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Abstract

Multivariate variance-components analysis provides several advantages over univariate analysis
when studying correlated traits. It can test for pleiotropy or (in the longitudinal context) gene X
age interaction. It can also have more power than univariate analyses to detect a quantitative trait
locus influencing several traits. We apply multivariate variance components to longitudinal systolic
blood pressure data from the Framingham Heart Study. We find evidence for a polygenic influence
on blood pressure (heritabilities at different ages range from 27% to 38%). Tests based on a factor-
analytic parameterization of the polygenic variance find significant (p < 2 x 10-3) evidence that
different genes affect blood pressure at different ages. Still, estimates for the proportion of
polygenic variance due to shared genes ran as high as 85% for some trait pairs. Univariate and
multivariate linkage analyses replicate previous linkage results on chromosome |7 (maximum LOD
scores of 2.2 and 2.4, respectively). In this study, multivariate analysis provides no increase in
powers; this is likely due to the strong positive correlation in systolic blood pressure measured at
different ages.

Background

High blood pressure is a complex disorder that results
from environmental and genetic factors and their interac-
tions. Levy et al. [1] found evidence for a gene influencing
blood pressure on chromosome 17 using data from the
Framingham Heart Study. However, this study analyzed
average blood pressure over a 50-year period (ages 25 to
75), and may not have taken full advantage of the longi-
tudinal nature of the Framingham study. Blood pressure
increases with age; there may be genes that influence the
rate of this increase. Similarly, there may be genes that
influence blood pressure only at early or late ages. For
example, a segregation analysis by Pérusse et al. [2] sug-

gested that blood pressure is influenced by a major gene
with age-dependent effects. Animal studies have also
found that different genes can influence a trait at different
ages [3]. Taking lifetime averages may mask such effects.

de Andrade et al. [4] recently analyzed longitudinal quan-
titative trait data using a multivariate variance compo-
nents approach. This approach can be more powerful for
correlated traits than a univariate approach [5]. It can also
test for gene x time interaction, polygenic pleiotropy -
defined in the longitudinal context as a trait being deter-
mined by the same set of genes at distinct time points —
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and distinguish between major gene pleiotropy and co-
incident linkage [6-8].

de Andrade et al. [4] defined traits by calendar time. Thus,
for a cohort study with age-staggered entry, each measure-
ment will have been taken at approximately the same cal-
endar time for all subjects, but at different biological ages.
In the context of the Framingham study we propose to
define traits by biological age, so as to distinguish genes
involved in determining high blood pressure at young or
old ages as opposed to uncovering a gene x calendar time
(environment) interaction.

We apply univariate and multivariate variance compo-
nents to systolic blood pressure measurements on sub-
jects from the Framingham Heart Study taken in four
different age ranges. We consider models with a polygenic
component and both a polygenic and major gene compo-
nent. We describe and apply a test of the null hypothesis
of complete pleiotropy versus the alternative of incom-
plete pleiotropy based on a factor-analytic parameteriza-
tion of the polygenic variance component. We reject the
null hypothesis of complete pleiotropy, suggesting a dif-
ferent set of genes influence systolic blood pressure at dif-
ferent ages. We find linkage signals on chromosome 17
consistent with the earlier report of Levy et al. [1].

Methods

Subjects, trait definitions, marker data

Phenotype data were available for 2885 subjects from 330
pedigrees (with a total of 4692 members) from the Fram-
ingham Heart Study. The data included age, systolic blood
pressure (mm Hg), hypertension treatment (yes/no), sex,
height, and weight measured at 2- to 4-year intervals. Data
were not available on every subject at the same set of ages
because of staggered entry, drop-out, and intermittent
missing data.

To ensure that we had phenotype data on comparable
ages for as many subjects as possible, we averaged systolic
blood pressure (SBP) and body mass index (BMI) over
any measurements taken during four age intervals:
younger than 35 years; between 35 and 50; between 50
and 55; and older than 65. On average, 1.6, 5.3, 6.3, and
5.9 SBP measurements were available on original cohort
members in these four age intervals, respectively. The cor-
responding numbers for the offspring cohort were 1.8,
2.2,2.2,and 1.6 (lower due to the longer interval between
exams). Interval-specific hypertension treatment pheno-
types were defined to be "yes" if the subject received any
hypertension treatment during the interval and "no"
otherwise.

We adjusted SBP for the effect of hypertension treatment
using a procedure similar to that outlined by Levy et al. [1]
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for each age interval separately. The adjusted SBP values
for each age interval were then regressed on sex and BMI.
We used the residuals from this regression as quantitative
trait(s) in (multivariate) variance components analyses
described below.

Marker genotype data were available on 1702 subjects. We
used data on 16 markers along chromosome 17; the
markers were roughly equidistant, one per 10 cM.

