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Abstract
Background: The need to compare protein profiles frequently arises in various protein research
areas: comparison of protein families, domain searches, resolution of orthology and paralogy. The
existing fast algorithms can only compare a protein sequence with a protein sequence and a profile
with a sequence. Algorithms to compare profiles use dynamic programming and complex scoring
functions.

Results: We developed a new algorithm called PHOG-BLAST for fast similarity search of profiles.
This algorithm uses profile discretization to convert a profile to a finite alphabet and utilizes hashing
for fast search. To determine the optimal alphabet, we analyzed columns in reliable multiple
alignments and obtained column clusters in the 20-dimensional profile space by applying a special
clustering procedure. We show that the clustering procedure works best if its parameters are
chosen so that 20 profile clusters are obtained which can be interpreted as ancestral amino acid
residues. With these clusters, only less than 2% of columns in multiple alignments are out of
clusters. We tested the performance of PHOG-BLAST vs. PSI-BLAST on three well-known
databases of multiple alignments: COG, PFAM and BALIBASE. On the COG database both
algorithms showed the same performance, on PFAM and BALIBASE PHOG-BLAST was much
superior to PSI-BLAST. PHOG-BLAST required 10–20 times less computer memory and
computation time than PSI-BLAST.

Conclusion: Since PHOG-BLAST can compare multiple alignments of protein families, it can be
used in different areas of comparative proteomics and protein evolution. For example, PHOG-
BLAST helped to build the PHOG database of phylogenetic orthologous groups. An essential step
in building this database was comparing protein complements of different species and orthologous
groups of different taxons on a personal computer in reasonable time. When it is applied to detect
weak similarity between protein families, PHOG-BLAST is less precise than rigorous profile-profile
comparison method, though it runs much faster and can be used as a hit pre-selecting tool.

Background
The availability of many completely sequenced genomes
provides rich material for studying protein evolution.

Gene duplications, gene losses, gene acquisitions and hor-
izontal transfer of genes make it very difficult to recon-
struct the exact evolutionary history of a protein family. A
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widely used approach to study such history is to find
orthologs and paralogs by comparing completely
sequenced genomes. Orthologs are genes derived from a
single ancestral gene as a result of the speciation event,
while paralogs are genes that result from gene duplication
events [1-3]. How can we resolve these evolutionary rela-
tionships for hundreds of organisms having thousands of
genes using just an ordinary personal computer? One pos-
sible approach is to create orthologous groups for each
node of the evolutionary tree [4] and to compare ortholo-
gous groups belonging to different nodes of the tree. Since
each orthologous group is represented by a multiple
alignment of protein sequences, we need a very fast algo-
rithm to compare multiple alignments.

Profiles represent a very sensitive technique to represent a
protein family and to compare protein families. They were
introduced by Michael Gribskov and co-workers [5] and
they have proved to be a valuable tool for finding weak
similarities between distant proteins belonging to one
family or superfamily and for improving sensitivity of
database searches [6,7]. Two views have been established
on the composition of profiles: continuous and discrete.
The continuous model of profiles imposes no restriction
on amino acids and their counts present in an alignment
column, while the discrete model assumes that only cer-
tain amino acid residues can be found at a certain position
in the multiple alignment of a protein family.

The efforts of several authors were directed to improve
profiles by sequence weighting [8-12] and by introducing
pseudocounts [13-16]. As it was pointed by Roman
Tatusov and co-workers [6], the most efficient method in
improving the quality of profiles by adding pseudocounts
is the Dirichlet mixture. This mixture is a linear combina-
tion of Dirichlet distributions. Although no restrictions
are imposed on frequency profiles in this model, Dirichlet
distributions can be considered as discrete condensation
points in 20-dimensional space.

The discrete view on profiles is exemplified by the
PROSITE database [17], which states what kind of amino
acids can be present in a single position of a protein sig-
nature.

