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Abstract
Background: Paulinella chromatophora is a freshwater filose amoeba with photosynthetic endosymbionts
(chromatophores) of cyanobacterial origin that are closely related to free-living Prochlorococcus and
Synechococcus species (PS-clade). Members of the PS-clade of cyanobacteria contain a proteobacterial form
1A RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) that was acquired by horizontal gene
transfer (HGT) of a carboxysomal operon. In rDNA-phylogenies, the Paulinella chromatophore diverged
basal to the PS-clade, raising the question whether the HGT occurred before or after the split of the
chromatophore ancestor.

Results: Phylogenetic analyses of the almost complete rDNA operon with an improved taxon sampling
containing most known cyanobacterial lineages recovered the Paulinella chromatophore as sister to the
complete PS-clade. The sequence of the complete carboxysomal operon of Paulinella was determined.
Analysis of RubisCO large subunit (rbcL) sequences revealed that Paulinella shares the proteobacterial form
1A RubisCO with the PS-clade. The γ-proteobacterium Nitrococcus mobilis was identified as sister of the
Paulinella chromatophore and the PS-clade in the RubisCO phylogeny. Gene content and order in the
carboxysomal operon correlates well with the RubisCO phylogeny demonstrating that the complete
carboxysomal operon was acquired by the common ancestor of the Paulinella chromatophore and the PS-
clade through HGT. The carboxysomal operon shows a significantly elevated AT content in Paulinella,
which in the rbcL gene is confined to third codon positions. Combined phylogenies using rbcL and the
rDNA-operon resulted in a nearly fully resolved tree of the PS-clade.

Conclusion: The HGT of the carboxysomal operon predated the divergence of the chromatophore
ancestor from the PS-clade. Following HGT and divergence of the chromatophore ancestor, diversification
of the PS-clade into at least three subclades occurred. The γ-proteobacterium Nitrococcus mobilis
represents the closest known relative to the donor of the carboxysomal operon. The isolated position of
the Paulinella chromatophore in molecular phylogenies as well as its elevated AT content suggests that the
Paulinella chromatophore has already undergone typical steps in the reductive evolution of an
endosymbiont.
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Background
Paulinella chromatophora is a thecate filose amoeba of the
Rhizaria that contains a photosynthetic entity of cyano-
bacterial origin termed chromatophore. A similar process
initiated the evolution of plastids likely more than a bil-
lion years ago. It has previously been shown that neither
the Paulinella host cell nor the chromatophores are related
to the eukaryotic lineage containing primary plastids.
Instead, the Paulinella chromatophore is affiliated with
free-living Prochlorococcus and Synechococcus spp. (PS-
clade), and thus represents the product of a second pri-
mary endosymbiosis leading to photoautotrophic eukary-
otes [1,2]. It is currently debated whether the Paulinella
chromatophore represents an organelle comparable to a
primary plastid, or merely a stable intracellular symbiont
[3-5]. However, the extent of genome reduction as well as
the presence or absence of gene transfers and protein
import pathways are currently unknown for Paulinella,
and only three gene cluster (4.3 to 9.4 kb) on the chro-
matophore genome have been analyzed to date and com-
pared to free-living cyanobacterial relatives [1,6].

Interestingly, the closest relatives of the Paulinella chro-
matophore (the PS-clade) possess a proteobacterial form
1A RubisCO (ribulose-1,5-bisphosphate carboxylase/oxy-
genase), in contrast to the remaining cyanobacteria and
plastids (except rhodoplasts) with the 'typical' form 1B
RubisCO [7-9]. The proteobacterial form 1A RubisCO is
part of a carboxysomal operon encoding genes for both
subunits of RubisCO (rbcL, rbcS = cbbL, cbbS) as well as
genes for carboxysomal shell proteins and a carboanhy-
drase [10-12]. Cyanobacteria of the PS-clade may have
acquired the complete carboxysomal operon by horizon-
tal gene transfer (HGT) from a proteobacterial donor
[10,11]. Carboxysomes containing a form 1A RubisCO
are referred to as α-carboxysomes, and thus, the PS-clade
has been designated as α-cyanobacteria, in contrast to β-
cyanobacteria with a form 1B RubisCO integrated in β-
carboxysomes [11].

Previous phylogenies based on rRNA operon sequence
data resolved the Paulinella chromatophore as sister to
marine Synechococcus and Prochlorococcus spp (α-cyano-
bacteria) [1]. The intermediate position of Paulinella,
diverging between α- and β-cyanobacteria, raises the ques-
tion whether the HGT of the carboxysomal operon
occurred before or after the divergence of the ancestor of
the Paulinella chromatophore, i.e. whether the chromato-
phore evolved from an α- or β-cyanobacterium. Due to
missing data, affiliation to α- or β-cyanobacteria is also
unknown for the Cyanobium-clade, which, besides marine
Synechococcus and Prochlorococcus clades, represents the
third major lineage in the PS-clade (e.g. [13-15]). Analyses
of one member of the Cyanobium-clade (strain WH 5701)

already indicated its individual divergence separate from
Paulinella and both marine PS-subclades [6].