Variance components for multivariate traits

For each subjectj = 1,....J; in family i = 1,...I, let Y;; be the
p-dimensional vector of SBP residuals. We take p = 1, 2, or
4 for (respectively) the four age intervals considered sepa-
rately, the two intervals 35-50 and 50-65 considered
simultaneously, and all four intervals considered
simultaneously.

We use the variance components model Y;; = p + X B + a;
+ g;; + €;;[8-10]. Here p and P are fixed effects, and X is a
matrix of (possibly age-specific) covariates. For these anal-
yses we fit no fixed effects as we regressed on relevant cov-
ariates when creating the age-interval-specific trait data.
The a;, g;, and e; terms are multivariate normal random
effects with mean 0. Here a;;is an additive polygenic effect,
g; is the additive effect due to a specific locus, and e; is

individual-specific error.

Writing Y = (Y;' Yy, ... Yp) asthep () x 1=pnx 1
concatenated vector of all subjects' trait vectors,

Cov(YY) =K®A +T1®G + I ®E,

where K is the n x n matrix of subjects' kinship coeffi-
cients; IT is the n x n matrix of identity-by-descent (IBD)
sharing probabilities for all possible pairs of subjects (cal-
culated at a given location using marker data); I is the n x
n identity matrix; A is Cov(a;a;) = {o,,?}, with k and !
indexing age intervals; G is Cov(g; ;) = {oy,?}; and E is
Cov(e;,e;) = {o,2}. Particular parametric forms for A, G
or E - such as autoregressive or exponential decay - can
be adopted [6,7]. In this case, since p is small, we used the
general form for E (which can be parameterized in terms
of the variances c,,;2> 0 and correlations -1 <py <1,k I =

1,...p).

Polygenic heritabilities can be estimated by fitting the
reduced model with g; = 0. To test the null hypothesis of
complete polygenic pleiotropy, we first fit the constrained
model py; =1 by writing A = A A', with A" = (§;,...,8,). This
model is compared to the general model (with theg =p (p
- 1)/2 correlation parameters allowed to range between -1
and 1) via a likelihood ratio test. Asymptotically, this test
statistic is distributed as the mixture of v,2 variables r =
0,...,q, with mixing probabilities Binom(g,r) 2-9[11]. The
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proportion of polygenic variance for two traits due to
shared genes can be estimated as p;,2 or (6 4,2/ G srneain) 2 [6]-

LOD scores for linkage can be calculated by taking the
log,, of the likelihood ratio of the model, which estimates
G to the polygenic model with g;;= 0. We use the general
form for A and G. In principle, models with varying con-
straints on these variance matrices could be compared via
Aikake's information criterion.

We used SIMWALK?2 [12] to calculate IBD sharing and
Fisher [13] to calculate maximum likelihood estimates for
the variance components parameters. Fisher allows the
user to specify that the polygenic (or major gene) variance
have the structure A = A A ', with

A:(j: J

http://www.biomedcentral.com/1471-2156/4/s1/S55

Here A, is a lower triangular s x s matrix (s <p) and A, is a
general (p - 5) x s matrix. This amounts to parameterizing
A in terms of s independent factors. Taking s = 1 leads to
the parameterization A = A A’ described above; taking s =
p leads to a Cholesky decomposition of the general form
for A.

Results

Both the univariate and multivariate analyses find evi-
dence for a polygenic component to SBP. The estimates of
polygenic variance for residual SBP from all models are
more than 3 standard errors away from 0 (Tables 1,2,3).
Univariate heritabilities range from 27% to 37%. The
multivariate analyses show strong correlation between the
polygenic components for different age ranges; correla-
tions range from 0.47 to 0.92 (Table 1).

Table I: Univariate estimates of covariance parameters (and their standard errors) from the polygenic model

Age interval Polygenic c,2 Error ¢ 2 n

< 35 years 34.99 (7.59) 95.13 (7.38) 1277
35-50 years 63.74 (7.45) 128.13 (6.76) 2411
50-65 years 109.44 (14.76) 214.57 (13.43) 2030
> 65 years 317.36 (67.16) 535.43 (63.14) 1133

Table 2: MultivariateA (p = 2) estimates of covariance parameters (and their standard errors) from the polygenic model

Model Estimate
Constrained model (p = 1)
Polygenic variance A
76.49(8.45) 85.79(9.01)
96.22(13.10)

Error variance E

Log-likelihood
Unconstrained model
Polygenic variance A

Error variance E

Log-likelihood

136.72(7.48)
227.50(12.77)

103.85(8.11) ]

-13,862

77.37(8.37) 81.31(9.10)
104.54(13.18)

135.45(7.35) 107.91(8.12)
218.98(12.41)

-13,858

ABivariate trait consisting of measurements from the intervals 35-50 and 50-65 years.
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Table 3: Multivariate? (p = 4) estimates of covariance parameters (and their standard errors) from the polygenic model.