Existing procedures for profile-profile comparisons [18-
22] use dynamic programming and complex scoring func-
tions between profiles like dot product to score a column
from one profile aligned to a column of the other profile.
These methods were successfully used to detect weak sim-
ilarities between different protein families, to recognize
folds and to predict 3-D structure. A pairwise alignment of
profiles using dynamic programming requires A2*m*n
operations, where A is the alphabet size (for proteins A =
20), m and n are protein lengths. Fast heuristic BLAST-like

procedures require a discrete alphabet and it is not possi-
ble to use them to compare a pair of profiles. If we are able
somehow to convert profiles to discrete values, then we
can substitute an alignment column with a symbol denot-
ing the column type. To this end, all alignment columns
from the BLOCKS database were converted to frequency
distributions and a special clustering procedure was
applied to them. It appeared that more than 98% of align-
ment columns in multiple alignments from standard
databases of protein multiple alignments belong to just
20 clusters, each with its own dominating amino acid res-
idue ("ancestral" residue). Therefore, it is possible to sub-
stitute an alignment column with this dominating residue
that can be also thought as the "ancestral" amino acid res-
idue from which the alignment column evolved. In the
case we cannot assign an alignment column to its "ances-
tral" residue, a special symbol "X" is used, denoting a "gar-
bage" column.

When "ancestral" sequences are obtained it is possible to
find a similarity score by applying the rigorous Smith-
Waterman algorithm [23]. But it is more desirable to
develop an algorithm that might be somewhat not so rig-
orous but fast enough to allow a researcher to perform
very computationally intensive tasks, for example, to
compare orthologous groups of different taxons on a per-
sonal computer in reasonable time.

Implementation
Clustering procedure
Each alignment column from a database of multiple
alignments was converted to the frequency vector using a
simple formula:

where Ni is the number of times amino acid i occurs in the
column, N is the number of sequences in the multiple
alignment. Thus, we obtained the data set D of all fre-
quency vectors computed from all alignments columns.

Following Shmuel Pietrokovski [24], we define similarity
between column frequency vectors as the Pearson correla-
tion coefficient r:

We have chosen a variation of the classical "k-means" pro-
cedure [25] due to the simplicity of its implementation
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and easy analysis how it depends on its main parameter.
Since we do now know the number of clusters in the data
set D, we can setup a correlation coefficient threshold
rthresh and then merge clusters Ci and Cj if the distance
between them is less than rthresh. Our modified "k-means"
procedure will run as follows.

1. For each frequency vector x find all frequency vectors y
such that r(x,y)<rthresh. These frequency vectors will form
an initial cluster. If a frequency vector is already included
in an initial cluster, it is not considered as a seed for a new
cluster. Compute the initial means μ1,...,μk.

2. Assign each frequency vector x in D to the cluster Ci
whose mean μi is the nearest to x.

3. Recompute the means of all the clusters.

4. Merge clusters Ci and Cj if r(μi, μj)<rthresh.

5. Repeat steps 2, 3 and 4 until the number of clusters does
not change.

Computing frequency column clusters from BLOCKS, 
COG and PFAM
To find frequency column clusters in the BLOCKS data-
base [26], each block from BLOCKS was processed to give
a new multiple alignment. This was done to balance the
set of sequences in the alignment, so that closely homol-
ogous sequences were removed. The processing procedure
scanned the sequences in each block from the first
sequence to the last. The first sequence from the block was
always included in the new multiple alignments. The ith
(i = 2÷ N, where N is the number of sequences in the
block) sequence was included in the new alignment only
if it was less than 65% identical to all previously included
sequences. Thus, all sequences in the resulted multiple
alignment were less than 65% identical with each other.
After the extraction procedure, only alignments having at
least 15 sequences were considered for to further process-
ing to have enough statistical material. In total, 39253
alignment columns were obtained. The average number
of sequences in a multiple alignment was 32. The average
protein identity in a multiple alignment was 27%.

Fig. 1 shows the number of clusters as dependent on the
correlation coefficient threshold r*. The plot shows that
when r*< 0.6 the number of clusters is almost constant,
whereas after 0.7 the number of clusters sharply increases.
In the interval 0.5<r*<0.65, the number of clusters equals

μi i
C

C
i

=
∈
∑( / | |)1 x

x

The number of clusters in the BLOCKS (<65% identity), PFAM and COG databases as a function of the correlation coefficient threshold employed in the clustering procedureFigure 1
The number of clusters in the BLOCKS (<65% identity), PFAM and COG databases as a function of the correlation coefficient 
threshold employed in the clustering procedure. Note the horizontal region on the plot when the correlation coefficient 
threshold is between 0.5 and 0.65.
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20. Additional file 1 contains 20 average frequency vectors
corresponding to each frequency cluster. Each cluster is
dominated by a single amino acid, suggesting that col-
umns belonging to one cluster are result from the evolu-
tion of just one ancestral amino acid.

