table 7) tested dif-
fered in the same direction. One gene (Mylc2) that did
not differ in the microarray experiments was also tested
and the lack of difference was confirmed.

Discussion

1. Developmental Deficits and Correlation with Gene
Expression Profiles

The abnormal embryonic development resulting from
the alcohol treatment at this specific stage of develop-
ment (Figure 1; Table 1) was consistent with our pre-
vious report [29] and those of others [41,42]. Two
different facets of abnormal development could be iden-
tified: growth delay and frank teratogenesis. Delays in
growth were also evident by the significant reductions in
the total RNA per embryo and in the delayed morpholo-
gical staging (Table 1). The affected structures were
derived from each of the three germ layers, i.e., neural
tube and brain vesicles (ectoderm), somites and cardio-
vascular system (mesoderm/endoderm), and involved a
wide range of tissues and organs (e.g., heart, head,
limbs). Alterations in all of these have been observed in
FAS cases. The teratogenic consequences were evident
as dysmorphology of various organs (central nervous
system, eye, and heart) that involved pathogenic effects
beyond just the observed delay of the normal course of
development. Examples include enlarged heart primor-
dium and abnormally enlarged ventricular chambers,
detached pericardial sac, small forebrain, flat telencepha-
lic vesicle, failure in neural tube closure, and small and
irregularly shaped eyes.

Neural tube defect

We observed in Experiment 1 that gene expression pro-
files from alcohol treatment of embryos in this controlled
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culture system yielded two distinguishable patterns; com-
parison to the morphological data revealed that these were
correlated with two different phenotypes: open (ALC-
NTO) and closed neural tubes (ALC-NTC). The pheno-
types and correlated gene expression differences were
reproduced in Experiment 2. The embryos with open
neural tubes (ALC-NTO) had more severe delays in brain
and otic development than those with closed neural tubes
(ALC-NTC) (Table 1). These different phenotypes are
consistent with our previous in vivo observation in a liquid
diet model of prenatal alcohol exposure in C57BL/6 mice,
which resulted in partial penetration of incomplete neural
tube closure (as late as embryonic day 15) and a cascade
of deficits in midline structural development [43]. Finding
this difference in development in experimentally con-
trolled culture conditions indicates either a stochastic
event or that an extremely sensitive gene-environment
interaction is involved, e.g. different outcomes based on
small differences in developmental stage at the time of
exposure or small differences in tissue concentrations of
alcohol across embryos. We have recently found greater
DNA hypermethylation in ALC-NTO than in ALC-NTC
embryos, particularly in genes on chromosomes 7, 10, and
X. Remarkably, there was a >10 fold increase in the num-
ber of hypermethlyated genes on chromosomes 10 and X
in ALC-NTO than ALC-NTC [34].

Both the ALC-NTC and the ALC-NTO embryos
demonstrated lower expression of genes in sets related to
cell growth, growth factors, heart (angiogenesis), and eye
(in NTC vs. Control) (Table 4; Table 7). The ALC-NTC
and ALC-NTO embryos also differed in other sets of func-
tionally related genes. The histone gene set was selectively
reduced in ALC-NTO compared to controls. The epider-
mal growth factor signaling pathway genes were lower in
ALC-NTO than ALC-NTC (Table 4). At the single gene
analysis level, Experiment 2 showed a greater number of
neurotrophic/growth factor genes were down-regulated in
ALC-NTO than in ALC-NTC groups, particularly in the
TGEB, NTF3, S100, and EGF families. These differences in
gene expression between the ALC-NTO and ALC-NTC
embryos appear to be correlated with the more severe ter-
atogenic trajectory of the ALC-NTO group, but causal
relationships have yet to be established.

