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Abstract

Background: Laminins represent major components of basement membranes and play various
roles in embryonic and adult tissues. The functional laminin molecule consists of three chains, alpha,
beta and gamma, encoded by separate genes. There are twelve different laminin genes identified in
mammals to date that are highly homologous in their sequence but different in their tissue
distribution. The laminin alpha -1 gene was shown to have the most restricted expression pattern
with strong expression in ocular structures, particularly in the developing and mature lens.

Results: We identified the zebrafish lamal gene encoding a 3075-amino acid protein (lamal) that
possesses strong identity with the human LAMAI. Zebrafish lamal transcripts were detected at all
stages of embryo development with the highest levels of expression in the developing lens, somites,
nervous and urogenital systems. Translation of the lamal gene was inhibited using two non-
overlapping morpholino oligomers that were complementary to sequences surrounding translation
initiation. Morphant embryos exhibited an arrest in lens development and abnormalities in the body
axis length and curvature.

Conclusion: These results underline the importance of the laminin alpha | for normal ocular
development and provide a basis for further analysis of its developmental roles.

Background

Basement membranes play an important role in tissue
development and maintenance including mechanical sta-
bility, formation of barriers between different cell types
and promotion of cell adhesion, migration, growth and
differentiation. Laminins are large glycoprotein heterot-
rimers that are found as major components of basement
membranes in almost every animal tissue. To date, five
alpha, four beta, and three gamma precursors have been

identified that can combine to form fifteen laminin iso-
forms with different tissue distribution [1-3]. Mutations
in laminin genes have been identified in several human
disorders: muscular dystrophy (LAMA2; [4]), epidermoly-
sis bullosa and Laryngo-onycho-cutaneous syndrome
(LAMA3 [5,6]; LAMB3 [7]; LAMC2 [8], and microcoria-
congenital nephrosis syndrome (LAMB2 [9]).
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Alignment of laminin alpha | proteins. The amino acid residues that are identical in all three or in any two of the proteins
(lamal (zebrafish), LAMAI (human), Lamal (mouse)) are highlighted in dark or light grey, respectively.
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Laminin-1, which is composed of alpha-1, beta-1 and
gamma-1 chains, was first described by Timpl and co-
authors in 1979 [10]. Laminin-1 shows restricted expres-
sion that is largely limited to epithelial basement mem-
branes. Laminin-1 is detected in most embryonic tissues
during early morphogenesis and remains present as a
major epithelial laminin in some adult tissues [2,11-13].
Mice that are deficient in any chain that composes lam-
inin-1 (a1B1y1l) die during the early postimplantation
period with the Lamal-/- phenotype being the mildest of
the three genes deleted [14,15]. This finding could be
explained by the fact that 1 and y1 proteins participate in
multiple heterotrimers and therefore have broader func-
tions than al chain that is restricted to two laminins.
Other animal models of laminin-1 deficiency include
zebrafish grumpy (B1) and sleepy (y1) mutants that were
identified in a genome-wide chemical mutagenesis screen
[16,17] and lambl and lamcl (several alleles) mutants
produced by retrovirus-mediated insertional mutagenesis
[18,19]. The zebrafish laminin f1 and y1 mutants display
shortened body axes due to a failure of notochord differ-
entiation as well as complex ocular defects ([16-19]; also
see below). To date, there are no distinct human pheno-
types associated with laminin-1 mutations although some
studies suggested a potential involvement of LAMBI in a
neonatal cutis laxa with a Marfan phenotype [20] and
LAMC1 in a junctional epidermolysis bullosa inversa
[21].

The laminin alpha-1 gene shows a tissue-restricted expres-
sion pattern and is considered to be the most specific of
the classical laminins. Expression of lamal is detected in
the nervous and urogenital systems, pre-somitic meso-
derm, some brain blood vessels and in the embryonic and
mature lens ([12,13,15], and [22]). The important role of
laminins/extracellular matrix/basement membranes in
eye development and in an adult ocular function has been
discussed in several reports [23-26] but the specific roles
of different laminin subunits are only beginning to be elu-
cidated.