In this study, we have determined the sequence of the
complete carboxysomal operon from the chromatophore
of Paulinella and a bacterioferritin gene downstream of the
carboxysomal operon. Additionally, we determined sev-
eral rbcL and rDNA sequences from other cyanobacteria
including the Cyanobium-clade. Our data reveal that the
Paulinella chromatophore as well as the Cyanobium-clade
display proteobacterial α-carboxysomes, and contain
form 1A RubisCO. Furthermore, phylogenies of RubisCO
and comparison of gene arrangement types of the carbox-
ysomal operon revealed the γ-proteobacterium Nitrococcus
mobilis as the closest known relative of the donor in the
HGT of the carboxysomal operon. The neighbouring bac-
terioferritin gene was co-transferred through the same
HGT event. Increased AT-content over the carboxysomal
operon in Paulinella may reflect genomic adaptation to an
endosymbiotic lifestyle.

Results and Discussion
Phylogenetic analysis of the ribosomal RNA operon
One goal of this study was to determine the precise phyl-
ogenetic position of the Paulinella chromatophore within
the cyanobacterial radiation. Cyanobacterial phylogeny is
still a challenge since the standard phylogenetic marker,
16S rDNA, is not very informative in global analyses (see
below). On the other hand, previous studies using
extended data sets, either the complete rDNA operon [1]
or several protein coding genes [6,16] suffered from lim-
ited taxon sampling. Here, we have extended the taxon
sampling of nearly complete rDNA operon sequences to
include all major cyanobacterial clades [17,18] with one
to several representatives. Therefore, rDNA sequences
from one plastid and 12 cyanobacteria were determined
(taxa in bold in Figure 1). Together with data from newly
released genome projects, the resulting alignment con-
tained sequences from 36 bacteria, 42 cyanobacteria and
23 plastids.

Phylogenetic analyses revealed basal cyanobacterial
branches (e.g. Gloeobacter), and two moderately sup-
ported lineages, one combining the majority of the β-
cyanobacteria including all plastids (branch 1 in Figure
1), the other containing Paulinella and the PS-clade nested
within a radiation of a few β-cyanobacteria, representing
the clades PHOR, PRCHX and SELONG (branch 2 in Fig-
ure 1). Paulinella is monophyletic with the PS-clade
(branch 4). Our previous study [1] had already revealed
the monophyly of both marine PS-subclades to the exclu-
sion of the Paulinella chromatophore, as confirmed here
(see branch 9). The present investigation includes five
sequences of the third PS-subclade, the Cyanobium-clade,
which is sister to the marine subclades, with Paulinella still
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Phylogenetic position of the Paulinella chromatophore within the cyanobacteria inferred by complete rRNA operon sequence comparisonsFigure 1
Phylogenetic position of the Paulinella chromatophore within the cyanobacteria inferred by complete rRNA 
operon sequence comparisons. The tree topology was generated by maximum likelihood (ML) analyses using the 
GTR+I+Γ model. The nodal support values are bootstrap values ≥ 50% obtained by ML (100 replicates), neighbor-joining (NJ; 
GTR+I+Γ model; 1000 repl.), maximum parsimony (MP; 1000 repl.), and Bayesian posterior probabilities (≥ 0.95). Branches in 
bold have maximal support (100%; 1.00) by all methods; interrupted branches were graphically reduced to 30% of their original 
length. Taxa in bold were newly determined for this study; strain designations and EMBL/GENBANK accession numbers are 
also given. Cyanobacterial clade abbreviations: GBACT (Gloeobacter), PSAN (Pseudanabaena), S/P/M (Synechocystis/Pleurocapsa/
Microcystis), OSC (Oscillatoria), LEPT (Leptolyngbya), NOST (Nostoc), and PHOR (Phormidium): modified sequence groups after 
[17]; YELLOST (thermophilic "Synechococcus" from Yellowstone NP), THERMOSY (Thermosynechococcus), CHROO (Chroococ-
cidiopsis), PRCHX (Prochlorothrix), SELONG (Synechococcus elongatus), and PS (Prochlorococcus/Synechococcus). Encircled numbers 
indicate clades/branches that were analyzed by single-gene analyses, and by NJ using the LogDet+I-model (see text and Addi-
tional File 1).
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diverging in a basal position. The monophyly of the entire
PS-clade to the exclusion of Paulinella, however, receives
only moderate to low bootstrap support (branch 5), but is
corroborated by unique synapomorphies in the 23S rRNA
(Figure 2). As previously shown, both marine PS-subc-
lades are characterized by unique compensatory base
changes (CBCs in pairs 868/909 and 869/908), whereas
Paulinella is plesiomorphic in both pairs [1]. Interestingly,
the Cyanobium-clade is intermediate in sharing the unique
CBC in position 868/909 with marine PS-subclades, but
displaying the ancestral character state in positions 869/
908, in congruence with the tree topology (Figure 2).

Several cyanobacterial branches gained only moderate
bootstrap support (e.g. branches 1, 2, 3, 5, 12 in Figure 1).
One possible explanation is the base compositional bias
among prokaryotic rDNAs (the Chi-square test gave p =
0.00) mainly caused by bacteria and plastids (cyanobacte-
ria alone have no significant base compositional bias; p =
0.21). Therefore we performed distance analyses using the

LogDet correction for unequal base composition (Addi-
tional File 1) that largely confirm results shown in Figure
1. Branch 5 (PS-clade without Paulinella) is even better
supported (78%). The phylogenetic signal for branch 5 is
confined to the 23S rRNA gene as shown by single-gene
analyses (87–93% bootstrap in the 23S rRNA phylogeny),
since this branch collapsed in 16S rDNA analyses, as also
did the branches 9, 11, 12, and 14 (Additional File 1).