Table 6 RT-PCR confirmation of differences in gene expression: Neural specification genes from Experiment 1

Microarray qRT-PCR
Gene GenBank Fold Change* p-value* Fold Change p-value Description
Bhlhb5 NM_021560 -1.6 0.0021 -23 0 basic helix-loop-helix domain, class B5
Ngn2 BC055743 -2 0.0015 2 0 neurogenin 2
Ngn1 NM_010896 -13 0.047 1.7 0.021 neurogenin 1
Sox5 Al528773 -14 0.015 17 0.005 SRY-box containing gene 5
Mylc2 NM_023402 -1 0.8 1 0.19 myosin light chain

*Control versus alcohol-treated.
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Table 7 RT-PCR confirmation of differences in gene expression: Growth/neurotrophic factor genes from Experiment 2

ALC-NTC ALC-NTO

Microarray qRT-PCR Microarray qRT-PCR
Gene symbol  GenBank Fold Change*  p-value* Fold Change* p-value* Fold p-value* Fold Change*  p-value*
Ctgf NM_010217 -1.7 0.01 -1.2 0.300 22 0.004 -20 0.048
Edil3 NM146015 -16 0.00 -14 0.019 -19 0.025 Not tested
Efemp1 NM_146015 -15 0.01 -23 0.002 -23 0.001 -18 0.010
Igf1 NM_184052 -14 0.02 -26 0.001 -13 0.060 Not tested
Igfbp2 NM_008342 -2.0 0.02 -16 0.084 -15 0.035 -20 0.045
Ntf3 NM_008742 -1.2 030 -1.7 0.060 -1.8 0.030 -1.9 0.038
Tieg1 NM_013692 -1.2 0.36 -13 0.015 -15 0.010 -12 0.053

*Control versus alcohol-treated.

Fold change: positive = ratio of alcohol-treated to control, negative = ratio of control to alcohol-treated. p-value: t-test of control vs. alcohol treated.

The neural tube abnormality may either be a delay in
neural tube closure or a neural tube defect. In either case,
a delay in closing of the neural tube is associated with defi-
cits in midline brain development due to disruption of the
timing of critical events of early brain development. At
more mature stages, such midline deficits include cranio-
facial abnormalities, corpus callosum, olfactory bulb, cere-
bellum, and raphe neuron formation [43-50].

2. Patterns of Gene Expression

A. Temporal patterns

Green and colleagues [27] reported that a 3 to 4 h binge-
like alcohol exposure, with blood alcohol concentration
300 to 400 mg/dL at E8, produced a major abnormality
in craniofacial and eye development in C57BL/6 mice at
E15 or E17 (effects in the C57BL/6] substrain were
greater than in the C57BL/6N substrain). Alterations of
gene expression were reported to occur within hours of
alcohol exposure at E8; these genes included metabolic
and cellular gene, down-regulated ribosome and protea-
some pathways; upregulated glycolysis and pentose phos-
phate, tight junction, and Wnt signaling pathways, as
well as other cellular profile genes. In another study, a
comparable high dose of alcohol exposure at an earlier
stage, E6-E8, produced growth retardation, abnormal tail
torsion, open neural tube, reduction of somite number,
and other malformations [28]. The altered gene expres-
sion at E10 included cytoskeletal (Neurofilament), signal
transduction (Zinc finger protein, MAP kinase related,
Transcription factor Nf212), and metabolic genes (lactate
dehydrogenase, Aldolase 1). In the current study, a simi-
lar dose of alcohol exposure at the stage of neurulation
(E8-10) produced a major neural and cardiovascular
retardation and other organ system abnormalities. The
trends of gene expression are consistent with the
observed developmental delay and growth retardation in
FASD. Among the genes with reduced expression in
the alcohol-treated embryos were those involved in
growth retardation, neural development, heart and

hematopoiesis, and epigenetics. Among the identified
functionally related gene sets, the most notable effect was
the down regulation of growth-related genes, which
represented the largest group of affected genes (Table 4).
These genes provide plausible candidates for mechanistic
links to the observed embryonic growth retardation.

B. Neural specification genes

Expression of neural specification genes (Table 5 and 7)
and neurotrophic/growth factor genes (Table 4 and 7)
was also reduced by the ethanol exposure. These partici-
pate in neuronal specification, neural stem cell differen-
tiation, and neural fate determination [51-55].
Suppression of these genes predicts a downstream
reduction in the early formation of neural cells. Null
neurog 1 (Ngnl) or neurog 2 (Ngn2) leads to sensory
abnormality [56,57]). These differential expression of
neuronal specification/patterning genes together with
neurotrophic genes supports the dysmorphism and
developmental delay of neural tube and fore-to mid-
brain formation. The Igfl and EGF genes were also
identified by a microarray study with 3 h alcohol treat-
ment [27] indicating they are altered early after ethanol
exposure. The down-regulation of these neural specifica-
tion and neural trophic/growth factor genes may play a
major role in the neurodevelopmental deficit observed
in the current study and featured in FASD.