Besides laminin-1 (a1f1y1), laminin alpha-1 participates
in one additional trimer, laminin-3 (a1B2y1) [11,27].
Interestingly, except for lamal, all other components of
either laminin-1 or -3 were found to be involved in ocular
developmental phenotypes. Human LAMB2 mutations
result in a complex phenotype that includes such ocular
manifestations as microcoria, lenticonus, Rieger anomaly,
glaucoma, cataracts and microphthalmia [9]. Mutations
in laminin f1 and y1 genes result in multiple eye anoma-
lies in zebrafish: retinal blowout (expulsion of retinal cells
through the RPE into the adjacent forebrain) [19], disor-
ganized optic nerves [28], some retinal lamination defects
[18,19] and lens hypoplasia, lens capsule rupture and cor-
neal defects [19]. As laminin alpha 1 contributes to both

http://www.biomedcentral.com/1471-213X/6/13

laminins, lamal mutations are likely to result in similar
eye defects and may even cause more severe and/or com-
plex ocular phenotypes due to the cumulative effect of
laminin-1 and -3 deficiencies.

Zebrafish represents a valuable vertebrate model to study
developmental processes. In this report, we present iden-
tification and characterization of the zebrafish laminin
alpha 1 gene including its sequence, expression pattern,
and loss-of-function phenotype.

Results

Cloning of zebrafish lamal gene

In order to identify the zebrafish laminin alpha 1 gene, we
first performed a search for homologous sequences using
the known human and mouse laminin al sequences,
zebrafish genomic database (Zv3) [29] and BLAST engine.
This approach identified ten sequences homologous to
the human LAMA1 gene with the most upstream sequence
corresponding to exon 4 and the most downstream one-
to exon 51 of the human LAMA1 gene (the entire human
gene contains sixty-three exons (GenBank accession
number NM_005559)). The identified sequences were
used to design specific oligonucleotides that were then
utilized in RT-PCR reactions using RNA isolated from 48-
hpf Danio rerio embryos; the resultant PCR products were
separated by electrophoresis, cloned into a plasmid vector
and subjected to DNA sequencing. To identify the full-
length lamal transcript, we performed 5'- and 3' RACE
reactions and determined sequences for the correspond-
ing products of these reactions. The obtained sequences
were arranged into a contiguous assembly and analyzed
using Vector NTI™ sequence analysis software.

The lamal cDNA contig comprised 9581-bp and con-
tained a 9225-bp open reading frame that was predicted
to encode 3075 amino acid protein (Figure 1), 128-bp of
5'UTR and 228-bp of 3'UTR sequence (GenBank number
DQ131910). Detailed analysis of the 5' sequence identi-
fied five initiator codon trinucleotides (ATG) in the 24-bp
region spanning nucleotides 128-152. Among these
potential translational start sites, the second ATG appears
to have the most favorable surrounding sequence
GCGATGATGG with four nucleotides (underlined) being
consistent with the Kozak's consensus sequence identified
for vertebrate genomes [30]. As the translational site "con-
text" sequence is not exclusive at any positions and some
sites were found to be occupied by non-conserved nucle-
otides in all five sequences, we selected the most upstream
ATG codon as a translational start site for the lamal pro-
tein.

The overall sequence demonstrated strong homology with
laminin genes/proteins of the alpha family that were
shown to be highly homologous to each other. In order to
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Figure 2

Phylogenetic tree analysis of the laminin alpha pro-
teins. The zebrafish protein demonstrates close relationship
with laminin alpha | proteins from other species (laminin
alpha | cluster is indicated by bracket).

position the novel zebrafish gene within the alpha laminin
family, we performed a phylogenetic tree calculation
using the corresponding module of Vector NTI™ suite.
This algorithm is based on a sequence distance method
and utilizes the Neighbor Joining formula of Saitou and
Nei [31]. This analysis demonstrated grouping of the
novel transcript with the laminin alpha 1 sequences from
other species (Figure 2). The comparison of human,
mouse and zebrafish laminin a1 amino acid sequences
showed high identity level throughout the entire protein
(Figure 1). Based on BLAST analysis results, the overall
zebrafish lamal sequence demonstrated ~51% identity
with human, mouse and chicken laminin a1, and ~42%
identity- with human and mouse laminin a2 proteins.
The laminin alpha 1 contains several conserved domains:
short signal peptide (amino acids 1 through 17), N-termi-
nal region (a.a. 18-269), seventeen laminin EGF-like
domains and two laminin IV type A1 domains (a.a. 270-
1555), and five laminin G-like domains (a.a. 2305-3070)
(regions are indicated according to the human LAMA1
protein, GenBank number P25391). The N-terminal
domain demonstrated the highest level of conservation
(89% identity with human or mouse sequence) while the
identity level in other domains varied from ~30% to 75%.
The central region of the laminin alpha 1 protein encom-
passing amino acids 1555-2085 (this region participates
in the coil-coil domain formed by three chains a1,$1, and
v1) demonstrated the lowest level of conservation at
~30% (Figure 1). The zebrafish lamal nucleotide and pro-
tein sequences were submitted to GenBank with accession

number DQ131910.