In conclusion, the rDNA data support monophyly of both
marine PS-subclades (= α-cyanobacteria sensu [11] with
proteobacterial form 1A RubisCO) to the exclusion of
both the Cyanobium-clade and the Paulinella chromato-
phore, raising the question whether these taxa are affili-
ated with α- or with β-cyanobacteria (form 1B RubisCO),
i.e. on which branch of the phylogenetic tree the horizon-
tal gene transfer of form 1A RubisCO occurred. To answer
this question, sequencing and phylogenetic analysis of
RubisCO of the Cyanobium-clade and the Paulinella chro-
matophore was required.

Synapomorphy support in the 23S rRNA for the sister-group relationship between Paulinella and free-living α-cyanobacteriaFigure 2
Synapomorphy support in the 23S rRNA for the sister-group relationship between Paulinella and free-living α-
cyanobacteria. Shown is the alignment and secondary structure diagram of Helix 837 in the 23S rDNA, with two RNA base 
pairs highlighted that represent synapomorphies of α-cyanobacterial clades to the exclusion of Paulinella and other prokaryo-
tes. Sequence data and evolutionary changes are plotted on a simplified phylogram (NJ-bootstrap consensus tree). Pair 868/909 
shows a uniquely derived CBC (compensatory base change: U-A → C-G) of all free-living α-cyanobacteria; the neighbouring 
pair 869/908 changed in the common ancestor of the marine PS-subclades (marine Synechococcus and Prochlorococcus) whereas 
the Cyanobium-clade and Paulinella are plesiomorphic. Pair 869/908 shows parallel changes in a few other cyanobacteria, (e.g. in 
Fischerella).
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Horizontal gene transfer of a carboxysomal operon into 
the ancestor of the Paulinella chromatophore
In this study complete rbcL (RubisCO large subunit)
sequences of Paulinella and four members of the Cyano-
bium-clade were determined and integrated into a global
alignment of form 1 RubisCO large subunit amino acid
sequences. The phylogenetic analysis resolves Paulinella
chromatophora and the Cyanobium-clade as monophyletic
with marine Synechococcus and Prochlorococcus spp., in
congruence with the rDNA phylogeny (Figure 3). The
Paulinella chromatophore as well as the entire PS-clade
belong to the RubisCO form 1A lineage, and in conclu-
sion, have to be considered as α-cyanobacteria. The posi-
tion of the entire α-cyanobacterial clade (including
Paulinella) in the rbcL tree is not congruent with the rDNA
phylogeny: α-cyanobacteria are not monophyletic with
the remaining cyanobacteria (β-cyanobacteria) but are
nested within a radiation of α-, β- and γ-proteobacteria in
the rbcL phylogeny (Figure 3). This incongruence reflects
the horizontal gene transfer (HGT) of RubisCO form 1A
from proteobacteria to α-cyanobacteria, and loss of the
ancestral 'cyanobacterial' RubisCO form 1B [9].

In cyanobacteria, carboxysomes are essential for the car-
bon concentration mechanism (CCM; [19]). Physiologi-
cal differences between form 1A and form 1B RubisCO
and corresponding carboxysome types (α and β) are still
not understood [19,20]. It has been suspected that the
occurrence of α-carboxysomes is correlated with ecologi-
cal restriction to marine open ocean habitats [19]. Clearly,
this view is untenable, since the Cyanobium-clade, which
predominantly contains freshwater species, as well as the
Paulinella chromatophore also display α-carboxysomes.
Since α-cyanobacteria occur in a broad range of habitats,
it is even more difficult to speculate about advantages of
α-carboxysomes for survival in special ecological niches,
in particular an endosymbiotic habitat (Paulinella). As the
microenvironment of the chromatophore of Paulinella
can presumably be characterized as CO2-rich due to host
respiration, it may even be assumed that an efficient CCM
may not be essential for the Paulinella chromatophore.
Regrettably, experimental data on the photosynthetic
properties of the Paulinella chromatophore, especially the
existence and effectiveness of a CCM, are not yet available.

Previous rbcL phylogenies did not contain the γ-proteo-
bacterium Nitrococcus mobilis (genome sequence available
since Feb-2006) [10,11,20,21]. Interestingly, our rbcL-
phylogeny identified this taxon as closest relative to the α-
cyanobacteria: the common branch of Nitrococcus and the
α-cyanobacteria gained 98% bootstrap support (Figure 3).
A search for unique synapomorphies in rbcL amino acid
sequences revealed 3 positions (AA 36, 59, 64 in the
Paulinella sequence), which in Nitrococcus and all α-cyano-
bacteria share uniquely derived character states to the

exclusion of all remaining proteobacterial and β-cyano-
bacterial sequences (Figure 4). In addition, we found two
synapomorphies (positions 399, 405), which characterize
the α-cyanobacterial form 1A RubisCO (Figure 4). These
results highlight Nitrococcus as a key taxon for the HGT of
RubisCO form 1A, being the closest known relative of the
proteobacterial donor of rbcL.