C. Genes related to other organ defects

Although heterogeneity of tissue arising from use of
whole embryos might have masked some changes in
specific tissues, two functional gene sets, optic vesicle
and the heart (Table 4), were identified and specifically
linked to our observed developmental delay and
abnormalities. Also, the collective down-regulation
of key hematopoiesis genes that were either absent
(Table 3) or reduced (Table 2) is consistent with the
reduced blood circulation observed in the embryos.

D. Histone variants

Many histone genes related to epigenetic regulation of
transcription were affected by ethanol (Table 4). The
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reduction of many histone variants would alter chroma-
tin organization, affecting transcription at a global level
[58,59]; this may be an important effect of the alcohol
that leads to the reduction of total RNA and induced
growth retardation. Modification of epigenetic processes
is a potential mechanism by which alcohol may alter
gene expression during development, and may be an
important candidate mechanism for the pathophysiology
of fetal alcohol syndrome.

E. Alcohol delayed or induced gene expression

Other genes that were present in the control group but
absent in the alcohol-treated group (Table 3) likely
reflect a delay in onset or a strong inhibition of normal
expression at this stage of development. Among them,
four hematopoiesis genes [glycophorin A (Gypa), addu-
cin 2 (Add2), beta-2 microglobulin (B2m), and cerulo-
plasmin (Cp)] associated with blood cell formation were
absent in the alcohol-treated groups; these genes are key
components in the pathway of white and red blood cell
formation [36,38,60-62]. The absence of these genes is
in agreement with the low circulating blood cells seen
in alcohol treated embryos (Figure 2). The expression of
aldehyde dehydrogenase 1B1 (Aldh1b1) was induced in
both of our experiments by alcohol treatment during
this period of early neurulation (Table 2 last row).
Because Aldhlbl encodes an efficient enzyme for break-
down of acetaldehyde formed during metabolism of
ethanol, this up-regulation is likely a detoxification
response to the high level of ethanol in the environ-
ment. However, the metabolism of other substrates of
this enzyme (e.g., retinoic acid, corticosteroids, biogenic
amines, neurotransmitters, and lipids) that are required
for normal development may be adversely affected by
this increase in Aldh1b1 expression [63,64].

Conclusion

In summary, alcohol exposure during the period of early
neurulation at ~E8-E10, is predominantly inhibitory to
gene expression, particularly the neural developmental
genes. We found major reductions in gene sets involved
in neurospecification, neural growth factors, cell growth
and hematopoiesis. These effects on gene expression
parallel the growth delay and developmental abnormal-
ities including brain, neural tube, eye, heart, blood cells,
and embryonic vascularization which are major targets
in FASD. Our study, in conjunction with others that use
different developmental periods of alcohol exposure,
provides an important portfolio of alcohol-induced
changes in gene expression associated with altered
development. Together, these gene profiles should con-
tribute to the generation of testable new hypotheses
concerning the mechanistic path from gene expression
changes to embryonic structural deficits, and for causal
mechanisms of alcohol-induced teratogenesis (e.g., brain
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growth retardation, neural tube midline deficit, craniofa-
cial dysmorphology) in fetal alcohol spectrum disorder.
Two such hypotheses emerge from the current study.
The first is that alcohol causes a delay in development
of the nervous system by inhibiting specific sets of genes
involved in neural development (Ngn, Nhih, Sox, Igf, Ntf,
and Egf). The second is that neural tube defects are
mediated by the inhibition of genes in the epidermal
growth factor signaling pathway and genes encoding his-
tone variants.