Identification of genomic structure of the lamal gene
Genomic sequences of the lamal gene were identified
either by sequence similarity search using cDNA

http://www.biomedcentral.com/1471-213X/6/13

sequences, BLAST engine and public databases (Zebrafish
Whole Genome Sequencing database; 32) or by direct
sequencing of products generated by long-range PCR
using exonic primers and genomic DNA. The gene was
found to consist of sixty-three exons ranging from 87 to
378 bp in length. Overall, the genomic structure of the
zebrafish laminin alpha 1 gene corresponded well with the
human LAMATI; all the donor and acceptor splicing sites
contained characteristic consensus sequences conserved
in vertebrates (Table 1).

Embryonic expression of zebrafish lamal

Embryonic expression of the zebrafish lamal gene was
studied by RT-PCR and in situ hybridization. Embryos
ranging from the 16-32-cell stage to 120-hpf, as well as
different adult tissues were examined for the presence of
the lamal transcript. Expression of lamal was strong dur-
ing embryonic development and depleted in most adult
tissues, which is consistent with the previously reported
data ([12,13], and [22]). First lamal transcripts were
detected in 3-8 hpf embryos (encompasses embryos at 1k-
cell stage of blastula to 75%-epiboly stage of gastrula) and
expression continued at later embryonic and larval stages
of development (Figure 3). In adult fish, expression was
observed in the eye.

We also tested expression of an additional laminin tran-
script, lama2-like. The Lamal and Lama2 proteins are
highly homologous to each other and were shown to be
functionally redundant [33,34]. The Lamal&2 genes are
expressed in separate as well as overlapping domains dur-
ing development including ocular tissues [35-39]. The
1776-bp lama2-like sequence was identified from Gen-
Bank (Accession Number XM 693031) and demon-
strated 61% identity with the human LAMA?2 at amino
acid level. Expression of zebrafish lama2-like gene was
tested by RT-PCR with gene-specific primers. Based on RT-
PCR results, lama2 expression is detectable starting from
24-hpf embryos (pharyngula) to 84-hpf larvae and was
not found in adult tissues. The lama2 and other, not yet
identified, zebrafish alpha transcripts are likely to be able
to substitute for laminin alpha 1 and each other during
embryonic development. Identification and characteriza-
tion of these genes is necessary to better understand mul-
tiple roles of different laminin isoforms during
development.

Whole mount in situ hybridization was performed using
embryos at 24-, 48-, 72-, and 96-hpf and a 590-bp anti-
sense riboprobe that comprised lamal sequence corre-
sponding to nucleotide positions 287-876 (GenBank
accession number DQ131910). Expression of lamal was
detected in the developing lens, sclera, midbrain, somites,
urogenital system and notochord (Figure 3), which is con-
sistent with the Lamal gene expression in other species.
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I. RT-PCR analysis of lamal expression in embryos and adult fish.

embryo adult

[16- 3- Il
32c 8h 24h 36h 48h 72h 84h 120h eye brain jaw int.o. tail

e, -

lama2_
L

bac”_”..umm — — e e S,

I1. In situ hybridization of lamal in zebrafish embryos.

