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Abstract

Background: Ypt/Rab GTPases and their GEF activators regulate intra-cellular trafficking in all
eukaryotic cells. In S. cerivisiae, the modular TRAPP complex acts as a GEF for the Golgi
gatekeepers: Yptl and the functional pair Ypt31/32. While TRAPPI, which acts in early Golgi, is
conserved from fungi to animals, not much is known about TRAPPII, which acts in late Golgi and
consists of TRAPPI plus three additional subunits.

Results: Here, we show a phylogenetic analysis of the three TRAPPII-specific subunits. One copy
of each of the two essential subunits, Trs120 and Trs130, is present in almost every fully sequenced
eukaryotic genome. Moreover, the primary, as well as the predicted secondary, structure of the
Trs120- and Trs|30-related sequences are conserved from fungi to animals. The mammalian
orthologs of Trs120 and TrsI30, NIBP and TMEMI, respectively, are candidates for human
disorders. Currently, NIBP is implicated in signaling, and TMEMI is suggested to have trans-
membrane domains (TMDs) and to function as a membrane channel. However, we show here that
the yeast Trs |30 does not function as a trans-membrane protein, and the human TMEMI does not
contain putative TMDs. The non-essential subunit, Trs65, is conserved only among many fungi and
some unicellular eukaryotes. Multiple alignment analysis of each TRAPPII-specific subunit revealed
conserved domains that include highly conserved amino acids.

Conclusion: We suggest that the function of both NIBP and TMEMI in the regulation of intra-
cellular trafficking is conserved from yeast to man. The conserved domains and amino acids
discovered here can be used for functional analysis that should help to resolve the differences in
the assigned functions of these proteins in fungi and animals.

Background

In all eukaryotic cells, intra-cellular trafficking connects
the cell with its environment by the orderly transport of
membranes and proteins via the exocytic and endocytic
pathways. In the exocytic pathway, proteins destined to be
secreted or presented on the plasma membrane (PM) are
transported from the endoplasmic reticulum (ER),

through the Golgi apparatus, to the PM. In the endocytic
pathway, proteins from the environment or the PM are
shuttled via a set of endosomes to lysosomes. The machin-
ery and the mechanisms of intra-cellular trafficking are
highly conserved among all eukaryotes (orthologs), and
some protein components are also conserved between the
various steps of the pathways (paralogs) [1].
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Ypt/Rab GTPases are key regulators of this protein traffick-
ing. They are conserved both within a single genome
between transport steps and across large phylogenetic dis-
tances [2-4]. Saccharomycescerivisiae cells contain 11 Ypts,
whereas human cells have ~70 Rabs [5-7]. In S. cerivisiae,
Ypt1 and the functional pair Ypt31/32 regulate entry into
and exit from the Golgi, respectively [8,9]. The mamma-
lian Rab1A and Rab1B share ~70% identity with S. cerivi-
sige Yptl, and Rab1A can replace Yptl in yeast knockout
cells [10]. The mammalian Rab11A, Rab11B and Rab25
share ~60% identity with S. cerivisiae Ypt31/32 and regu-
late the same transport steps: exit from the Golgi and
endosome-to-Golgi transport [11,12].

Ypt/Rabs are activated by specific nucleotide exchangers,
called guanine nucleotide exchange factors (GEFs). GEFs
for different Ypt/Rab paralogs do not share sequence sim-
ilarity and are therefore harder to identify. In S. cerivisiae,
the multi-subunit complex TRAPP was identified as the
GEF for both Ypt1 [13,14], and Ypt31/32 [14]. TRAPP is a
modular complex that exists in two forms: TRAPPI and
TRAPPII [15]. We recently showed that TRAPPI acts as a
Yptl GEF, whereas TRAPPII functions as a Ypt31/32 GEF
[16].

The S. cerivisiae TRAPPI was shown to function in ER-to-
Golgi transport. It contains seven subunits that co-precip-

itate as a ~300 kDa complex from yeast cell lysates [15].

Table I: TRAPP subunit conservation:
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There is considerable evidence for the structural and func-
tional conservation of the TRAPPI complex (excluding the
Trs85 subunit) from fungi to animals [17] (Table 1).

TRAPPII is a ~1000 kDa complex that contains three sub-
units in addition to those of TRAPPI: two large, essential
subunits (>1000 amino acids), Trs120 and Trs130, and
one small, non-essential subunit, Trs65 [15]. In yeast,
Trs130 was implicated in late Golgi transport, whereas
Trs120 was suggested to function in endosome-to-Golgi
transport [15,18]. The conservation of the TRAPPII com-
plex is less clear than that of TRAPPI [19]. Blast analyses
show that the closest mammalian homologues of Trs120
and Trs130, NIBP and TMEM1, respectively, share a ~20%
identity with the S. cerivisiae proteins over about a third of
the protein (Table 1) as compared to 23-34% identity for
five of the seven TRAPPI-specific proteins and 56% for
Bet3 (Trs85 is not conserved, [16]). Only TMEM1 was
shown to co-precipitate with the human TRAPP complex
[20], and there is no functional evidence for a role for
either of these proteins in protein trafficking. Instead,
NIBP and TMEM1 were implicated in very different func-
tions, NF-kappaB signaling and as a membrane channel,
respectively [21-24].