Methods

Embryonic Culture

All experimental procedures were approved by the Insti-
tutional Animal Care and Use Committee of the Indiana
University School of Medicine (Indianapolis, IN) and are
in accordance with the guidelines of the Institutional
Animal Care and Use Committee of the National Insti-
tute on Drug Abuse, National Institutes of Health, and
the Guide for the Care and Use of Laboratory Animals
[65]. Two-month-old C57BL/6 mice (~20 g) were pur-
chased from Harlan, Inc. (Indianapolis, IN). Upon arri-
val, breeder mice were individually housed and
acclimated for at least one week before mating began.
The mice were maintained on a reverse 12 h light-dark
cycle (lights on: 19:00 - 07:00) and provided with labora-
tory chow and water ad libitum. Two females were
placed with one male for two hours between 08:00 and
10:00. When a vaginal plug was detected after the mat-
ing period, it was designated as embryonic day 0 (EO).
On E8.25 at 15:00, dams were sacrificed using CO, gas.
The embryos were treated at this stage, which is the
beginning of neurulation. The window of 46 hrs treat-
ment covered the stages of the formation of the major
organs, neural specification and patterning. These stages
are known to be vulnerable to alcohol [66].

The technique for whole embryo culture was based on
the methods described by New [31]. The gravid uterus
was removed and placed in sterile PBS (0.1 M phos-
phate buffer containing saline) at 37°C. The embryo in
the visceral yolk sac along with a small piece of the
ectoplacental cone (hereafter called embryo, unless
otherwise stated) was carefully removed from the decid-
uas tissues and the Reichert’'s membrane in PBS con-
taining 4% fetal bovine serum (Sigma, St Louise. MO).
After removal, three embryos bearing 3-5 somites
(E8.25) were incubated in a culture bottle in 20 mL
of medium which consisted of 70% immediately centri-
fuged heat-inactivated rat serum (Harlan Sprague-
Dawley, Inc, Indianapolis, IN) and 30% phosphate buf-
fered saline (137 mM NaCl, 2.7 mM KCI, 0.5 mM
MgCl,, 8 mM Na,HPO,, 1.47 mM KH,PO,, 0.9 mM
CaCl,, 5.6 mM glucose, 0.33 mM sodium pyruvate,
pH7.4) supplemented with 20 units/ml penicillin and
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20 units/ml streptomycin (Sigma, St. Louis, MO), and
gassed with 5% O,, 5% CO,, and 90% N, in a rotating
culture system (B.T.C. Precision Incubator Unit, B.T.C.
engineering, Cambridge, England, 36 rpm) for 2 h. After
2 h, treatment was initiated by transferring embryos
into the same medium with or without 88 mM ethanol
in isotonic buffer. The bottles were gassed for an addi-
tional 20 h with 5% O,, 5% CO,, and 90% N,, and then
between 22 h and 46 h with 20% O,, 5% CO,, and 75%
N,. The culture medium in alcohol and control cultures
was replaced with fresh medium (with or without etha-
nol, respectively) 22 h after the start of the treatment. In
this culture system, it was previously determined that
the media alcohol concentration declined from 88 mM
to 44 mM over the course of the experiment. Alcohol
concentrations in this range (44-88 mM) have been
commonly used in whole embryo cultures to generate
FAS-related structural malformations [41,42,67] in mul-
tiple strains of mice [29], and are comparable to blood
alcohol concentrations produced by in vivo doses of
acute ethanol injections that produce teratogenic effects
in mice during this embryonic period [68]. This level,
though high, is within the range attained by human
alcoholics [69,70].

All cultures were terminated 46 hrs from the begin-
ning of treatment. The concentration of ethanol in the
medium was assayed at three time points on each day
(0 [initial], 12, and 22 hours on the first day; at O [after
media change], 12, and 24 hours on the second day) in
a separate group of embryos not used for the analyses,
to avoid the potential confounding effects of drawing
samples from the cultures. Media samples from alcohol-
or vehicle-treated cultures were assayed in duplicate for
alcohol concentrations using an Analox alcohol analyzer
(Analox Instruments USA, Lunenburg, MA).

At the end of culture, viability was confirmed by
observing the blood circulation of the yolk sac and the
beating heart. Cultured embryos were quickly immersed
in 0.7 ml TRIzol (Invitrogen, Carlsbad, CA) and homo-
genized for extracting total RNA for the RT-PCR and
microarray processes (see microarray section, below), or
fixed in 4% paraformaldehyde in PBS for the evaluation
of the developmental status.