A B

8hpf . 24hpf ; 48hpf

72hpf : 96hpf

Figure 3

Expression of zebrafish laminin alpha | gene. I. RT-PCR analysis of lamal expression in embryos and adult fish. RT-PCR
results for lamal, lama2 and control bactin transcripts are presented as indicated. Embryonic (16-32 cells to 120-hpf) or adult
(I year old) cDNA samples employed in reactions are indicated at the top: lane |- 16-32 cells, 2- 3-8 hpf, 3- 24 hpf, 4- 36 hpf,
5- 48 hpf, 6- 72 hpf, 7- 84 hpf, 8- 120 hpf embryos; for adult tissues- lane 9 contains products obtained with adult eye cDNA,
10- brain, | I- jaws, 12- internal organs and |3- tail. Il. In situ hybridization of antisense lamal riboprobe in zebrafish embryos.
A-F: 8-96 hpf whole zebrafish embryos that were hybridized with lamal DIG-labeled antisense riboprobe. G-L: Transverse
sections of 48-96 hpf zebrafish embryos at the level of the eye (G), brain (H), otic vesicle (), developing kidney (J), and trunk
(K, L). Embryonic stages are indicated at the bottom of the picture. At 8-hpf, expression of the lamal gene was detected in all
embryonic tissues; by 24-hpf, higher levels of transcript were evident in the developing lens (arrows in B-E; le in F and G) and
sclera (sc) of the eye, brain (b), somites (s), and otic vesicle (ov), pronephros (p) and pronephric duct (pd), notochord (n). e-
eye, m-midbrain.
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>

morphant

72 hpf

.

morphant

72 hpf A

wild-type

Figure 4
lama | knockdown phenotype in zebrafish. A, an overall view of lama[-morphants obtained with MO - (top) or MO2-

oligomers (middle), and control (bottom) embryos at 72-hpf. Enlarged image of a head is provided on the right. Defects in body
length, axis curvature and eye structure (irregular pupil and a lack of lens) are easily detectable in lamal morphants. B, trans-
verse sections at the eye level of control (top row) and lama/-morphant (bottom row) embryos at 24-, 32-, 48- and 72-hpf are
presented. An obvious lens degeneration is first notable in 48-hpf morphant eyes. At 72-hpf, small eyes with missing lens and
thickened cornea were observed in the morpholino-injected embryos. retina (r), optic nerve (on), lens (le) and cornea (c) are
shown. Black arrows in 48- and 72-hpf eyes indicate to the products of lens degeneration.
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Morpholino-mediated knockdown of zebrafish laminin
alpha | expression

To examine the functions of laminin alpha 1 during
embryonic development, we injected lamal-specific and
control oligonucleotides into 1-2 cell stage embryos. The
lamal morpholinos were designed to hybridize to the 5'
sequence of the laminin alpha 1 mRNA near the initiation
codon (position 1): MO1 oligomer corresponds to
sequence from nucleotide -65 to -39 while MO2 mor-
pholino matches sequence between nucleotides at posi-
tions -3 and +22.

The morphological phenotype in the morpholino-
injected embryos was first detected in 36-hpf embryos and
became highly evident by 72-hpf. The morphants exhib-
ited a shortened body, an abnormal body axis curvature,
and malformed eyes that often lacked lenses and had mis-
shapen pupils (Figure 4). The percentage of morphants
exhibiting the phenotype positively correlated with the
concentration of the injected morpholinos and ranged
from 30% (0.25 mM; total number = 165) to 60% for
MOT1 oligomer (0.5 mM; total number = 658) or 50% for
MO2 (0.5 mM; total number 650). The rate of early
lethality by 24-hpf ranged from 7% (for C = 0.25 mM) to
23% for MO1 (for C = 0.5 mM) or 31% for MO2 oligomer
(for C = 0.5 mM). In control experiments, zebrafish
embryos that were injected with control morpholinos as
well as uninjected larvae were examined for morphologi-
cal phenotypes. Both groups demonstrated phenotypes
indistinguishable from the wild-type fish with a lethality
rate of ~10% level for un-injected larvae and embryos that
were injected at C = 0.25 mM; embryos that were injected
at C = 0.5 mM demonstrated 21% lethality.

To determine ocular defects in the lamal-morphants, we
compared the histology of the lamal morphant eyes to
wild-type in embryos ranging from 18-hpf to 72-hpf (18-
hpf- data not shown; sections of 24- to 72-hpf embryos
are presented at Figure 4). Since morphant fish produced
by injections with either MO1 or MO2 oligomers demon-
strated similar phenotypes based on visual examination,
only MO1- injected morphants have been used for further
histological analysis. For 48-hpf and 72-hpf stages,
embryos with abnormal phenotype were selected; while
for the 18-, 24- and 32- hpf time points, twelve MO1-oli-
gomer- injected living embryos were collected before the
phenotype is evident and eight (65%) of these animals
were expected to be morphants (this estimate was based
on the fact that 65% of embryos from the same group that
were raised till 72-hpf demonstrated an ocular morphant
phenotype). The stages of the establishment of the lens
placode, lens delamination from the ectoderm and forma-
tion of the lens vesicle appear to be grossly normal in
lama-1 deficient embryos. The cells of the lens vesicle
seem to be slightly disorganized in about 20% of 24-32-