There is no obvious mammalian ortholog for Trs65. How-
ever, current evidence supports a role for Trs65 in the S.
cerivisiae TRAPPII complex. First, deletion of TRSG65 is syn-

S. cerivisiae Subunit  Human Subunit Essential in Comments!
(#amino acids)' (# amino acids)!  S. cerivisiae
TRAPP I/l

Bet3 hBet3/TRAPPC3 + Bet3 family?

(193) (180)

Trs31 TRAPPC5 + Bet3 family?

(283) (188)

Trs33 TRAPPC6 A&B - Bet3 family2

(268) (173, 130)
Bet5 TRAPPCI/MUM2 + Bet5 family?

(159) (145) Expression of Ag peptides in melanoma

Trs20 TRAPPC2/SEDL + Bet5 family?

(175) (140) Associated w/bone formation & SEDT

Trs23 TRAPPC4/Synbindin + Bet5 family?

(219) (219) Associated with postsynaptic structures

Trs85/Gsgl -- -- Required for late sporulation, vt autophagy pathway in S. cerivisiae
(698)
TRAPP II:

Trs120 NIBP + 21% identity in 377 match length; Implicated in NF-kappaB signaling, & neuro-
(1289) (1246) degenerative disorders

Trs130 TMEMI/EHOCI + 20% identity in 327 match length; Proposed similarity to sodium channels;
(1102) (1259) Candidate for certain epilepsy and autoimmune disorders

Trs65/Krel | -- - Important for cell wall biogenesis in S. cerivisiae
(560)

I Information from Incyte Genomic and SGD Databases, 7/3/06

2Bet3 and Bet5 families was defined based on sequence and structure similarities [17, 52].
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thetic lethal with deletion of the non-essential TRAPPI
subunit, TRS33. This synthetic lethality can be rescued by
over-expression of Ypt31 [25,26]. In addition, Trs65/
Kre11 was shown to function in cell-wall biogenesis [27],
a process that is dependent on protein transport.

Because of the low sequence conservation by Blast analy-
sis of the TRAPPII-specific subunits (Table 1), and the dis-
crepancy between their suggested functions in fungal and
mammalian cells, it is important to establish any evolu-
tionary conservation more precisely. Here, we show a phy-
logenetic analysis of the TRAPPII-specific subunits. We
found that nearly every fully sequenced eukaryotic pro-
teome present in the NCBI non-redundant protein data-
base (as for July 06) contains one Trs130 and one Trs120
homolog. We found three exceptions, which are noted in
Results. In contrast, Trs65 is conserved among many, but
not all, unicellular eukaryotes, and not in any fully
sequenced multi-cellular proteome. The conservation of
Trs120 and Trs130 is supported by conserved predicted
secondary structure of whole proteins, and conserved
domains that include highly conserved amino acids,
which should also help in future functional analysis. In
addition, our analysis suggests that neither Trs130 nor
TMEM1 is a trans-membrane protein, arguing against the
suggestion that TMEM1 functions as a membrane chan-
nel. Understanding the function of the human homo-
logues is important, because they are candidates for
several human disorders (Table 1).

Results

Phylogenetic trees of TRAPPII-specific subunits

We searched the non-redundant protein NCBI database
on 07/2006 for sequences related to the three S. cerivisiae
TRAPPII-specific subunits: Trs120, Trs130, and Trs65
(Table S1-A in Additional File 1). We identified 35 Trs120-
related protein sequences and 31 TRS130-related protein
sequences. We identified no more than one ortholog for
each of these proteins in all examined genomes from
fungi to vertebrates. In the 14 fully and 23 largely
sequenced genomes, we always identified exactly one
copy. We found sixteen Trs65-related sequences, also no
more than one per genome, but only in fungi. Further,
even some fully sequenced fungi (e.g., Schizosaccharomyces
pombe) lack any recognizable ortholog of this protein (Fig-
ure 1 and Table S1-A in Additional File 1).

In addition to the sequences found in the NCBI database
at the time of our search, we also looked at a 24 other
largely completed genomes (including 19 additional
fungi and 5 protists) that were at varying stages of assem-
bly and annotation as of December 06. In spite of the
incomplete nature of these projects, we still found Trs120
and Trs130 in 21 genomes, and Trs65 in 17 genomes. We
show these results in Table S1-B (in Additional File 1).

http://www.biomedcentral.com/1471-2148/7/12

There are a few interesting exceptions to our observations
of the wuniversality of Trs120- and Trs130-related
sequences in eukaryotes. The three eukaryotic genomes
that did not contain Trs120 and Trs130 are: the fungus
Encephalitozoon ecuniculi, the Amoebazoan Entamoeba his-
tolytica and the Archaeplastid Cyanidioschyzon merolae. It
seems reasonable to suggest that the absence of Trs120
and Trs130 from the proteome of the first organism can
be explained by the fact that it is an obligate intracellular
parasite that might lack some essential cellular machinery.
In agreement, three essential TRAPPI subunits are also
missing in its genomes (Table S1-C in Additional File 1).
E, histolytica CMerolae, however, are well-sequenced
genomes, the latter is a red alga with a very small genome.
Interestingly, the two genomes are also missing one essen-
tial TRAPPI subunit each (Table S1-C in Additional File
1). If the absence of TRAPP subunits in these organisms is
confirmed, it might shed light on the evolution of the
intra-cellular trafficking machinery.