To test that this dependence of the number of clusters on
the correlation coefficient threshold is the general feature
of multiple alignments we applied the same clustering
procedure to the COG [27] and PFAM (seed alignments)
[28] databases of multiple alignments of protein families.
In these cases we did not do any filtering of sequences in
multiple alignments but we only weighted sequences
using the position-based method of sequence weighing
[12]. We obtained the same dependence of the number of
clusters on the correlation coefficient threshold with flat
regions corresponding to 20 clusters when the correlation
coefficient threshold varies from 0.5 to 0.65 and slow
decrease when it is less than 0.5 and abrupt rise when it is
greater than 0.7 (Fig. 1). Cluster averages were very similar
to those shown in Additional file 1 with one dominating
amino acid in each cluster, though diagonal values were
different reflecting the average identity of protein
sequences in multiple alignments of different databases
(data not shown).

Any clustering procedure will also attempt to create a hier-
archy of clusters. It is interesting to know if there are any
other subclusters inside the 20 clusters obtained by our
procedure. To answer this question, we applied our proce-
dure to all columns in the BLOCKS database that belong
to the alanine cluster. Fig. 2 shows that the alanine cluster
does not contain any subtypes, since when the correlation

coefficient threshold is less than 0.9 we obtain only one
cluster, and when it exceeds 0.9 we have a sharp rise in the
number of clusters. Similar curves were obtained for all
other 19 clusters (data not shown).

To evaluate the size of clusters on the simplex (Σfi = 1) in
the 20-dimensional space, we generated 1000000 random
frequency vectors and counted how many of them fell
inside our 20 reference clusters. A frequency vector was
considered to be inside a cluster if the correlation coeffi-
cient between it and the cluster average vector exceeded
0.5. Only 4% of frequency vectors were inside our 20 clus-
ters, proving the fact that the 20 clusters occupy a negligi-
ble part of the total 20-dimensional frequency vector
space.

To evaluate how columns in standard multiple align-
ments are covered by clusters from Additional file 1, we
analyzed all 1495235 columns available in the COG data-
base by converting them to frequency vectors and finding
the nearest cluster for each column. If the correlation coef-
ficient between the column frequency vector and average
the nearest cluster exceeded 0.5, the column was consid-
ered to belong to the cluster. Only 23268 columns did not
belong to any cluster, less than 2% of the total number of
columns.

Random test
To support the idea of an ancestral residue, the set of arti-
ficial alignments was generated in the following way.
Parameters of the generation process were chosen to
closely mimic parameters of the clustering procedure
done on the BLOCKS database. 400 random protein
sequences each having the length of 100 amino acids were
generated with the standard background frequencies of
amino acids. This produced 40000 alignment columns,
which is close to the number of alignment columns used
in the clustering procedure done on BLOCKS (39253
alignment columns). Each generated sequence was con-
sidered to be an ancestral sequence, and the process of col-
umn evolution in each column of the generated sequence
was modeled by random generation of 32 amino acid res-
idues to obtain the same depth of the generated multiple
alignment as the average depth of multiple alignments in
our clustering procedure done on BLOCKS. Each of these
32 amino acid residues was generated from its "ancestral"
residue with probabilities determined by 4 transition
probability matrices [29], corresponding to BLOSUM30
(fast column evolution), BLOSUM50, BLOSUM60 (mod-
erate column evolution), BLOSUM80 (slow column evo-
lution). One of these 4 matrices was randomly assigned to
a generated column with the following probabilities 0.42
(BLOSUM30), 0.25 (BLOSUM50), 0.21 (BLOSUM60)
and 0.12 (BLOSUM80). These four probabilities were
experimentally found values to simulate column evolu-

The number of subclusters in the alanine cluster obtained from the BLOCKS database as a function of the correlation coefficient threshold employed in the clustering procedureFigure 2
The number of subclusters in the alanine cluster obtained 
from the BLOCKS database as a function of the correlation 
coefficient threshold employed in the clustering procedure. 
Note the sharp rise in the number of subclusters when the 
correlation coefficient threshold is slightly greater than 0.9.
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tion as closely as possible as it exists in BLOCKS. The aver-
age protein identity in thus generated protein sequences
was 32%, which was close to the value obtained in the
previous procedure (27%).

The same clustering procedure was applied to randomly
generated frequency vectors, and similar 20 clusters were
obtained. The Pearson correlation coefficients between
corresponding cluster averages from both groups of clus-
ters is >0.99. This proves that the structure of clusters in
protein multiple alignments and in the random test is
basically the same.

Fig. 3 shows the histogram of frequencies of alanine, ser-
ine and leucine in the alanine cluster from BLOCKS and
from our random simulation. These histograms run pretty
close one against each other proving that our random pro-
cedure can essentially reproduce the column evolution
that exists in nature.