http://www.biomedcentral.com/1471-213X/6/13

hpf embryos (Figure 4), which is below the estimated fre-
quency of morphant embryos in this sample. Therefore,
we concluded that formation of the lens vesicle appears to
be mostly unaffected in lama-1 morphants. In the 48-hpf
morphant eyes, a small lens vesicle remnant was found
and it was surrounded by degenerating lens tissue. In the
72-hpf morphants, the lens was absent and lenticular
bladder cells seem to form a deposit in subretinal space in
some embryos (Figure 4). In normal 72-hpf animals, the
following main ocular tissues can easily be detected: 1)
laminated retina containing the photoreceptor, inner
nuclear and ganglion cell layers; 2) lens that consists of a
single layer of epithelial cells and mainly differentiated
lens fibers and 3) cornea with three easily observed layers-
surface epithelium, a thin lamellar stroma that is contigu-
ous with sclera and flattened endothelial cells [40]. In
addition to lens degradation, the eye sections obtained
from 72-hpf lamal morphant embryos revealed different
degrees of thickened cornea and reduced eye size (Figure
4). At the same time, the retina and the optic nerve are
present and appear to be grossly normal in the lamal-
knockdown fish.

Discussion

In this paper, we report identification of the zebrafish lam-
inin alpha 1 gene and analysis of its role during embryonic
development by means of expression and knockdown
studies. Our data indicate a strong conservation of lamal
function during vertebrate development as both the pre-
dicted protein sequence and expression pattern of this
gene were found to be highly conserved between zebrafish
and other species. The highest level of conservation was
identified in the N-terminal domain of lamal followed by
the laminin globular (G-like) domains. The N-terminal
domain was shown to be involved in laminin polymeriza-
tion in vitro [41,42], and binding to integrins a1p1 and
a1B2 [43]. The five laminin globular domains located in
the C-terminus represent the main cell-adhesive sites and
bind the major laminin receptor integrin a.631 as well as
a6B4 and a7B1 [44], extracellular heparan proteoglycan
perlecan, dystroglycan, sulfatides and heparin [45]; mice
lacking the alpha 1 chain LG4-5 module were reported to
die at E6.5 with failure of epiblast differentiation [46].
Preservation of the N-terminal and C-terminal domain
sequences throughout vertebrate evolution suggests that
the interactions mediated by these regions are of particu-
lar importance.

The zebrafish lamal gene was found to be strongly
expressed during embryonic development. The following
high-expression sites were identified in the developing
embryo: lens, brain, somites, urogenital system, and noto-
chord. This pattern is consistent with distribution of
Lamal transcripts in other species ([12,13,22,41,47], and
[48]) and suggests a high degree of conservation in lam-
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inin alpha 1 function during embryonic development in
vertebrates. The evolutionarily conserved expression of
lama1 is likely to be governed by a network of specific reg-
ulatory elements maintained in phylogenetically diver-
gent species. Identification of cis-regulatory regions and
trans-acting factors that direct the specific lamal expres-
sion pattern will provide important insight into mecha-
nisms of embryonic development and ocular tissue
maintenance.

Knockdown of the laminin alpha 1 expression in
zebrafish resulted in a distinct phenotype characterized by
anomalies in eye development as well as body axis length
and curvature. This condition is different from the pheno-
type reported in Lamal-/- knockout mice [15]. The Lama-
/- null mice die prenatally around day 7 post coitus (pc)
while the embryos that are deficient in either f1 ory1 lam-
inin chains do not survive past day 5.5 pc, which is the
blastula stages in mice [15]. The laminin-1 is first detected
around the 16-cell stage in mice and present in the two
basement membranes formed before gastrulation. Mam-
malian embryos deficient in any component of laminin-1
(a1B1y1) survive implantation but die before gastrulation
indicating to the critical role of laminin-1 in this process
[15,49]. In zebrafish, implantation does not occur as
embryogenesis occurs ex utero. Gastrulation does not seem
to require laminin-1 in zebrafish as both lambil- and
lamcl-mutants undergo normal germ-layer patterning
and gastrulation movements [17]. This phenomenon may
be explained by a compensation from another laminin or
differences in mechanisms between fish and mammals.
Identification and studies of all other zebrafish laminin
isoforms are necessary to clarify this issue.