The full-length protein sequences from the NCBI non-
redundant (nr) database were used to construct un-rooted
phylogenetic trees for each TRAPPII-specific subunit
employing programs described in Methods. We used two
different methods to construct the trees: PAUP's distance
method, and PHYML's maximum likelihood (ML)
method. Both methods yielded essentially identical topol-
ogies, except for branches near the center of the tree repre-
senting far-flung subunit-family members. Only branch
lengths differed significantly between the two methods,
with the ML method giving consistently ~4 fold longer
branch lengths. Because we could estimate branch reten-
tion probabilities using PAUP, we show just the PAUP
method results in Figure 1. The reliability of each branch
position was assessed by distance-based bootstrap analy-
sis and indicated by red (weak) to green (strong) colors. In
almost all cases branches were maintained in almost all
bootstrap trials, excepting only those close to the center of
the tree, which reflect the details of ancient divergence
between phylogenetic groups. The colored pie sections
delineate groups of proteins in accord with tree branching
and taxonomic relationships. There are seven basic
groups: animals (A), plants (P), slime molds (M), and
four fungal (F) groups Saccharomycetes (FS), Pezizimy-
cotina (FP), Basidiomycota (FB), and Schizosaccharomyc-
etes (FZ). Grouping in the tree corresponds in almost all
cases to recognized taxonomic groupings [28]. The sole
exception was Yarrowia lipolytica (FS_Y1), which is a Sac-
charomycete, but falls (weakly) with the Pezizomycotinas
on the Trs130 tree.

Multiple alignment analysis of TRAPPII-specific subunits

Multiple alignments and the domain structure of the
TRAPPII-specific subunits are shown in Figures 2, 3, 4 and
Figures S1-S3 (see Additional File 1). Domains were
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detailed in Table SI.
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defined by inspection of the raw alignment and Figures
S1-S3. Highly conserved (HC) amino acids in the align-
ment (see Methods) are shown at the bottom of the dia-
gram as short vertical lines, and are detailed in the
corresponding supplementary tables (Tables S2-S4,
respectively, see Additional File 1). There is a number of
particularly interesting HC amino acids, including those
that are invariant and rare (e.g., prolines) or invariant and
potentially catalytic (e.g., aspartic or glutamic acids).
These HC amino acids are indicated with asterisks in the
multiple alignment and in the supplemental tables
(Tables S1-S3, see Additional File 1). Finally, conserved
domains, as indicated by alignment strength and HC
amino acids are boxed (Figures S1-S3) and the alignment
of these conserved domains from representative organ-
isms is shown in Figures 2, 3, 4.

Multiple alignment analysis of Trs120-related proteins is
shown in Figures 2 and S1. This figure shows five well-
conserved domains across the length of Trs120, each char-
acterized by high-quality sequence similarities and by the
presence of HC amino acids in the alignment. These
domains vary in size from 20 to 165 amino acids. Larger-
scale sequence conservation and HC amino acids agree
with one another: HC amino acids (detailed in Table S2)
are found only in the otherwise conserved regions (except
for a lone conserved glycine in a region of weak sequence
conservation, C-terminal to domain TRS120-V.)

Trs120 is essential for S. cerivisiae cell viability. However,
truncation of the C-terminal third of Trs120 in S. cerivisiae
(amino acids 808 through 1289, see arrows in Figures 2B
and S1), which includes part of conserved domain IV and
all of domain V, results in a temperature-sensitive growth
phenotype. Deletions further N-terminal of this point are
lethal [18]. Therefore, we predict that domains I, II, and III
and part of IV are important for the essential interactions
of Trs120.

Multiple alignment analysis of Trs130-related proteins is
shown in Figures 3 and S2. In this figure, the worms
Caenorhabditiselegans and  Caenorhabditisbriggsiae  are
slightly different in that they share a C-terminal deletion.
Alignment and HC amino acids show three Trs130
domains ranging from 33-314 amino acids. We found no
significant HC amino acids (detailed in Table S3) outside
of these domains. Domains I and II contain many highly
unusual HC amino acids. Consequently, we predict that
these domains are critical for essential interactions or
functions of Trs130.

Domain III is unlikely to be strongly important. It is
shorter and contains no significant HC amino acids. Trun-
cation C-terminal to the arrow shown in this domain in S.
cerivisiae results in a temperature-sensitive growth pheno-

http://www.biomedcentral.com/1471-2148/7/12

type [15,26]. While it is true that this domain might be
important for the stability of the Trs130 protein, based on
the low level of the protein in mutant cells [16], it might
not be true for all organisms, since the two worm species
share a C-terminal truncation of Trs130 (confirmed as
described in Methods) that includes part of Trs130-1I and
all of Trs130-I1I.