Another HGT event is responsible for the well-known
polyphyly of plastids in rbcL phylogenies [9,21,22]. Chlo-
roplasts and cyanelles are rooted in the β-cyanobacteria in
congruence with ribosomal phylogenies (Figure 1). In
contrast, rhodoplasts are nested within the RubisCO form
1D clade of α-, β- and γ-proteobacteria. With high signifi-
cance, the analysis reveals Nitrosospira sp., Nitrosococcus
oceani and Nitrosospira multiformis as a sister branch to rho-
doplasts (the latter two already described in [21].)

In the α-cyanobacteria, the genes encoding RubisCO form
1A belong to an operon that further contains genes for car-
boxysomal proteins, and previous studies revealed that
the complete carboxysomal operon was acquired by HGT
[10,11]. Among proteobacteria gene content as well as
gene order in rbcL-containing operons differs considera-
bly [23]. Several proteobacteria have two or even three
unrelated rbcL genes (see for example Nitrobacter, Hydrog-
enovibrio, Thiomicrospira in Figure 3; [23,24]). In contrast,
cyanobacteria generally have only one rbcL gene. In the
present study, we determined the sequence of the com-
plete carboxysomal operon of Paulinella chromatophora
(7.6 kb), and compared the gene arrangement among
members of the RubisCO form 1A clade (Figure 5).

We found four major arrangement types. To analyse the
evolution of these types, we plotted operon structures
against a simplified rbcL tree as shown in Figure 5 (for
more details, see Additional File 2). Basal branches of the
RubisCO form 1A radiation (e.g. Thiomicrospira, Nitrococ-
cus) show an almost identical operon architecture, which
likely represents the plesiomorphic state. In this type,
(cso-type) the following genes occur downstream of rbcL:
rbcS, csoS2, csoS3, pepA, pepB, csoS1, csoS1, csoS1, and the
iron storage protein bacterioferritin (bfr) [25]. The operon
in the α-cyanobacteria (α-cyano-cso-type) was derived
from the ancestral state by transfer of a single csoS1 gene
to the 5' end of the operon, accompanied by a reduction
of the number of 3' located csoS1 copies to one or zero.
Interestingly, two members of the α-cyanobacteria still
contain the 3' bacterioferritin gene (bfr): the Paulinella
chromatophore and Synechococcus WH5701, the latter
representing the Cyanobium-clade (data for the remaining
Cyanobium-clade are currently missing). In the marine PS-
subclades, bfr is absent (Figure 5; Additional File 2). Com-
parison with the ribosomal phylogeny (Figure 1) suggests
that bacterioferritin was acquired by the same HGT event
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Evidence for HGT of RubisCO form 1A to the common ancestor of the Paulinella chromatophore and α-cyanobacteriaFigure 3
Evidence for HGT of RubisCO form 1A to the common ancestor of the Paulinella chromatophore and α-
cyanobacteria. The ML tree was inferred from RubisCO large subunit (rbcL) form 1 amino acid sequences (470 aligned posi-
tions) of Paulinella chromatophora, cyanobacteria, plastids and proteobacteria under the RtREV+I+Γ model of amino acid substi-
tution. Numbers at branches are ML bootstrap values ≥ 50%. Strain designations (when available) and NCBI accession numbers 
are indicated after the species name. Newly determined sequences are given in bold. Greek letters in grey indicate α-, β-, or γ- 
proteobacteria. Arrowheads highlight strains for which the gene arrangement of the carboxysomal operon is shown in Figure 
5.
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as the carboxysomal operon, and was secondarily lost in
marine Synechococcus and Prochlorococcus species. We
addressed the bfr HGT hypothesis by performing a phylo-
genetic analysis with α- and β-cyanobacterial ferritins and
their proteobacterial relatives (Additional File 3). As in the
rbcL-phylogeny, the bacterioferritins of Paulinella and
WH5701 are monophyletic with Nitrococcus mobilis as
their closest relative, and were nested within proteobacte-
ria with carboxysomal operons, clearly proving co-transfer
of bacterioferritin with the carboxysomal operon. Neither
nonheme-ferritins of marine Synechococcus/Prochlorococ-
cus-species nor the ferritin genes of β-cyanobacteria show
any relationship to bfr of Paulinella and WH5701 (for
details, see Additional File 3). In γ-proteobacteria incl.
Nitrococcus, and in Prochlorococcus, the next gene down-
stream to the carboxysomal operon is a putative pterine-
4alpha-carbinolamine dehydratase (Additional File 2)
that in the remaining α-cyanobacteria is also present, but
in those taxa is not linked to the carboxysomal operon.
Blast searches [26] reveal their homology, suggesting that
besides the carboxysomal operon and bfr even more genes
may have been acquired by the same HGT event.