The ocular phenotype in zebrafish embryos deficient in
laminin alpha 1 is characterized by slightly smaller eyes
with visible anomalies in lens and cornea development. A
primary defect may be the lens degeneration due to devel-
opmental arrest that causes collapse of the surrounding
ocular tissue (reduction in eye size) and abnormal pat-
terning of the anterior segment structures (cornea
defects). Similar associations between lens defects, small
eye and malformed anterior chamber have been previ-
ously reported [50-58]. At the same time, the visible cor-
neal defects may indicate a discrete function of lamal in
the development of the anterior segment structures.

The severe ocular phenotype observed in the lamal-defi-
cient fish embryos reveals a new role for this molecule
during vertebrate embryonic development. The observed
lamal- knockdown phenotype is consistent with the ocu-
lar abnormalities associated with other laminins such as
lambl and lamcl in zebrafish and LAMB2 in humans
([9,18,19], and [28]). Interestingly, all these proteins are
involved in the only two trimers that laminin alpha 1 was
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found to be a part of: laminin-1 (a1f1y1) and laminin-3
(a1B2y1). The Lamb1 and Lamcl proteins are widely
expressed in different species and can associate with any
alpha laminin. Mutations in lamb1 and lamc1 in zebrafish
result in complex phenotypes that include lens hypopla-
sia, lens capsule rupture and corneal defects [19]. The lam-
inin-3 was originally identified in human placenta [27]
but Lamb2 mRNA has also been detected in lens, corneal,
pigment epithelial and hyaloid cells during development
[9,59-61]. Clear evidence of an important role of beta-2
and its complexes in human ocular development was pro-
vided by the discovery of LAMB2 mutations in human
patients affected with complex ocular phenotypes that
include lens, iris, corneal, retinal and overall eye-size
defects [9]. The exact role(s) of laminin-1 and -3 during
vertebrate eye development require further investigation.
Identification and functional analysis of zebrafish lamb2
may provide an important insight into this issue.

There are several ocular phenotypes that involve lens
degeneration including aphakia [62-64], dysgenetic lens
[65-67], lens aplasia [68,69] in mice. Genes responsible for
the aphakia and dysgenetic lens phenotypes have been iden-
tified as transcription factors, Pitx3 and Foxe3; both genes
were also shown to be involved in human ocular disor-
ders involving abnormal lens, iris and corneal develop-
ment [54,55] and zebrafish pitx3-morphants displayed
lens degeneration similar to mammals [70]. Defects in the
basement membrane and/or extracellular matrix were
reported in aphakia and lens aplasia mutants [69,71] indi-
cating a possible connection with the laminin and/or
other extracellular matrix molecule pathway(s) that needs
to be further investigated.

The lens is surrounded by the lens capsule that represents
a thick basement membrane that includes laminins, colla-
gen IV, heparan sulfate proteoglycans (perlecan), nidogen
and fibronectin. The other components, such as type XV
and type XVIII collagen, agrin, fibulins and growth factors,
may be present at some stages as well. The importance of
the extracellular matrix/basement membrane for lens
development was proposed based on the distinctive spa-
tio-temporal expression patterns of different extracellular
matrix proteins during lens development [23,72-74],
changes in the distribution of the extracellular matrix pro-
teins during normal and aberrant lens development
[23,69,71,75] as well as human and animal phenotypes
associated with mutations in ECM component genes that,
in addition to the above discussed, include perlecan [76]
and collagen XVIII [77].