Whole embryos were used because the dysmorphology
is observed throughout tissue derived from the three
germ layers and in various developing organs (e.g., head
fold, caudal neural tube, heart, lung bud, somites, and
limbs). Also, dissection of the millimeter size embryos
would unavoidably introduce another source of variabil-
ity: whole embryos yield sufficient total RNA for single
embryo analysis, whereas dissected tissues yield too little
RNA and would require pooling or amplification for
microarray analysis. Although this limits the resolution
of genes contributing to different topographic changes,
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we thought that obtaining a complete gene expression
profile in parallel with this widespread alcohol-induced
teratogenesis in the embryo would be informative.

Embryonic dysmorphology

The analysis of embryo dysmorphology was performed
as described by van Maele-Fabry et al. [71] and in our
previous report [29]. The morphological features of the
developing embryo, including the allantois, flexion,
heart, caudal neural tube, hind-brain, midbrain, fore-
brain, otic system, optic system, branchial bars, maxil-
lary process, mandibular process, forelimb, hindlimb,
and somites, were examined and scored for any malfor-
mations using the ordinal scales of our previous report
[29]. Scores for each of the above features were typically
not normally distributed, so they were analyzed statisti-
cally by the non-parametric Mann-Whitney U test. The
number of somites was normally distributed, so those
data were analyzed by Student’s t-test, using StatView
software (SAS Institute, Inc. Cary, NC).

Gene expression analyses

Two microarray experiments were performed. In Experi-
ment 1, total RNA was isolated from individual whole
embryos (4 vehicle control, 4 alcohol treated). Each
embryo was immediately immersed in 700 ml TRIzol
(Invitrogen) and homogenized using a Polytron. Extrac-
tion followed the TRIzol protocol. Ethanol precipitated
RNA was resuspended in DEPC water. RNA was
cleaned up using RNeasy mini-kit (Qiagen, Valencia,
CA) The quality of RNA was assessed by the Agilent
Bioanalyzer (Agilent Technologies, Waldbronn, Ger-
many)and by spectrophotometry from 220 nm to 350
nm; concentration was determined from A260. Typical
total RNA yields were 5-10 pg/embryo. Microarray ana-
lysis was performed at the Center for Medical Genomics
at the Indiana University School of Medicine. Labeling
and hybridization to Affymetrix Mouse Genome 430A
GeneChips® (Affymetrix, Santa Clara, CA) were carried
out following the manufacturer’s suggested procedure.
Fragmented biotinylated RNA from each embryo was
separately hybridized to its own GeneChip for 17 hours
at 42°C. The microarray analysis revealed striking differ-
ences among the 4 alcohol treated samples, which segre-
gated as two separate pairs rather than one set of four;
subsequently, it was noted that one pair of embryos had
an open neural tube (ALC-NTO) and the other pair had
the neural tube closed (ALC-NTC). All 4 control
embryos had closed neural tubes.

Experiment 2 was designed to follow-up these initial
results and provide an independent test of the gene expres-
sion correlations with the two neural tube phenotypes.
Total RNA was isolated from individual embryos (4 vehicle
control, 7 alcohol treated: 4 ALC-NTO, 3 ALC-NTC).
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RNA extraction and microarray analysis was as described
above, except that Affymetrix Mouse Genome 430 2.0
GeneChips®” (Affymetrix, Santa Clara, CA) were used.

The Mouse Genome 430A chip contains over 22,600
probe sets representing transcripts and variants from
over 14,000 well-characterized mouse genes. The newer
Mouse Genome 430 2.0 Array contains all of the probe
sets present on the earlier 430A chip plus additional
probe sets for a total of approximately 45,000 probe sets
that analyze the expression of over 39,000 transcripts
and variants from over 34,000 well characterized mouse
genes. The differences in feature size and probe set con-
tent make direct comparisons inappropriate, due to
scanning and scaling issues, but because the probe sets
on the 430A are present on the 430 2.0 array, those can
be compared at the level of gene lists.

The data from independent arrays (each with RNA
from a single embryo) for each of the treatments were
extracted using the Affymetrix Microarray Suite 5.0
(MASS5) algorithm. Data for both experiments have been
deposited in GEO/NCBI and have been assigned series
accession number GSE9545 and sample numbers
GSM241642 through GSM241660.