In parallel to the α-cyano-cso-type, another proteobacte-
rial gene arrangement type is derived from the cso-type by
the acquisition of a cbbR gene upstream to rbcL, coded by
the opposite strand (Figure 5). This type is therefore here
named cbbR-cso-type (e.g. Nitrosomonas eutropha, Figure
5). Though not co-transcribed with the carboxysomal
genes, CbbR is linked to this operon by its specific func-
tion as a transcriptional activator [27]. Finally, the most
derived gene arrangement type is nested within the cbbR-
cso-type, and is named cbbRLSQO-type. The first three
genes, cbbR, rbcL, and rbcS, remained unchanged whereas
all carboxysomal shell proteins and bacterioferritin were
lost and replaced by the genes cbbQ and cbbO, which are
absent in the remaining three types of operon structures
(Figure 4). cbbQ and cbbO have been shown to enhance
RubisCO activity and stability [28,29].

Notably, each synapomorphic change leading to the three
evolutionary derived gene arrangement types corresponds
to a single branch/clade in the phylogenetic tree based on
rbcL sequence data (Figure 3). This congruence provides
additional credibility for the rbcL tree, including one
branch without any bootstrap support that combines all

Unique synapomorphies highlighting the HGT of RubisCO from a Nitrococcus-like γ-proteobacterium to the common ancestor of the Paulinellachromatophore and free-living α-cyanobacteriaFigure 4
Unique synapomorphies highlighting the HGT of RubisCO from a Nitrococcus-like γ-proteobacterium to the 
common ancestor of the Paulinella  chromatophore and free-living α-cyanobacteria. Selected regions of the 
RubisCO large subunit amino acid sequence were plotted against a simplified phylogram (NJ bootstrap consensus tree). Three 
synapomorphies shared by Nitrococcus and α-cyanobacteria are shown in red colour (positions 36, 59, 64); Histidine 399 and 
Serine 405 (blue) are unique for Paulinella and free-living α-cyanobacteria to the exclusion of all proteobacterial ancestors and 
β-cyanobacteria.
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taxa characterized by the cbbRLSQO-type (Figures 4, 5).
However, the loss of bacterioferritin in the marine Syne-
chococcus and Prochlorococcus clades, which can also be
assumed to be a synapomorphic change, cannot be traced
to a single branch in the rbcL tree due to low resolution
among α-cyanobacteria. Although the four major lineages
(Paulinella, Cyanobium-clade, marine Synechococcus- and
Prochlorococcus-clades) are recovered, relationships
between these lineages remain unresolved (Figure 3).
Based on the rDNA phylogeny, it appears likely that bac-
terioferritin was uniquely lost in the common ancestor of
marine α-cyanobacterial clades as a single synapomorphic
change (branch 9 in Figure 1). In general, the branching
order within the α-cyanobacteria shows no significantly
supported conflict between rDNA and rbcL phylogenies,

and thus, both data sets were used separately and in com-
bination to resolve phylogenetic relationships within the
α-cyanobacteria.

Phylogenetic resolution of the Synechococcus/
Prochlorococcus-clade with the concatenated dataset
In Figure 6, three phylogenetic analyses of P. chromato-
phora and 17 taxa of Synechococcus and Prochlorococcus
using three different datasets are compared: (A) rbcL
nucleotide sequences, (B) complete rDNA operon
sequences, and (C) concatenated rbcL and rDNA
sequences. Prior to phylogenetic analyses, nucleotide fre-
quencies of rbcL and rDNA sequence data were deter-
mined to prevent artefacts caused by base compositional
bias. Whereas the base composition of rbcL codon posi-

Architecture and evolution of operons containing form 1A RubisCO from proteobacteria and α-cyanobacteria including the Paulinella chromatophoreFigure 5
Architecture and evolution of operons containing form 1A RubisCO from proteobacteria and α-cyanobacteria 
including the Paulinella chromatophore. Gene arrangements from selected taxa (see arrowheads in Figure 3) are plotted 
against a simplified phylogram based on RubisCO amino acid sequences. Four major types of gene arrangements can be distin-
guished (for details, see text). The operon of Paulinella is member of the α-cyano-cso-type, which is derived from the ancestral 
cso-type present in proteobacteria, providing evidence for a HGT of the complete operon. Homologous genes share the same 
colour. Abbreviations: Carboxysomal shell proteins 1, 2, 3 (csoS1, 2, 3); RubisCO large and small subunit (rbcL, rbcS = cbbL, 
cbbS); carboxysomal peptides A, B (pepA, pepB); bacterioferritin (bfr); LysR-type transcriptional activator (cbbR); putative 
RubisCO activation proteins (cbbQ, cbbO); hypothetical proteins (hypo). Dotted lines indicate that no data are available.
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Comparison of phylogenetic relationships among Paulinella and free-living α-cyanobacteria inferred by rbcL and/or rDNA nucle-otide sequence dataFigure 6
Comparison of phylogenetic relationships among Paulinella and free-living α-cyanobacteria inferred by rbcL 
and/or rDNA nucleotide sequence data. A. Unrooted analysis of codon positions 1+2 of the rbcL gene. B. Phylogeny of 
the rDNA operon, using more aligned positions as in Figure 1 (4317 vs. 4126 characters). C. Phylogeny inferred from concate-
nated rbcL and rDNA sequences. Tree topologies resulted from ML analyses using a GTR+I+Γ model; significance values shown 
as in Figure 1.
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tions one and two was homogenous across taxa (Figure
7A), the third codon position revealed strong differences
between AT-rich (Paulinella, and Prochlorococcus strains:
ca. 50–80%) and AT-poor taxa (Synechococcus strains ca.
10–30%) (Figure 7B). Therefore, only first and second
codon positions were used for phylogenetic analyses of
the rbcL gene.