Based on the phenotype observed in zebrafish, mutations
in the laminin-1 components are likely to contribute to
human disorders of the lens (cataracts) and/or anterior
segment development (glaucoma). Also, because the lens
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plays an important role in normal ocular growth, defects
in lens development may also play a role in another com-
mon ocular disease- myopia [78]. This possibility is fur-
ther supported by the fact that the messenger RNA for
lamal was detected in the developing sclera in addition to
the lens in zebrafish; sclera cell development has been
shown to be important for the normal eye growth in sev-
eral studies [79-82]. In humans, LAMAI maps to the
18p11.31 region that contains a gene for high-grade myo-
pia (MYP2; [83]). The affected individuals were character-
ized by an average spherical component refractive error of
-9.48 diopters and an average age at diagnosis of myopia
of 6.8 years; no clinical evidence of connective tissue
abnormalities has been noted (|83]). Because of the
essential role of laminin-1 in governing early events in
mammalian development, human laminin-1 mutations
in ocular phenotypes, if any, are most likely to be detected
in a heterozygous state and/or to be specific to the partic-
ular interactions involved in eye development and main-
tenance. The expression pattern of LAMAI in human
ocular tissues needs to be determined and the potential
contribution of this gene in ocular disease should be
examined.

Conclusion

The laminin alpha 1 gene was found to play an important
role in ocular development in zebrafish. Given that Lamal
was shown to be expressed in eye tissues in mammals as
well, this gene is likely to have a similar role in these
higher species. Additional studies into the specific role(s)
of laminin-1 and laminin-3 during eye development are
necessary. The findings can then be correlated with spe-
cific human phenotypes to identify mutations that may
impair different regions of this complex molecule.

Methods

Animals

Zebrafish (Danio rerio) were raised and maintained on a
14-hour light/10-hour dark cycle. The embryos were
obtained by natural spawning and raised at 28.5°C. The
developmental stage was determined by time (hours post
fertilization (hpf)) and by morphological criteria [84]. All
experiments were conducted in accordance with the
guidelines set forth by the animal care and use commit-
tees at the Medical College of Wisconsin.

Cloning of lamal: RT-PCR, RACE, long-range PCR, cloning
and sequencing

PCR products were generated using specific oligos, Pfulll-
tra high-fidelity DNA polymerase (Stratagene, La Jolla,
CA) and standard conditions described elsewhere [70].
The PCR products were separated by electrophoresis in
1% agarose gel, cloned into a pCRII-TOPO vector (Invit-
rogen, Carlsbad, CA) and subjected to DNA sequencing
using the ABI PRISM 373 DNA Sequencer. The 5'- and 3'
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RACE (Rapid Amplification of CDNA Ends) was per-
formed using BD SMART™ RACE cDNA Amplification Kit
(Clontech, Mountain View, CA) and the following oligo-
nucleotides: 5'- ACCACAGGTTGGTTCCATCGATG-3' for
the 5'RACE and 5'-GCGGACCACACACAGACCATCCC-3'
- for the 3' portion of the transcript. The overlapping
lamal sequences were analyzed and arranged into contig
using Vector NTI™ sequence analysis software. The long-
range PCR was performed using TripleMaster™ PCR Sys-
tem (Eppendorf, Hamburg, Germany) and conditions
suggested by the manufacturer.

Expression analysis: RT-PCR and tissue in situ mRNA
hybridization

For the RT-PCR reaction: the lamal specific oligonucle-
otides complimentary to sequences at positions 3031-
3050, 5-TGTCTGCGTCATGTGATGAG-3',  forward
primer, and positions 8440-8421, 5'-TCGCCATGTA-
GAACAGAACG-3', reverse primer, were used to amplify
5406-bp lamal products from cDNA extracted from 16-
cells to 120-hpf embryos. The sequence predicted to rep-
resent zebrafish lama2 gene was identified from the data-
base (GenBank number XM_693031) and the following
primers were used to amplify 275-bp gene-specific prod-
uct: forward, AAGCATCATGAACGGGATGG, and reverse,
TGGAGTAGAAGGAGGTACAG. Control primers, 5'-
GAGAAGATCTGGCATCACAC-3', forward and 5'-
ATCAGGTAGTCTGTCAGGTC-3'- reverse primer, were
used to amplify 324 -bp fragment of beta-actin gene. For
the lamal in situ hybridization, the following probe was
prepared: a 590-bp fragment that comprised lamal
sequences corresponding to nucleotide positions 287-876
and 1475-3031 (GenBank accession number DQ131910)
was subcloned into pCRII-TOPO plasmid (Invitrogen,
Carlsbad, CA) and used as a template for making an anti-
sense riboprobe. The digoxigenin-labeled antisense ribo-
probe was prepared using DIG RNA Labeling Kit (Roche
Applied Science, Indianapolis, IN) and manufacturer pro-
tocols. Anti-DIG AP (1:2000) and NBT/BCIP substrate
(Roche Applied Science, Indianapolis, IN) were used to
detect the probes. Wild-type PTU-treated zebrafish
embryos at 8- 96 hpf were fixed in 4% paraformaldehyde/
PBS then washed in PBS and fixed in 100% MeOH. Then
whole-mount in situ embryos were fixed in 4% parafor-
maldehyde/PBS and infiltrated with 2-h steps of 15%
sucrose, 30% sucrose and 100% Tissue-Tek OCT (Miles
Inc., Elkhart, IN). Fifteen to twenty embryos were oriented
in freezing molds and stored at -20°C until sectioning,.
Ten-micrometer sections were cut on a cryostat and
mounted on gelatin-coated glass slides.