Assignment of an alignment column to a frequency cluster
To assign columns to clusters, we weight sequences in a
multiple alignment to eliminate any distortions in fre-
quency vectors that could be caused by unequal represen-
tation of similar sequences in a multiple alignment. Then
for all columns frequency vectors are calculated and the
correlation coefficient is found between a frequency vec-
tor and the nearest cluster average. If this correlation coef-
ficient exceeds a threshold value we assign a column to its
nearest cluster, otherwise it is replaced with the "X" sym-
bol.

How PHOG-BLAST works
To find a similarity score between two multiple align-
ments, we convert both multiple alignments to "ances-
tral" sequences as it was described in the previous section.
Then our method works in a very similar way as the BLAST
[30] and FASTA [31] algorithms.

Histograms showing the distributions of the frequency of alanine, serine and leucine in the alanine frequency cluster from the BLOCKS database and from the random protein sequencesFigure 3
Histograms showing the distributions of the frequency of alanine, serine and leucine in the alanine frequency cluster from the 
BLOCKS database and from the random protein sequences. a. Frequency of alanine, correlation coefficient between two fre-
quency vectors is 0.986. b. Frequency of serine, correlation coefficient between two frequency vectors is 0.984. c. Frequency 
of leucine, correlation coefficient between two frequency vectors is 0.998.
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1. Hash all l-tuples from the query "ancestral" sequence to
the hash table.

2. Lookup all l-tuples from the "ancestral" sequence from
the database in the hash table. For each l-tuple hit incre-
ment the number of hits at a particular diagonal.

3. Leave only diagonals with Nmin or more l-tuple hits for
further processing. If no such diagonals are found, declare
both compared multiple alignments as non-similar and
quit the procedure.

4. At diagonals, extend the leftmost l-tuple hit leftward
until the total score becomes negative. Memorize the max-
imum score achieved during this extension and the left
end of the segment corresponding to this score. In the
same way, extend this l-tuple rightward. The result of this
extension is a maximal segment pair (MSP). Choose the l-
tuple which is the left most to the resulting MSP if such l-
tuple can be found. Apply the same extension process to
this l-tuple. Scan the diagonal from left to right until no l-
tuple hits are found anymore. Thus, a diagonal with Nmin
or more l-tuple hits can give one or more MSPs. For fur-
ther processing, leave only MSPs exceeding some diagonal
threshold score SCOREthresh. If no such MSPs are found,
declare both compared multiple alignments as non-simi-
lar and quit the procedure.

5. Order MSPs by their left ends belonging to one member
of the pair.

6. Using the following recurrent relationship, obtain the
score of the maximal scoring chain of MSPs:

where Nmsp is the total number of MSPs, si is the score of
the ith MSP, li and ri are MSPs' left and right ends in the
first sequence, mi and pi are MSPs' left and right ends in the
second sequence, G is the fixed gap penalty for starting a
gap, g· max [(lj-ri+1), (mj-pi+1)] is the variable gap exten-
sion penalty.

Following the above description of the algorithm, we pro-
vide a summary of all parameters that can influence the
PHOG-BLAST score between any two multiple align-
ments:

(i) Profile clusters.

(ii) Substitution matrix between "ancestral" sequences.

(iii) Correlation coefficient threshold r*.

(iv) Tuple size l.

(v) Minimum number of tuples on one diagonal Nmin.

(vi) MSP score threshold SCOREthresh.

(vii) Gap starting penalty G.

(viii) Gap continuation penalty g.

Selection of parameters
Extensive computational experiments with PHOG-BLAST
allowed us to determine parameter values that provide the
best PHOG-BLAST performance. For some parameters, we
used traditional values. For other parameters, we had to
carry out a number of computational experiments to
determine their best values. To determine the best value
for a parameter, we varied it over a certain interval, with
all other parameter values remaining constant, and mon-
itored the PHOG-BLAST performance.

Profile clusters [see Additional file 1] were used when con-
verting frequency vectors to "ancestral" sequences. We
used the well-known BLOSUM62 substitution matrix to
compare amino acid residues of "ancestral" sequences.