Multiple alignments of Trs65-related proteins are shown
in Figures 4 and S3. The protein is common for Saccharo-
myceta and Pezizomycotina subphyla (and at least one
Basidiomycota), but not all fungi. Table S1 (see Addi-
tional File 1) shows that Trs65 also occurs in at least two
other non-fungal unicellular eukaryotes. Since Trs65 is
only found in some fungi, we used all three fungal groups
shown in Figure 1 that contain Trs65 sequences. HC
amino acids (detailed in Table S4) and alignment quali-
ties show that these organisms share four conserved
domains varying in size 40-140 amino acids. Although
no mutagenesis data exists for these proteins, there are
some highly unusual amino acids in domains II, III, and
IV. Therefore we suggest that they are important for Trs65
function.

The predicted secondary structure of Trs120 and Trs130 is
conserved

We suspected that protein secondary structure was con-
served in addition to its primary sequence. Since no crys-
tal data is currently known for the three TRAPPII-specific
subunits, we predicted their secondary structures using
Prof [29]. This program employs multiple sequence align-
ments to predict the helical, beta-sheet, or coiled-coil
nature of each position in the primary sequence of a group
of proteins. We examined these predictions for all the
Trs120, Trs130, and Trs65 proteins, using the clustal
alignment employed to construct the trees and alignments
in Figures 1, 2, 3, 4 for the input to Prof. Color-coded bars,
representing the predicted secondary structures (helix-red;
coil-blue; and beta sheet-green) are shown in Figures 5, S4
and S5, along with the conserved domains and HC amino
acids described in Figures 2, 3, 4. To be sure that differ-
ences among evolutionary groups were in agreement with
these results, we also chose three groups of species that
contain a large number of sequenced proteins (6-13) and
that are evolutionary far from each other: animals (A),
and two fungi groups, Saccharomycetes (FS), and Pezizo-
mycotina (FP), and show these results in Figures S4 and
S5.

Surprisingly, the predicted secondary structure of Trs120
and Trs130 is highly conserved not only in domains that
are conserved for primary structure, but also along the
whole sequence of these proteins, even where there is low
sequence identity between the groups (Figures 5 and S4).
Therefore, the predicted secondary structure of these two
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FSp VKTA SRSV[LIKPKADNVIILJFRLKRFIMSS EINLDIPNLSTKQFV GF IEDSYTMKKRFWIKEY E|VQASWKTDD
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Figure 2

Trs120 is conserved in almost all eukaryotes. A. The domain structure of Trs120 is shown. Hs and Sc show amino acid
coordinates in H. sapiens and S. cerivisiae, respectively. HC indicates highly-conserved amino acids described in Table S2. "Sizes"
shows the median amino-acid lengths of all inter- and intra-domain lengths (intra-domain sizes are in bold). Arrows indicate a
functional breakpoint. C-terminal truncation from this point results in a temperature-sensitive growth phenotype, while trun-
cation N-terminal to this point is lethal. Actual sequences corresponding to these regions can be viewed at [50]. B. We show
the multiple alignment of representative organisms for the sequences of each domain, I-V. Whole sequence alignment of all
sequences from the NCBI nr database is shown in Figure S1. Organism abbreviations are as given in Table S1. For each position
in the alignment, all amino acids belonging to the popular amino-acid grouping [42] best representative of the characters acids
at that position, are marked in grey. Positions without sequence correspond to stretches in the alignment where one or two
sequences contain long insertions that do not occur in the other sequences. Boxes were drawn to indicate the HC positions
shown in A. To indicate the overall contribution of each of the amino acids at each position, we also show an Alscript [51] dia-
gram above the multiple alignhment. The height of each amino acid indicates its relative contribution to the alignment at that
position, ignoring insertions (-). Amino acids corresponding to the most common amino acid grouping are written in black,
while all other amino acids are written in gray.
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Figure 3

Trs130 is conserved in almost all eukaryotes. Same as Figure 2 except that A-bottom shows the domain structure for
worm proteins, because these sequences have a deletion of domain lll. Also, only a C-terminal-truncated temperature-sensi-
tive mutant is shown. HC amino acids are detailed in Table S3. Whole sequence alignment of all sequences from the NCBI nr
database is shown in Figure S2.
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Trsé5 is conserved in fungi. Same as Figure 2, HC amino acids are detailed in Table S4. Whole sequence alignment of all

sequences from the NCBI nr database is shown in Figure S3.

proteins is conserved better than their primary structure.
Similar analysis of Trs65 among the Saccharomycetes and
Pezizomycotina fungal groups shows conservation of pre-
dicted secondary structure among members of the same
group. However, these predictions do not agree well
between the two subphyla (Figure S5). This suggests that
unlike Trs120 and Trs130, the interactions, and perhaps
the specific functions, of Trs65 are not well conserved
even among all fungi.

For the three protein families, we searched all studied
sequences (from all organisms) for potential structural
motifs using SMART [30,31]. We found some isolated
SMART hits, but none were consistent across a whole
group (i.e., all animals, all of a fungal subphylum, etc).
Notably, none of the isolated hits overlapped the con-
served domains shown in Figs 2, 3, 4. Portions of the con-
served domains of TRAPPII-specific subunits seem good
prospects for inclusion in future releases of such motif-
finding engines.