Both rbcL and rDNA phylogenies recover the monophyly
of three major clades: Cyanobium-clade, marine Synechoc-
occus-clade and Prochlorococcus-clade. However, rbcL data
fail to recover the Cyanobium-clade with significance,
probably due to the long-branched Synechococcus rubescens
(see also the amino acid analysis; Figure 3). On the other
hand, Prochlorococcus displays a much longer basal branch
in the rbcL analysis compared to rDNA, due to a higher
number of synapomorphies, accompanied by a consider-
ably higher bootstrap support (99–100% in rbcL com-
pared to 73–97% in rDNA). The higher-level order of the
major clades remains unresolved in the rbcL tree, whereas
the rDNA analysis recovers the sister-group relationship of
marine Synechococcus and Prochlorococcus clades (88–
99% bootstrap; see also Figure 1). Within Prochlorococcus,
relationships among strains are resolved almost congru-
ently by rbcL and rDNA data: MIT9313 appears as the
basal divergence, followed by strains NATL2A,
CCMP1375 and MIT9213 (relationships among these
strains are not resolved), and a derived, long-branched
clade consisting of MIT9312 and CCMP1986. In the
remaining clades (Cyanobium-clade and marine Synechoc-
occus-clade), the branching pattern of most strains
remains unresolved by rbcL analyses, due to their almost
redundant rbcL sequences. In contrast, the higher rDNA
sequence diversity allows a better resolution in these line-
ages. For instance, Synechococcus rubescens, a single long
branch in the rbcL tree, is confidently identified as sister of
PCC 7001 by rDNA data. Similarly, Synechococcus strain
RCC 556, which has an almost identical rbcL sequence as
three other strains (CC9605, WH7805, WH8102), is
resolved as the basal divergence of the marine Synechococ-
cus clade by rDNA analyses. The concatenated data set
(5253 nucleotide characters) is largely congruent with the
rDNA tree, albeit with even better bootstrap support for
the monophyly of the major clades (especially Prochloro-
coccus and marine Synechococcus). However, in a few cases
(e.g. position of Synechococcus rubescens, position of Syne-
chococcus CC9311) the combined analysis showed slightly
reduced support in comparison with the rDNA phylogeny
(Figure 6B, 6C).

In the phylogenetic analyses performed in this study, we
found no specific and robustly supported relationship
between Paulinella and any of the three major clades of
free-living α-cyanobacteria. RbcL data fail to resolve the
monophyly of the Cyanobium-clade to the exclusion of

AT content bias in rbcL and complete carboxysomal operon sequences in Paulinella and ProchlorococcusFigure 7
AT content bias in rbcL and complete carboxysomal 
operon sequences in Paulinella and Prochlorococcus. 
Whereas the AT-content in codon positions 1 + 2 in the rbcL 
gene is balanced across Paulinella and 17 free-living α-cyano-
bacteria (A), the third codon position displays a sharply ele-
vated AT-content in Paulinella as well as Prochlorococcus 
strains (B). The AT-content integrated over the complete 
carboxysomal operon (from csoS1 to pepB) including inter-
genic spacer regions shows a similar bias, although less pro-
nounced (C).
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Paulinella with significance, irrespective of whether amino
acid or nucleotide data are analyzed (Figures 3, 6A), in
contrast to the remaining phylogenies that receive high
significance for this clade (Figures 1, 6B, 6C). Although
the prokaryote-wide rDNA phylogeny (Figure 1) uses
fewer positions than the unrooted rDNA phylogeny of the
α-cyanobacteria (Figure 6B; 4126 vs. 4317 characters), we
recognize almost complete congruence between the two
phylogenies among α-cyanobacteria. In addition, our tree
topologies corresponded almost completely to phyloge-
netic analyses of the 16S-23S rDNA spacer ('ITS'; 233
aligned positions) from 57 free-living α-cyanobacteria
(Figure 4A in [30]). Probably due to the much higher
number of aligned/variable (4317/540) positions in the
rRNA and tRNA genes, our analyses gained high signifi-
cance values for most basal and internal branches that
were largely non-significant in ITS-phylogenies [30], e.g.
the branch uniting all Prochlorococcus strains including the
basal divergence MIT9313. Other phylogenies that
included only a few α-cyanobacteria had often failed to
position strain MIT9313 as monophyletic with other
Prochlorococcus strains (e.g. [1,31,32]), even in multigene
analyses of complete cyanobacterial genomes [31,32].
Superiority of a 233-character-analysis over whole-
genome phylogenies may highlight the importance of a
sufficient taxon sampling. Moreover, phylogenetic infor-
mation content of protein gene data may be impaired by
unequal base composition and amino acid frequencies
across taxa: whereas derived Prochlorococcus strains have a
high AT-content and show a preference for amino acids
encoded by AT-rich codons, base composition and amino
acid usage of Prochlorococcus MIT9313 are more similar to
Synechococcus strains with lower AT-content [33], explain-
ing artificial tree topologies. In the more conserved rbcL
gene, the AT bias is confined to the third codon positions
(Figure 7A, 7B), and thus, phylogenies using only the first
and second positions are not affected by base composi-
tional bias. In fact, our rbcL tree does not contradict anal-
yses using rDNA data, which are known to have a more
balanced base composition across taxa ([33], and our own
results). Interestingly, Paulinella shows the same tendency
towards high AT-content as known for Prochlorococcus, as
evident from third rbcL codon positions (Figure 7B) as
well as the complete carboxysome operon (Figure 7C). An
elevated AT content, accompanied by genome size reduc-
tion, is a highly unusual phenomenon for free-living
organisms, and in the case of Prochlorococcus, was inter-
preted as adaptation to oligotrophic marine environ-
ments with low nitrogen and phosphorus availability
[33]. In contrast, endosymbionts or intracellular patho-
gens are known to tend to evolve towards AT rich
genomes (e.g. [34-37]). We suspect that the complete
genome of the Paulinella chromatophore is characterized
by high AT content since not only the carboxysomal
operon (this study) but also two DNA fragments of 9.4 kb