Our experiments with PHOG-BLAST showed that the cor-
relation coefficient threshold r* that determines whether
an alignment column should belong to a cluster is 0.5. It
is this correlation coefficient that determines the lower
cutoff point on curves showing the dependence of the
number clusters on the correlation coefficient threshold
employed in the clustering procedure (Fig. 1). Remarka-
bly, it is the same for all three databases – BLOCKS, PFAM
and COG, while the upper cutoff point varies in the range
from 0.65 to 0.75. With the correlation coefficient thresh-
old 0.5, only less than 2% of alignment columns in
BLOCKS, PFAM and COG are out of clusters.

Computational experiments with PHOG-BLAST have also
allowed us to determine the best values for other parame-
ters of the algorithm: Nmin is from 1 to 3, l = 2 and SCORE-

thresh is from 15 to 20. 3-tuples are probably not conserved
in protein families from distant organisms, and for l = 1
there is a lot of non-homologous diagonals, so it is diffi-
cult to choose Nmin. The conservation of one to three 2-
tuples on one diagonal in protein families is an empirical
observation that we can use in building the efficient and
fast algorithm. For gap penalties, traditional values for
them work very well: G = 10 and g = 1.

Results
To test the PHOG-BLAST procedure, we compared it with
PSI-BLAST [7], a well-known algorithm for fast profile
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search, and with COMPASS [18], one of the best rigorous
profile-profile comparison methods.

The testing procedure was performed on the following
databases: COG [27], PFAM [28] and BALIBASE[32]. We
have randomly split each multiple alignment from each
database into two subalignments and thus obtained two
sets of multiple alignments (lets us call them DatabaseA
and DatabaseB). Then we applied the two similarity
search algorithms to be tested and found BBHs (bi-direc-
tional best hits). Ideally, both subalignments that were
derived from one multiple alignment should find each
other as the BBH. The lower the number of BBHs that are
not found, the better the scoring algorithm works.

We used PSI-BLAST in the following way. Using the pro-
gram formatdb, we made two databases of sequences
extracting sequences from the multiple alignments from
the databases DatabaseA and DatabaseB. Then for each
multiple alignment in DatabaseB we ran the program
blastpgp with the option -B against the database of
sequences made from DatabaseA. This will find the best
sequence in DatabaseA for the profile made from a multi-
ple alignment in DatabaseB. For this best sequence we
found a multiple alignment in DatabaseA, to which it
belongs, and for this multiple alignment we ran the pro-
gram blastpgp with the option -B against the database of
sequences made from DatabaseB. If the best sequence
found in Database B belongs to the multiple alignment,
from which we started the matching procedure, then this
multiple alignment belongs to the set of BBHs.

Table 1 shows the results of our 3 tests. They show that
PHOG-BLAST either has the same performance as PSI-
BLAST or is superior to PSI-BLAST in the suggested setting.
PHOG-BLAST, however, consumes much less computer
resources. It does not need to build and store a 20-dimen-
sional PSSM for each alignment column in the computer
memory, a task not realizable on an ordinary personal
computer when we need to compare orthologous groups
of different taxons.

Previously developed rigorous profile-profile comparison
methods [18-22] use very sophisticated models of profile
representation and of course our algorithm can not com-
pete with these methods if it is applied to detect remote
homologies. When we used PHOG-BLAST to find BBHs
(bi-directional best hits) while building the PHOG data-
base [4], BBHs with scores less than a given threshold
(100) were discarded. Such BBHs introduce us into the
area of remote homology, and in this area of research the
model of profile clusters is too simple to represent the
reality. To test how PHOG-BLAST works in the twilight
area, we compared PHOG-BLAST with COMPASS. We
used COMPASS as it was described in its documentation.
From the COMPASS web site [33] we downloaded 1254
PFAM alignments containing at least one sequence from
the FSSP database [34]. For each such PFAM alignment we
found a FSSP family as it was described in [18]. We used
COMPASS and PHOG-BLAST to perform all-against-all
comparisons between these 1254 PFAM alignments and
to find BBHs. A BBH was considered to be true positive if
both PFAM alignments belonged to one FSSP family and
false positive if both PFAM alignments belonged to differ-
ent FSSP families. Fig. 4 shows the sensitivity curves for
both methods. Of course, COMPASS showed better per-
formance in the twilight area. However, it took COMPASS
11 hours to perform the test, while PHOG-BLAST required
only half an hour of computation time. All tests were per-
formed on 3.2 GHz Pentium 4 computer with 1 GB of
RAM running Red Hat Linux 7.3.