Trs130 is a membrane-associated protein

Based on sequence analysis, the S. cerevisiae Trs130 and its
human homolog were suggested in 1997 to contain trans-
membrane domains (TMDs). In fact, the human homo-
logue was named TMEM1, for Trans-Membrane Epilepsy
Myoclonus [23]. However, the yeast TRAPP complex is
only membrane associated, because it can be removed

from membranes by salt but not by detergent [32,33],
even though this was not shown specifically for Trs130.

Because the S. cereviciae Trs130 contains two putative
trans-membrane domains [34], we wished to determine
whether this protein is a trans-membrane or a membrane-
associated protein. Trs130 isolated from yeast cell lysates
is found in the P100 (pellet of 100,000 x g) particulate
fraction of cell lysates (Figure 6, panel A), which floats
with membranes on an OptiPrep gradient (Figure 6, panel
B). If Trs130 were a trans-membrane protein, it could be
extracted from the membrane by detergent, but not by
salt. However, treatment of the P100 fraction with salt,
and not with detergent, yields soluble Trs130 (Figure 6,
panel C). Therefore, the yeast Trs130 behaves as a mem-
brane-associated protein, and not as a trans-membrane
protein. These results imply that the observed hydropho-
bic domains do not function as TMDs, but rather are
important for the proper folding or interactions of Trs130.

This idea that TMEM1 and Trs130 are trans-membrane
proteins was based on sequence analysis, so we revisited
this sequence analysis for the human TMEM1. Previously,
sequence analysis of the human TMEM1 suggested that
the protein contained two (using SOSUI, [23]) or multi-
ple [24] trans-membrane domains (TMDs). We tested the
human TMEM1 sequence for putative TMDs using SOSUI
[35] and SMART [30] on 6/06, and no TMDs were
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Figure 5

Predicted secondary structure of Trs120 and Trs130 is conserved across eukaryotes. A. Trs|120; B. Trs|30. Sec-
ondary structures were predicted by Prof [29] for all studied sequences and drawn with conserved boxes, HC amino acids, and
mutagenesis-derived breakpoints. Secondary structures are predicted to be either helical (red), beta sheets (green), or coiled
(blue). Similar data on a per-group basis is presented in Figure S4. Arrows indicate functional breakpoints. C-terminal trunca-
tion from the indicated points in both Trs120 and Trs|30 results in a temperature-sensitive growth phenotype, while trunca-
tion N-terminal to this point in Trs120 is lethal.
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Figure 6

The S. cereviciae Trs130 behaves as a membrane-associated, not trans-membrane, protein. A. Trs[30 is found in
the P100 fraction of cell lysates. Lysates (from 65 OD,, cells) from wild type (NSY991) cells expressing Trs|130-HA were frac-
tionated by 100,000 x g centrifugation to yield supernatant, S100, and pellet, P100, fractions. The fractions (from 6.5 OD,,
cells) were tested by immuno-blot analysis using anti-HA antibody. B. Trs|30 floats with membranes on OptiPrep gradients.
The P100 fraction (from 50 ODy, cells) from panel A, was loaded on an OptiPrep gradient. After centrifugation, the fractions
were tested by immuno-blot analysis using anti-HA, anti-Ypt3| and anti-EMP47 antibodies. Trs|30-HA fractionates with two
other membrane proteins, Ypt3| and EMP47. C. Trs130 can be extracted from the P100 fraction by salt, but not by detergent.
Resuspended P100 fractions (100 pg) were incubated with 0.5 M NaCl or 1% Triton X-100, and subjected to centrifugation. 50
pg were examined by immuno-blot analysis as described in panel A. Emp47 serves as a control for a trans-membrane protein
that can be extracted by detergent, but not by salt. Bands were quantified and percent distribution in S100 and P100 is shown.
Results in this figure are representative of three independent experiments.

detected by these programs. Note that SMART uses Discussion

TMHMM?2.0 to predict TMDs, a method which has been
shown to be among the most accurate at such tasks [36].
We suspect that the TMD-detecting algorithms have
become more discriminating in the intervening years and
suggest that, like the S. cerivisiae Trs130, the human pro-
tein is a membrane-associated protein, not a trans-mem-
brane protein as suggested by its original name.

We show here that the TRAPPII-specific subunits, Trs120
and Trs130, are conserved from fungi to animals. This
conclusion is based on sequence and predicted secondary
structure analyses. Multiple alignments analysis reveals
conserved domains with highly conserved amino acids in
each protein family. Predicted secondary structure analy-
sis reveals conservation in the clustal/HC-derived
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domains as well as in the intervening sequences. The con-
servation of the predicted secondary structure and the fact
that the secondary structure of these proteins is conserved
better than their primary structure supports the analysis
presented here. This suggests that TRAPPI]I, like TRAPPI, is
a conserved complex, and that the function of both
TRAPP complexes, in the regulation of trafficking through
the Golgi apparatus, is also conserved.