Model

Estimate

Constrained model (p= 1)
Polygenic variance A

Error variance E

40.92(7.37) 57.03(6.88) 62.54(7.52) 59.74(11.84)
79.48(8.36) 87.16(9.01) 83.26(16.05)
95.58(13.03) 91.30(19.28)

87.21(30.64)

106.85(7.48) 62.75(6.50)

133.29(7.23)

45.96(8.32)
102.12(8.07)
228.90(12.72)

78.69(18.54)
130.04(17.32)
232.11(21.87)
784.43(43.67)

Log-likelihood -21,462
Unconstrained model
Pol i i A
clygenic variance 46.19(7.83) 56.06(6.91) 53.26(8.77)  46.23(15.12)
79.88(8.30) 83.34(9.06) 82.69(15.89)
106.18(13.18) 104.07(20.34)
210.66(52.51)
Error variance E
101.65(7.59) 62.62(6.41)  54.62(9.05)  89.30(20.16)
132.49(7.15) 105.43(7.99) 126.62(16.65)
217.92(12.33) 214.54(21.28)
650.54(57.67)
Log-likelihood -21,451
AMultivariate trait consisting of measurements from all four age intervals.
Table 4: Estimates of heritabilities from the polygenic model
Heritability Polygenic CorrelationA
Age interval p=1 p=2 p=4 <35 35-50 50-65 >65
< 35 years 27% NA 31%
35-50 years 33% 36% 38% 0.92
50-65 years 34% 32% 33% 0.76 0.90
> 65 years 37% NA 24% 0.47 0.64 0.70

ABased on the multivariate model with p = 4.

Tests for incomplete pleiotropy are significant, however
(test statistics of 8.4 and 21.8 with p-values of 2 x 10-3and
2 x 10 for the two- and four-trait analyses, respectively).
This suggests that the set of genes involved in regulating
blood pressure differs with age. According to parameter
estimates from the unconstrained four-trait analysis
(Table 3), the proportion of variance due to shared genes

for SBP between age intervals 35-50 and 50-65 is about
82%, but the proportion due to shared genes between age
intervals 0-35 and 65+ is 22%.

Univariate LOD scores for the 50-65 age range achieve a
peak of 2.2 on chromosome 17 at approximately 80 cM.
Bivariate lod scores considering the residuals from the 35—
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QTL LOD scores for SBP residuals, chromosome 7.

50 and 50-65 age ranges peak just over 2.4 at the same
location. This position corresponds roughly to that found
by Levy et al. [1] with a lod score of 4.7.

Discussion

Our results suggest that different sets of genes regulate
blood pressure at different ages. Havill and Mahaney [14]
find evidence for incomplete pleiotropy in the polygenic
component of SBP in the fourth and sixth decades of life,
although their estimates of the proportion of polygenic
variance due to shared genes are lower than ours for com-
parable age ranges. These differences may be due to differ-
ent sample sizes or trait definitions. Furthermore, Havill
and Mahaney restrict their analysis to Framingham sub-
jects measured at both age intervals; we did not.

We also find linkage signals on chromosome 17 consist-
ent with the earlier report [1], although with smaller LOD
scores. This reduction may be due to smaller sample size
or differences in trait definition. Our analyses also do not
take other known risk factors for high blood pressure such
as smoking or cholesterol into account, although fixed
effects for these factors can be included in the variance

components model. Similarly, fixed effects for birth
cohort or calendar time could be included, perhaps to
capture differences in unmeasured risk factors. However,
fitting age, birth cohort, and calendar time effects simulta-
neously could lead to problems with model identifiability
[15].

The small increase in multivariate LOD scores over uni-
variate LOD scores likely reflects the fact that when traits
are strongly positively correlated, univariate analyses are
more powerful [5]. This may also be why the approach of
averaging SBP measures taken by Levy et al. [1] performs
better than multivariate analysis in this case.

In contrast to our approach, which defines traits based on
Framingham subjects' biological age, de Andrade and
Olswold [16] define traits based on calendar time (exam
number). They fail to replicate the linkage signal on chro-
mosome 17. This is consistent with the results of Mathias
et al. [17], who found that age-matched analyses of SBP
from the Framingham Heart Study produced higher esti-
mates of heritability than calendar-year-matched analy-
ses. This suggests care should be taken when defining
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traits in a longitudinal analysis, depending on whether
gene x age interaction or gene x calendar time (environ-
ment) interaction is more relevant.

A general drawback to the multivariate variance compo-
nents approach sketched here is that missing observations
on subjects with incomplete data are assumed to be miss-
ing at random [6] and hence ignorable. However, non-
ignorable missingness is a concern in this case, where
early withdrawal from study is likely correlated with ele-
vated blood pressure (and hence any genes associated
with high blood pressure). Multiple imputation methods
can be applied in the case of non-ignorable missing data,
as discussed by Allison [18] and several contributions to
GAW13 [19,20].
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