To test how COMPASS and PHOG-BLAST work at smaller
evolutionary distances (BBH score >100), we used these
algorithms to restore protein families in a similar fashion
as we did it when compared PHOG-BLAST with PSI-
BLAST. To do this test, we have randomly selected 500
PFAM alignments having at least 6 sequences from the
earlier mentioned downloaded 1254 PFAM alignments.
From each such PFAM alignments, we randomly selected
6 sequences, and from these sequences we made two sub-
alignments each having 3 sequences randomly selected
from this group of 6 sequences. We used COMPASS and
PHOG-BLAST to find BBHs between these two databases
each having 500 alignments consisting of 3 sequences. All

Table 1: This table shows the ability of PHOG-BLAST and PSI-BLAST to match members of different subalignments belonging to one 
protein family against each other as BBHs when the initial multiple alignment of the protein family was split in two subalignments. See 
the Results section for explanation

Test index Database Total number of BBHs 
to be found

Number of BBHs found

PHOG-BLAST PSI-BLAST

1 COG 3164 3096 3109
2 PFAM 7315 6773 4278
3 BALIBASE 143 70 0
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tests were performed on 3.2 GHz Pentium 4 computer
with 1 GB of RAM running Red Hat Linux 7.3. It took
COMPASS 40 minutes to perform the test, while PHOG-
BLAST required only 2 minutes of computation time.
COMPASS was able to correctly restore 490 BBHs with no
false positives, while PHOG-BLAST restored 465 BBHs
with no false positives. This observation together with our
experience of using PHOG-BLAST when we built the
PHOG database [4] demonstrates that PHOG-BLAST used
in this setting does not create false positive BBHs and
finds 5 % less BBHs than rigorous profile-profile meth-
ods.

Discussion
We developed a new algorithm for finding similarity
between protein multiple alignments by finding a way to
convert multiple alignments into "ancestral" sequences.
The justification for this conversion was our clustering
procedure done on frequency distributions and the ran-
dom simulation of the column evolution. Our algorithm
shows performance comparable with PSI-BLAST, or bet-
ter, but it runs much faster. Our results demonstrate that
despite the seeming infiniteness of column space, it is pos-
sible to split it into 20 types and to indicate their evolu-
tionary origin. Our "ancestral" sequences are similar to
consensus sequences used for representing protein multi-
ple alignments. However, we think that our approach to
convert a multiple alignment into a consensus sequence is
more precise, since we have a clearer evolutionary base for
such conversion. This approach helped us to develop a
very precise algorithm for finding similarity between mul-
tiple alignments.

In building frequency distributions we did not use
pseudo-counts. Any inclusion of pseudo-counts in any
form when building frequency distributions only deterio-
rated the performance of PHOG-BLAST. Since we found
20 condensation points in the column space, this con-
trasts with the approach taken in [14], where an arbitrary

decision was made that the Dirichlet mixture consists of
nine Dirichlet densities. This raises an intriguing question:
what if we assume that each frequency distribution
belongs to one of 20 column clusters modeled as closely
as possible as Dirichlet densities? Since mixture coeffi-
cients that link Dirichlet densities together reflect the
probabilities with which each Dirichlet density occurs in
the mixture, these coefficients can be put simply equal to
the frequencies of 20 amino acids in protein databases.

Our methodology of testing profile algorithms can also
provide a framework for comparing different sequence
weighting methods. Within our testing framework, the
smaller the number of BBHs that are not found, the better
a particular sequence weighting method works.

We have not found any subtypes for profile clusters. How-
ever, alignment columns that are descendents of one
ancestral amino acid residue differ in the speed of evolu-
tion. When we convert columns to their clusters, fast
evolving columns and slow evolving columns would
acquire the same symbol. We have not so far devised any
way to include this additional information into our
method.

Conclusion
Since PHOG-BLAST deals with "ancestral" sequences, and
not with profiles, it can be a useful tool for fast comparing
multiple alignments of protein families. This task fre-
quently arises in different areas of comparative proteom-
ics and protein evolution. Our accompanying paper [4]
shows how we used PHOG-BLAST in the development of
the PHOG database and in the automatic reconstruction
of orthologs and paralogs from protein complements of
different species.

Availability and requirements
PHOG-BLAST is freely available in Java programming lan-
guage from http://bioinf.fbb.msu.ru/phogs/HTML/phog
blast.zip and requires the Java runtime environment. It is
also available as an additional file with this manuscript
[see Additional file 2]. The PHOG-BLAST software is pro-
vided with no guarantee or warranty of any kind. It may
be distributed under the terms of the GNU General Public
License.
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Sensitivity curves of COMPASS and PHOG-BLAST for the 
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