In contrast, the non-essential subunit, Trs65, is conserved
only between some fungi. The Trs65-related proteins also
share conserved domains with highly conserved amino
acids. However, their secondary structures as predicted by
Prof are not highly conserved between two evolutionary
distant fungal groups, Saccharomycetes (FS) and Pezizo-
mycotina (FP). The fact that Trs65 is not essential for via-
bility in S. cerivisiae, and is only weakly conserved among
some unicellular eukaryotes, suggests that Trs65 has a
fungi-specific function. Indeed, it was implicated in S.
cerivisiae in cell-wall biogenesis [27]. Alternatively, other
organisms may have a functionally similar subunit that
does not share sequence similarity with Trs65.

The S. cerivisiae TRAPP complexes act as activators, GEFs,
for the Golgi Ypts [13,16,32]. In general, Ypt/Rab GEFs are
large protein complexes [37], and there is no similarity
between GEFs for different Ypt/Rab paralogs. This sug-
gests the recruitment of Ypt/Rab GEFs from divergent fam-
ilies. The reason for this might stem from the divergence
of factors that regulate these GEFs, about which, very little
is currently known. Thus, the diversity of the Ypt/Rab
GEFs suggests that GEFs that function in different cellular
compartments are regulated by diverse upstream factors.
Alternatively, Ypt/Rab GEFs might have diverged beyond
recognition, which is hard to believe in light of the conser-
vation of the whole trafficking machinery.

Unlike the Ypt/Rabs, for which the number between fungi
and mammalian cells increases by about seven fold, the
number of TRAPPI and TRAPPII subunits per genome
remains constant through evolution (except for two mam-
malian paralogs of Trs33, A and B, see Table 1). This ratio
of Rab/GEF suggests that in mammalian cells TRAPP acts
as a GEF for more Rabs than in S. cerivisiae, perhaps for
whole groups of Yptl/Rabl- and Ypt31/Rab11-related
proteins [6]. Alternatively, more animal GEFs evolved
during evolution that do not share sequence similarity
with the fungal GEFs.

Domains and functions

The conservation of the primary and the secondary struc-
tures of Trs120 and Trs130 suggests that they coopera-
tively execute an important cellular function. We propose
that conservation of secondary structure of the well-con-
served domains (defined by sequence conservation and

http://www.biomedcentral.com/1471-2148/7/12

the presence of highly conserved amino acids) probably
reflects conservation of catalytic functions and/or protein-
protein interactions of these domains. The latter are
known to place constraints on the divergence of residues
in contact surfaces. In contrast, conservation of the sec-
ondary structure of the intervening sequences might be
required for the three-dimensional orientation of the
well-conserved domains.

We have previously suggested a role for the TRAPP com-
plex in the coordination of entry into and exit from the
Golgi [14,16], and for the TRAPPII-specific subunits, in
the specificity switch of the GEF activity of TRAPP from
Yptl to Ypt 31/32 (| 16], and Figure 7). Based on our func-
tional analysis of the S. cerivisiae Trs120 and Trs130, we
propose a number of protein-protein interactions for the
two essential TRAPPII-specific subunits. We predict at
least two protein-protein interactions for Trs120, with
Trs130 and with TRAPPI [16]. The four Trs120 conserved
domains (I-II, and part of IV), which are essential for S.
cerevisiae, are candidates for these interactions. For Trs130,
we predict at least two protein-protein interactions and a
possible catalytic role in the Ypt31 GEF activity of TRAPPII
[16]. The two conserved Trs130 domains that are essential
for S. cerevisiae viability, I and II, are candidates for these
functions. The identification of Trs120- and Trs130-con-
served domains and HC amino acids will allow future
functional analysis of the separate domains of these large
proteins.

Proposed roles for the mammalian Trs120- and Trsl30-
related proteins

We suggest that the role of the two TRAPP complexes as
Ypt/Rab GEFs and their coordination function are con-
served from fungi to animals. However, the mammalian
orthologs of Trs120 and Trs130 were implicated in other
cellular processes. The mammalian Trs120-related pro-
tein, NIBP was implicated in NF-kappaB signaling [21].
While the suggested functions of the fungal and mamma-
lian orthologs of Trs120 do not overlap, they do not con-
tradict each other, and it is possible that trafficking
through the Golgi in mammalian cells is regulated by NF-
kappaB signaling.

In contrast, the mammalian Trs130-related protein,
TMEM1 (for Trans Membrane Epilepsy Myoclonus), was
implicated in a function distinct from protein trafficking,.
While the S. cerevisiae TRAPP, including Trs130, is a mem-
brane associated complex, TMEM1 was suggested to be a
trans-membrane protein and to function as a membrane
channel [23,24]. Our analyses suggest that both the S. cer-
eviciae Trs130 (by membrane-extraction analysis) and the
human TMEM1 (by sequence analysis) are not trans-
membrane proteins. Based on our alignment and pre-
dicted secondary structure analyses, we propose that the
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Model for the conserved structure and function of the TRAPPI and TRAPPII complexes. TRAPP complexes medi-
ate exocytic trafficking from the ER, through the Golgi, to the plasma membrane. The TRAPPI complex (left) is shown as a
quadrilateral with subunits indicated as triangular sections. Subunits are 3-Bet3, 5-Bet5, 20-Trs20, 23-Trs23, 31-Trs31, 33-
Trs33. The Bet3 family (3, 31, 33), are shown as identically light gray triangular sections. The Bet5 family (5,20,23) are shown as
identically dark gray triangular sections. The displayed arrangement of components is derived from Kim et al., 2006 [17]. The
TRAPPII complex (right) includes all the TRAPPI components plus the three TRAPPII-specific subunits shown in the trapezoidal
shape above TRAPPI. In both complexes, subunits essential for viability are labeled in black letters, while non-essential subunits
are shown in gray letters. Functionally, TRAPPI is the GEF for Yptl, the GTPase (GTPases are shown as triangles) that regu-
lates entry into the Golgi, whereas TRAPPII is the GEF for Ypt31/32, the GTPases that regulate exit from the Golgi [16]. All
shapes have areas proportional to the corresponding amino acid lengths, except for Trs85, which is larger than shown.