Morpholino oligomer injections and histology

The lamal-specific morpholino oligomers were designed
using Gene Tools (Corvallis, OR) services and purchased
from the company. Two oligomers were made to hybrid-
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ize to the sequence in the 5' UTR of lamal transcript:
MO1, 5'- ATAAAGCTAAAGCTGTGCTGAAATC-3', and
MO2, 5'- TCTTCATCCTCATCTCCATCATCGC-3'. Control
oligomer: 5'-AAACAAACCTGAGGACAGATGGA-3'. The
morpholinos were resuspended in water and injected into
1-2 cell stage embryos using Nanoject II injector (Drum-
mond Scientific, Broomall, PA) or MM33 Mircomanipu-
lator (Stoelting Co., Wood Dale, IL) as described
elsewhere [85]. Approximately eight (MM33) or fifteen
(Nanoject II system) nanoliters of oligomer mixture was
injected into each 1-2 cell embryo. The embryos injected
with lamal- or control morpholino oligos as well as un-
injected embryos were allowed to develop at normal tem-
perature (28.5°C) and examined for morphological phe-
notypes every 6-24 hours.

For the histological analysis of the 48-hpf and 72-hpf
stages, morphant embryos that exhibited short body and
abnormal eye phenotype were identified and collected.
For the examination of the 18-hpf to 32-hpf embryos,
twelve living embryos were collected for every stage fol-
lowing MO1-morpholino injection; fifty embryos from
the same group were monitored till 72-hpf and 65% of
these animals demonstrated mutant phenotype. There-
fore a mixture of ~1/3- wild-type and 2/3- morphant
embryo sections was expected to be present at 18-, 24- and
32-hpf slides. Histological specimens were processed as
previously described [40]. In brief, embryos were fixed in
primary fixative [2% paraformaldehyde, 2.5% glutaralde-
hyde, 3% sucrose, 0.06% phosphate buffer (pH 7.4)] at
4°C for 24 hours and then washed in 0.1 M phosphate-
buffered saline (PBS), dehydrated through an ethanol
series and propylene oxide and then infiltrated with
EMbed-812/Araldyte resin mixture. The 1 um- thin plastic
sections were cut with a glass knife on a JB4 microtome.
Sections were stained with 1% Toluidine Blue in 1%
Borax buffer. Images were captured using a Nikon coolpix
995 digital color digital camera mounted on a Nikon
E800 compound microscope with a 60X oil-emersion
objective.

List of abbreviations used

lamal- laminin alpha 1; RT-PCR- reverse transcription
polymerase chain reaction; RACE- rapid amplification of
c¢DNA ends; hpf- hours post fertilization.

Authors’ contributions

Natalia Zinkevich performed in situ hybridization analysis
of lamal expression and knockdown studies. Dmitry V.
Bosenko carried out lamal gene sequence identification
and RT-PCR analysis. Brian A. Link participated in an
experimental analysis of knockdown phenotype, study
design and valuation. Elena V. Semina designed the study,
supervised data collection, analysis and interpretation of

http://www.biomedcentral.com/1471-213X/6/13

results. All these authors participated in drafting the paper
and all authors read and approved the final manuscript.

Note added in proof

While this article was in revision, identification of the
zebrafish laminin alpha 1 gene and associated notochord
and blood vessel phenotype has been described by Pol-
lard et al. [86].

Note
Table 1. Exon- intron boundaries of laminin alpha
1gene.
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