To minimize false positive results, only genes detected
("present” by the MAS5 algorithm) on at least half of all
individual arrays in at least one experimental condition
were retained for further analysis. This avoids data that
primarily represent “noise” [72,73].

To detect differentially expressed genes, control
samples were compared to ALC-NTC samples, or ALC-
NTO samples, or their combination, using a Welch’s
t-test on the log-transformed signals. To see genes that
were similarly affected in both experiments, we inter-
sected the gene lists. To avoid missing genes that met a
stringent significance threshold in one experiment but
were just beyond that threshold in the second, we chose
p < 0.05 as the threshold for each experiment. Given
that the two experiments were independent, the prob-
ability that a gene overlaps by chance and differs in the
same up/down direction in both experiments is (0.05)*
(0.05)/2 = 0.00125. False discovery rate (FDR) was calcu-
lated based on the number of genes expected to be sig-
nificant and in the same direction in both experiments
under the null hypothesis/the number of such genes
actually found.

Hierarchical clustering with average linkage function
was used to construct a dendrogram based upon all
genes that were present on at least half of the arrays in
an experimental group.

Gene Set Enrichment Analysis (GSEA) [74,75] was
carried out to identify groups of related genes that were
differentially expressed. GSEA analyses were conducted
for 4 different comparisons: control vs. ALC, control vs.
ALC/NTC, control vs. ALC/NTO, and ALC/NTC vs.
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ALC/NTO. The top ranked genes in a significant gene
set, in the region up to the maximum score, were con-
sidered significant. To reduce multiple testing issues, the
GSEA in this study was conducted using two gene set
databases designed to test the hypotheses that groups of
genes related to Early Development or Stem Cells were
differentially affected by alcohol.

(a) Early Developmental Biology Gene Sets (Additional
file 1): 415 GO categories that were defined by 29 key
words were selected (identified gene sets, Additional file 2).

(b) Stem Cell Related Gene Sets: 191 GO categories
related to stem cells, neurogenesis, osteogenesis, extra-
cellular matrix, developmental signal transduction path-
way, cell cycle, growth factor, TGFB/BMP signaling,
Wnt signaling, and notch signaling were developed by
Superarray Bioscience http://www.superarray.com. The
gene set information is listed in Additional file 3 (shown
with consent of Superarray Bioscience, Frederick, MD).

Table 8 Primers for qRT-PCR

Primer Sequence RefSeq ID
Bhlhbs-f CCTATTCAACAGCGTCTCGTCC NM_021560
Bhlhb5-r GCTTCTCACTTTCCTCTAGCTTTGG

Ctgf-f AGATTGGAGTGTGCACTGCCAAAG NM_010217
Ctgf-r TCCAGGCAAGTGCATTGGTATTTG

DIl 1-f ATAGCGACTGAGGTGTAAGATGGAAGC NM_007865
DIl 1-r CTTCGCCTGAACCTGGTTCTCAG

Efemp1-f TCTACCTACGACAAACAAGCCCTGTG NM_146015
Efemp1-r AGAGCTTGTGCGGAAGGTTCCTATAC

Gapdh-f TCCTGGTATGACAATGAATACGGC NM_008084
Gapdh-r TCTTGCTCAGTGTCCTTGCTGG

Igf1-f ACTGACATGCCCAAGACTCAGAAGTC NM_184052
Igf1-r TGCCTCCGTTACCTCCTCCTIGTTC

Igfbp2-f CACAGCAGGTTGCAGACAGTGATG NM_008342
Igfbp2-r CAGCTCCTTCATGCCTGACTTGAG

Ntf3-f TGGTTACTTCTGCCACGATCTTACAGG NM_008742
Ntf3-r CTCCTTTGATCCATGCTGTTGCC

Mylc2a-f GGAAGAGTTCAAGCAGCTTCTC NM_023402
Mylc2a-r ACTTGTAGTCAATGTTGCCGGC

Neurog1-f TCCCTCGGCTTCAGAAGACTTCAC NM_010896
Neurog1-r AGGCCTAGTGGTATGGGATGAAACAG

Neurog2-f GCGTAGGATGTTCGTCAAATCTG BC055743
Neurog2-r TCCGCGCTGGAGGACATC

Sox5 f AATATGAGTGGAGATTCTGACGGAAGC Al528773
Sox5 GGCATTCATTGGACGCTTTATGTG

Tieg1-f CAGTCCCAGCATTTTGTTTAACGC NM_013692
Tiegl-r GCAGCATCGGAGAAAGATTTGAAG

Edil3-f GCTCTCAGGCTGTTCAGAACCTTTG AF031524
Edil3-r GGCTTTCCTTGGTTCCCAAGTAAAC

Primers are named according to the gene with-f for forward primer and -r for
reverse primer.