function of Trs130 as a specificity switch for TRAPP's GEF
activity is conserved. These ideas can now be tested.

Trs120 and Trs130 and human disorders

Regulation of critical steps of the exocytic pathway is
bound to be crucial in understanding the basis of every
disease that is connected with secretion of a substance or
presentation of a receptor on the plasma membrane.
Indeed, several TRAPPI subunits were implicated in
human diseases. For example, a missense mutation in
human Bet5/TRAPPC1 results in the expression of anti-
genic peptides in melanoma [38]; and the SEDL/Trs20
gene is responsible for SEDT, an Xlinked skeletal disorder
[39]. The two mammalian orthologs of Trs120 and Trs130
were also implicated in human disorders: NIBP, the
Trs120 ortholog, was implicated in neurogenerative disor-
ders, based on its connection to NF-kappaB signaling
[21]. The Trs130 ortholog, TMEM]1, is a candidate for sev-
eral human disorders, including certain types of epilepsy,
autoimmune, and holoprosencephaly disorders, based on

genetic linkage studies mapping genes responsible for
these disorders to a chromosome region that includes
TMEM1 [23,24,40]. Therefore, resolving the probably
conserved function of the mammalian NIBP and TMEM1
proteins should help elucidate the basis for these disor-
ders.

Conclusion

TRAPP is a modular protein complex that regulates entry
into and exit from the Golgi, which is a cellular compart-
ment central to multiple trafficking pathways. TRAPPI, the
complex that functions in the entry to the Golgi, is highly
conserved. We have recently shown that the two yeast
essential TRAPPII-specific subunits are required for chang-
ing the activity of TRAPPI to that of TRAPPII [16]. Here,
we explored the conservation of the TRAPPII-specific sub-
units. We show that the primary and secondary structures
of the two essential subunits, Trs120 and Trs130, are con-
served from yeast to man, whereas the non-essential Trs65
is conserved only among some unicellular eukaryotes. We
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suggest that the role of the human orthologs of Trs120
and Trs130, NIBP and TMEM1, respectively, in the regula-
tion of intra-cellular trafficking is also conserved. Con-
served domains and highly conserved amino acids in
these domains should help future functional studies of
these proteins in higher eukaryotes.

Methods

Identification of TRAPPII-specific subunit sequences

We searched the non-redundant protein database from
NCBI on 7/06 [41]. Trs120-containing proteins were
identified by iteratively performing BLAST analysis of this
database with the S. cerivisiae Trs120 sequence with an
expectation value of 10-5. Hits from the first and subse-
quent rounds of BLAST analysis were used to perform
additional analyses until no more sequences were discov-
ered. An identical procedure was used for the identifica-
tion of Trs130- and Trs65-containing proteins, again
using the S. cerivisiae sequences as seeds.

Table S1-A shows all identified sequences including
abbreviated names used in all figures, protein sequence
length, accession numbers, and annotations from the
NCBI database. Full-length versions of each sequence
were identified for all further work, discarding truncations
or deletions. We used these Trs120, Trs130, and Trs65
proteins to search 24 additional, largely completed
genomes in various stages of completion and annotation.
We searched in both called proteins sequences and in the
raw genome using tblastn. The sequence source and the
presence or absence of Trs120, Trs130, and Trs65 in these
genomes is shown in Table S1-B.

For Trs130, the two worm sequences, C. briggsae and C.
elegans, seemed to be truncated relative to the remaining
Trs130-containing proteins. We searched both completed
genomes in all six reading frames using the universal
translation table for sequences corresponding to the C-ter-
minal remainder of any of the other animal proteins. We
found no significant blast hits.

Construction of the phylogenetic trees

The identified Trs120, Trs130, and Trs65 proteins were
aligned by clustal [42], using the default settings for slow/
accurate alignments (gap penalty of 10, gap extension cost
of 0.2, 30% delay for divergent sequences, 4 space gap
separation distance, without end gap separation, with res-
idue-specific penalties, and using the Gonnet series pro-
tein weight matrix). The aligned sequences were manually
trimmed on the N- and C-terminal ends to remove weak
or ambiguous alignments. Phylogenetic analysis was per-
formed using PAUP 4.0b10 [43] and PHYML [44]. Dis-
tance trees were created using the heuristic distance search
for optimal trees by PAUP and the maximum likelihood
method by PHYML. The PAUP tree was started with neigh-