and 4.3 kb (see Figure 1 in [6]) support this view. Together
with its isolated position in molecular phylogenies ([1,6],
and this study), the elevated AT content further indicates
that the chromatophore of Paulinella has significantly
diverged from its free-living ancestor, and undergone typ-
ical steps in the evolution of an intracellular symbiont
such as genome reduction.

Conclusion
The basal divergence of the Paulinella chromatophore as
sister to free-living α-cyanobacteria was revealed by phyl-
ogenetic analysis of the complete rDNA operon with an
extended taxon sampling, especially by addition of the
Cyanobium-clade. Paulinella and free living α-cyanobacte-
ria share a proteobacterial carboxysomal operon with a
form 1A RubisCO, indicating that the HGT of the carbox-
ysomal operon predated the divergence of the Paulinella
chromatophore. The γ-proteobacterium Nitrococcus mobi-
lis was identified as the closest known relative to the pro-
teobacterial donor of the carboxysomal operon. The
isolated position of Paulinella among α-cyanobacteria in
molecular phylogenies as well as the elevated AT content
of several of its genes indicates that Paulinella has already
undergone typical steps in reductive genome evolution
associated with an intracellular lifestyle.

Methods
Algal cultures
Strains used in this study were obtained from the follow-
ing sources: Spirulina sp. PCC 6313, Microcoleus sp. PCC
7420, Scytonema sp. PCC7110, Pseudoanabaena sp. PCC
7367, Pseudoanabaena sp. PCC 6903, Synechococcus sp.
PCC 7001, Synechococcus sp. PCC 7920, Synechococcus sp.
PCC 7009: Pasteur Culture Collection of Cyanobacteria,
Institute Pasteur, Paris, France [38]; Fischerella muscicola
SAG 2027, Prochlorothrix hollandica SAG 10.89, Chroococ-
cidiopsis sp. SAG 2025, Synechococcus rubescens SAG 3.81:
Sammlung für Algenkulturen, University of Göttingen,
Germany [39]. Paulinella chromatophora M0880: Culture
collection Melkonian, University of Cologne, Ger-
many;Cryptomonas curvata CCAC 0006: Culture Collec-
tion of Algae at the University of Cologne, Germany [40].

DNA extraction, PCR and sequencing
Complete genomic DNA was extracted using a CTAB pro-
tocol. PCR primers for amplification of the rDNA operon,
and sequencing methods were described previously [1].
For amplification of the full length rbcL gene from
Paulinella chromatophora and Synechococcus strains, α-
cyanobacteria-specific primers were designed using an
alignment of cyanobacterial rbcL and surrounding genes.
PCR primers bind in the neighbouring genes of rbcL: csoS1
and rbcS. Primer sequences: Al_csoS1_F2:
(GARGCWGCWGAYGCHATGACCAAGG) and
Al_rbcS_R1: (TGRTCGTADATYTCKTCCTGGGTCAT-
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MGG). If primary products were too weak a reamplifica-
tion was done with Al_csos1_F3
(GCHGAAGTKCGYCTKATYGGTCGTG) or Al_csos1_F4
(CGYCCYCAYMGNGAAGTKGAGCCWGC) and
Al_rbcS_R1. Using the same alignment new sequencing
primers were designed: Al_csoS1_F4 (sequence see
above), Al_rbcL_F1 (TTYGARTTYGTHGCBGAAGC),
Al_rbcL_R1 (GGCATRTGCCANACRTGRATRCC),
Al_rbcL_R2 (ARYTTHGGYTTRATRGTRCARCC). RbcL
PCR products were purified using the QIAquick PCR Puri-
fication Kit (Qiagen) and sequenced by the cycle sequenc-
ing method using an ABI 3730 sequencer.