http://www.superarray.com
http://www.ncbi.nlm.nih.gov/pubmed/021560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/010217?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/007865?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/146015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/008084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/184052?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/008342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/008742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/023402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/010896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/055743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/528773?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/013692?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/031524?dopt=Abstract

Zhou et al. BMC Genomics 2011, 12:124
http://www.biomedcentral.com/1471-2164/12/124

Quantitative Real-Time Polymerase Chain Reaction
(gqRT-PCR)

A number of differentially expressed genes detected in
Experiment 1 were selected for qRT-PCR validation
based on their biological significance. To test selected
genes from the neural specification gene group, the total
RNA of each embryo was isolated using the RNeasy
mini kit (Qiagen, Valencia, CA) as described above. Vec-
tor NTI Advance 9.0 software (Invitrogen, Frederick,
MD) was used to design the primers for qRT-PCR
(Table 8); if possible, at least one primer in each pair
spanned an exon-intron boundary. The number of
embryos used in the control group varied from 7 to 9
for different genes, and the number used in the alcohol
treated group varied from 9 to 11. The cDNA templates
were generated from 50 ng total RNA (TagMan Reverse
Transcription Reagents, Applied Biosystems, Foster City,
CA) from each individual embryo, and added to PCR
reactions that contained 0.1 puM of forward and reverse
primers and SYBR Green PCR Master Mix (Applied
Biosystems). Triplicate qRT-PCR were performed for
each sample in at least 3 experiments (n = 9). The cycle
threshold (Ct) for each cDNA template was determined
on the ABI Prism 7700 Sequence Detection System. The
Ct refers to the cycle number at which the fluorescence
of the amplified product reached an arbitrary threshold
that was within the exponential phase of amplification.
To correct for sample-to-sample variation, Gapdh
served as an internal reference. Relative values of
expression of neural specific genes were determined for
each sample using the AACt method [76], and these
values were normalized to the Ct values of Gapdh. The
average Gapdh Ct values for alcohol treatment and con-
trol were the same in each tested sample, making it an
appropriate control gene to normalize the expression of
the candidate genes of interest.

After Experiment 2, we decided to test the three
groups (control, ALC/NTO, ALC/NTC) as pools, and
chose growth/neurotrophic genes. A separate experi-
ment was carried out with embryonic treatments identi-
cal to those used in Experiment 1. Whole embryos were
homogenized in TRIzol (Invitrogen) using a Mini-Bead-
Beater-8 (Bipspec products, INC, Bartlesville, OK), and
total RNA isolation was as described above. Two differ-
ent pools were created for each condition: Controll
(n = 12), ALC/NTC1 (n = 16), ALC/NTOL1 (n = 5),
Control2 (n = 5), ALC/NTC2 (n = 9), ALC/NTO2
(n = 6). The relative quantification of expression of each
RNA pool was performed using the ABI Prism 7700
Sequence Detection System and calculated using the
standard curve method (Applied Biosystems, User Bulle-
tin #2; http:////www.appliedbiosystems.com). In each
experiment, a relative expression level was determined
for the two pools from each group in triplicate; 3-4
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repeat experiments were performed, resulting in 18-24
values from each group. The treatment groups were
compared with one way ANOVA followed by Student’s
t test.

Additional material

Additional file 1: Keyword and GO categories. List of keywords used
and the GO categories identified by these key words for Early
Development.

Additional file 2: GO gene sets selected by keywords. List of gene
sets used in GSEA analyses, derived from GO categories selected by key
words for Early Development. Title of each set followed by Entrez Gene
Ids of the genes in the set.

Additional file 3: GO categories related to Stem Cells. Gene sets used
in GSEA analysis based on GO categories related to Stem Cells. Title of
each set followed by Entrez Gene Ids of the genes in the set.
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