http://www.biomedcentral.com/1471-2148/7/12

bor joining, and branch swapping used the TBR algo-
rithm. We used default settings for the ML method (JTT
substitution model, 1 substitution rate category, optimi-
zation on for branch lengths and topology). To estimate
the reliability of the PAUP tree, bootstrap analysis was
performed with 1000 replicates of full heuristic searches,
using the same weighting parameters employed in the ini-
tial analysis. The trees were drawn by TreeView version
1.6.6 [45] and manually modified in a general-purpose
graphics editor. Branches were color coded from red to
green to reflect their persistence in bootstrap analysis in
50-100% of sampled trees. We constructed unrooted
trees for the TRAPPII-specific subunits because we could
not find any sequences that are related to them, even at an
extremely lenient blast cutoff (e<10-2), and are unambig-
uously diverged from all eukaryotes, e.g., from archaeal or
bacterial proteomes.

Domain structure and identification of Highly Conserved
(HC) amino acids

Domains were defined by inspection of the raw clustal
files and of the graphical multiple alignments shown in
Figures S1-S3. Domains were consistently present in all
sequences in all groups of organisms examined.

We examined the clustal-generated alignments for highly-
conserved (HC) amino acids, using popular amino acid
groupings [42]. Alignment positions were considered HC
if more than 90% of the residues belonged to an amino
acid group. Since some groups (MILV, MILF, and SAT) are
quite common, we discarded these positions if they were
more than 20 amino acids away from any other HC posi-
tion.

Prediction of secondary structures

We predicted sequence secondary structures using Prof
[29], a secondary structure predictor that uses multiple
alignments to inform its prediction about the helical,
beta-sheet, or coiled nature of each position in the pri-
mary sequence. We used the same clustal-generated align-
ment used for phylogenetic trees and annotated
alignments for Prof analysis. To be sure that its results
were consistent, we gave Prof either all the aligned
sequences (ALL) just those from animals (A), just those
from Saccharomycetes (FS), or just those from Pezizomy-
cotina (FP). We wrote a custom perl program to draw
these predicted secondary structures as red (helix), green
(beta-sheet) or blue (coiled) bars alongside HC and
domain annotations.

Reagents

The following yeast strain was used in this study: wild
type, NSY991 (VSY459; MATa leu2-3,112 his3-200 trpl-
901 lys2-801 suc2-9 ura3-52 TRS130-HA:HIS3MX6) [26].
Antibodies used in this study: Mouse monoclonal Anti-
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HA (clonel2CA5, Roche); affinity purified rabbit anti-
Ypt31 [9]; rabbit anti-EMP47 (gift from H. Riezman,
[46]); and horseraddish Peroxidase linked Anti-rabbit and
anti-mouse IgG (Amersham Biosciences). All chemical
reagents were purchased from Sigma (St. Louis, MO),
unless otherwise noted. lodixanol density gradients, Opti-
prep™, were purchased from Axis-Shield PoC AS (Oslo,
Norway).

Preparation of cell lysates and protein analyses

Yeast cells were grown in rich (YPD) medium [47]. Yeast
cell extracts were prepared as previously described [48].
Cell breakage buffers were supplemented with an EDTA-
free protease inhibitor cocktail (Roche Diagnostics, Indi-
anapolis, IN). Protein concentrations were determined by
BioRad protein assay (BioRad). 10 ug of yeast whole-cell
lysates were loaded on 7.5-10% SDS-PAGE. Gels were
run, and proteins were transferred to PVDF membranes
and subjected to immuno-blot analysis. Quantification of
protein bands was done using the AlphaEase FC and
Alpha-Imager (Alpha Innotech Corporation).

Membrane attachment analysis

Cell fractionation: Yeast cell lysates were prepared as
described above with the following alterations: Frozen
cell pellets (22-25 ODy, units) were resuspended and
broken in 100 ul spheroplast buffer [49] by vortexing 3
times for 2 minutes each at 4°C. 100 ul of spheroplast
buffer was added and the supernatant was separated from
cell debris as previously described [48]. 100 ul of the
supernatant was saved to be used as total cell lysates and
the other 100 ul was taken for further centrifugation at
100,000 x g for 30 minutes at 4°C. The supernatant
(S100) was separated from the pellet (P100). P100 was
resuspended in spheroplast buffer to the same volume as
$100. 75 pg total cell lysates and an equivalent of 1.5
ODyq, units for P100 and S100 were subjected to
immuno-blot analysis.

Iodixanol Density Gradient: Resuspended P100 fractions
were analyzed on 30% iodixanol density gradients (Opti-
prep™, Axis-Shield PoC AS) according to the protocol pro-
vided by the company. Fractions were analyzed by
immuno-blot analysis.

Membrane Extraction: P100 was resuspended in 100 pl
B88 alone, or supplemented with 1% Triton X-100, or
with 0.5 M NaCl as previously described [32]. Samples
were centrifuged at 100,000 x g and subjected to
immuno-blot analysis.

Abbreviations
PM- Plasma Membrane; ER- Endoplasmic reticulum;
GTP-Guanine Tri-Phosphate; GEF- Guanine nucleotide
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Exchange Factor; nr- Non Redundant; HC- Highly Con-
served; TMD- Trans Membrane Domain.
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