Alignments and phylogenetic analyses
Newly obtained sequences were combined with database
sequences to construct amino acid and nucleotide
sequence alignments. Accession numbers of new
sequences are AM709625 – AM709637 (rRNA operon),
AM701774 – AM701778 (rbcL), and EF589049 (carboxy-
somal operon of Paulinella); accession numbers of data-
base sequences are given in Figures 1 and 3. RbcL and
ferritin protein alignments were obtained using clustalW,
and refined manually; rDNA operon alignments were
constructed manually, guided by rRNA and tRNA second-
ary structure. Unalignable positions were excluded from
datasets prior to phylogenetic analyses. RbcL nucleotide
sequences were aligned according to the RubisCO amino
acid alignment. The rDNA-operon analyses contained
4126 aligned characters for prokaryotes (Figure 1), and
4317 for α-cyanobacteria (Figure 6B, 6C); the RubisCO
large subunit amino acid dataset contained 470 aligned
positions (Figure 3). The α-cyanobacterial rbcL nucleotide
dataset was reduced to first and second codon position
resulting in 940 aligned nucleotides (Figure 6A, 6C).
Nucleotide sequence analyses used PAUP 4.0b10,
MrBayes_3.1.1, and MODELTEST, as previously described
[1]. The homogeneity of base frequencies across taxa was
investigated by Chi-square tests (PAUP 4.0b10). When
distance analyses used the LogDet+I model, the I-value
was copied from the GTR+I+Γ model parameters that
were estimated by MODELTEST for the same dataset. ML
bootstrap analyses in Figure 1 were constrained towards
3000 rearrangements per replicate. For Bayesian analyses,
two MCMC chains with 500000 generations were per-
formed, and the 'burnin' determined by the convergence
criterion (see [1]). The search procedure to find molecular
characters, which represent unique synapomorphies for a
clade of interest, has been described previously [1], and
was here applied to nucleotide as well as protein align-
ments. Protein datasets were subjected to maximum like-
lihood bootstrap (n = 1000) analyses with Phyml V2.4.5
[41]. The evolutionary model fitting best (RtREV+I+Γ)
was determined using ProtTest 1.3 [42] according to the
Akaike Information Criterion. Proportion of invariable
sites and Γ-shape parameter were calculated in Phyml.

Carboxysomal operon data
Sequence data of the carboxysomal operon of the
Paulinella chromatophores were taken from the ongoing
Paulinella chromatophore genome project. DNA was
extracted from crude chromatophore fractions obtained
by density centrifugation on a percoll gradient. This DNA
was used to generate a small insert library. Random
sequencing of 400 clones yielded raw reads overlapping
the previously obtained rbcL sequence. Using a combina-
tion of primer walks and PCR all gaps in the rbcL region
were closed.
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Additional File 1
Significance measures for 14 selected clades (encircled numbers in Fig-
ure 1) in single-gene and combined analyses of rRNA genes. Analyses 
used 1000 bootstrap replicates of NJ (LogDet+I model), NJ (GTR+I+Γ 
model), and MP, and Bayesian posterior probabilities. Numbers of 
aligned (ch) and variable characters (var) are given for each partition.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-85-S1.PDF]

Additional File 2
Gene arrangement of operons containing form 1A RubisCO for all 
strains included in Figure 3. The table describes the typical gene arrange-
ments in the 4 different arrangement types, defined in Figure 5, and indi-
cates presence (x) or absence () of the gene in a specific species. 
Abbreviations as given in Figure 5; further abbreviations: n.d.: no data 
available; ham1: Ham1 like protein; ndhF3: NADH dehydrogenase sub-
unit L; PCD_DCoH: possible pterin-4alpha-carbinolamine dehydratase; 
GlnK: nitrogen regulatory protein P-II; GGPS: Glucosylglycerol-phosphate 
synthase; Transp: transposase, mutator type; REC: response regulator 
receiver protein; Rpe: Ribulose-phosphate 3-epimerase; TktA: Transketo-
lase; DedA: Uncharacterized membrane-associated protein; CBD_II: Cel-
lulose binding domain protein. chlN: light-independent 
protochlorophyllide reductase subunit N.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Additional File 3
Evidence that bacterioferritin in Paulinella and Synechococcus 
WH5701 was acquired by HGT from a Nitrococcus -like γ-proteobac-
terium. Phylogeny of three ferritin-families occuring in cyanobacteria (α-
cyanobacteria in blue; β-cyanobacteria in orange colour) together with 
their proteobacterial relatives: Bacterioferritin, Nonheme-Ferritin, and 
Ferritin and Dps ("DNA-binding protein from starved cells"). The ML 
analysis was performed as in Figure 3, and used 159 aligned amino acid 
positions. The chromatophore of Paulinella and Synechococcus 
WH5701 (representing the Cyanobium-clade) are the only cyanobacte-
ria, which possess bacterioferritin linked to the carboxysomal operon (see 
Figure 5). Similar to the RubisCO phylogeny, Nitrococcus mobilis is sis-
ter to these taxa in the bacterioferritin clade. Note that many taxa contain 
more than one ferritin (up to five in Synechococcus CC9311), e.g. 
Nitrococcus displays two unrelated bacterioferritin genes, and Syne-
chococcus WH5701 has 1 bacterioferritin, one nonheme-ferritin, and 
one member of the Ferritin and Dps family (indicated by numbers in curly 
braces). Cyanobacterial ferritins are dispersed into several separate 
branches, usually nested within bacterial divergences, suggesting many 
independent HGT events. One to five (in CC9311) nonheme-ferritin 
genes are characteristic for members of all PS-subclades (presence in the 
Paulinella chromatophore is currently unknown), and their tree topology 
indicates an early gene duplication followed by later duplication/gene loss 
events.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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