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Abstract

Background: We investigated the effects of the signaling molecules, cyclic AMP (cAMP) and protein-kinase C
(PKQ), on gap junctional intercellular communication (GJIC) between thymic epithelial cells (TEQ).

Results: Treatment with 8-Br-cAMP, a cAMP analog; or forskolin, which stimulates cAMP production, resulted in an
increase in dye transfer between adjacent TEC, inducing a three-fold enhancement in the mean fluorescence of
coupled cells, ascertained by flow cytometry after calcein transfer. These treatments also increased Cx43 mRNA
expression, and stimulated Cx43 protein accumulation in regions of intercellular contacts. VIP, adenosine, and
epinephrine which may also signal through cyclic nucleotides were tested. The first two molecules did not mimic
the effects of 8-Br-cAMP, however epinephrine was able to increase GJIC suggesting that this molecule functions
as an endogenous inter-TEC GJIC modulators. Stimulation of PKC by phorbol-myristate-acetate inhibited inter-TEC
GJIC. Importantly, both the enhancing and the decreasing effects, respectively induced by cAMP and PKC, were
observed in both mouse and human TEC preparations. Lastly, experiments using mouse thymocyte/TEC
heterocellular co-cultures suggested that the presence of thymocytes does not affect the degree of inter-TEC GJIC.

Conclusions: Overall, our data indicate that CAMP and PKC intracellular pathways are involved in the homeostatic
control of the gap junction-mediated communication in the thymic epithelium, exerting respectively a positive and
negative role upon cell coupling. This control is phylogenetically conserved in the thymus, since it was seen in
both mouse and human TEC preparations. Lastly, our work provides new clues for a better understanding of how

the thymic epithelial network can work as a physiological syncytium.

Background

Intercellular communication mediated by gap junctions
has been considered ubiquitous during the development,
maturation, homeostasis and death of diverse cell types
and tissues in metazoa [1-7]. These junctions are mem-
brane specializations located in cell-cell contact regions,
where intercellular hydrophilic conduits, assembled as
dodecameric protein complexes, directly connect the
cytosols of adjacent cells [8]. Each complex is composed
by two hexameric hemichannels, the connexons, one in
each cell [9,10]. In vertebrates, members of the connexin
protein family form these channels, which in rodents
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has at least 20 isoforms [11,12]. Topologically, the con-
nexin protein contains four hydrophobic transmembrane
domains (M1 to M4), two conserved extracellular loops
(E1-E2), one intracellular loop and intracellular C- and
N-terminal domains [13]. With an estimated permeabil-
ity limited to molecules below approximately 1 kDa,
these intercellular channels allow cells to share metabo-
lites such as glucose and nucleotides, buffer ions such as
K" and HY, and convey important intracellular second
messengers such as calcium, cyclic 5’-adenosine mono-
phosphate (cAMP) and 1,4,5-inositol-trisphosphate (IP3)
[14-18]. Physiologically, gap junctions have been asso-
ciated with diverse phenomena such as transmission of
electrical signals (as electrotonic synapses) and intercel-
lular calcium waves, metabolic and ionic coupling, and
cellular synchronization [19-22]. In this respect, loss or
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dysfunction of gap junctions have been related to dis-
tinct diseases [23-28].

Gap junction channels may be modulated at different
levels. Gap junction channel gating, i.e., shifting between
open and closed states, is regulated by voltage, intracel-
lular pH (pHi) and Ca®* ([Ca®*]i), and phosphorylation
[29-31]. It has been suggested that the connexin C-
terminal and the intracellular loop of the protein are
associated with gap junction channel sensitivity to pHi
and [Ca®']i, while the M1 domain, the N-terminal and
the E1 domain have been associated with the voltage
sensor [13,29]. The C-terminal domain exhibits diverse
kinase recognition motifs, which allow channel regula-
tion by threonine/serine and tyrosine kinases.

Functional GJIC has been shown in a variety of cell
types of the immune system, such as T and B lympho-
cytes, dendritic cells, microglia, monocytes, macro-
phages, neutrophils and mast cells [32-38]. In vitro
experiments have demonstrated Cx43 mediated func-
tional GJIC between thymic epithelial cells [39,40]. In
addition, data obtained from Cx43”~ mice revealed that
this protein is important to normal T cell lymphopoiesis
[41].

Despite the multiple possibilities of regulation of thy-
mic physiology by diverse neuroendocrine products [42],
few previous studies have evaluated GJIC modulation in
thymic epithelial cells. Head et al. [43,44] demonstrated,
by dye injection, that treatment of thymic epithelial cells
with soluble factors such as interleukin-1 (IL-1), growth
hormone (GH), adrenocorticotrophic hormone (ACTH),
steroid hormones and neuropeptides induced a partial
inhibition of coupling and in some cases it diminished
thymulin secretion.

The modulation of GJIC may also be evaluated
through the activation of different intracellular signaling
pathways by specific second messenger analogs, as well
as agonists or antagonists of relevant signaling mole-
cules. The importance of cAMP and PKC in mediating
intracellular signaling of diverse extracellular messengers
is widely recognized [45,46]. cAMP activates cCAMP-
dependent protein kinase (PKA) [47]; and PKC is acti-
vated by diacylglycerol and/or calcium (or neither
depending on its isoform), as a result of phospholipid
signaling pathways [48]. The effects of cAMP on GJIC
have been investigated in systems such as hepatocyte
primary cultures, cardiac myocytes, ovarian follicles,
myometrium, carotid body and retina [15,49-53]; and in
cell lines derived from ovarian granulosa cells, endome-
trial and colonic epithelium, endothelium, osteoblasts,
and mammary tumor cells [54-57].

The effects of PKC activation on GJIC have also been
investigated [31]. In general, cCAMP acts by enhancing
GJIC while PKC inhibits it [49,51,57-59]. However, con-
trasting results have been reported for both signaling
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pathways [15,50,53,56,60]. Nevertheless, to our knowl-
edge the effects of cCAMP elevation or PKC activation on
GJIC have not been studied in the immune system.
Herein we investigated the putative modulatory effects
of cAMP and PKC on GJIC between thymic epithelial
cells (TEC). Our results demonstrate that inter-TEC
GJIC is upregulated by cAMP and downregulated by
PKC.

Results

Evaluation of functional GJIC-mediated dye transfer by
flow cytometry

Confirming previous results from our Laboratory
[39,61,62] flow cytometry experiments revealed that
after 6 hours of co-culture more than 65% of the initial
single positive Dilc;g(3)" TEC acquired calcein (Figure
1B). To ascertain that gap junctions mediated this dye
transfer we treated the cells for 6 hrs with 100 pM of
18-B-glycyrrhetinic acid (GRA), a gap junction inhibitor.
Such procedure inhibited inter-TEC GJIC by >85% (Fig-
ure 1C). Similar results were also obtained when the
epithelial were treated with carbenoxolone, another gap
junction inhibitor (data not shown).

cAMP elevation enhances inter-TEC GJIC

To analyze the putative modulatory effects of cAMP on
GJIC in TEC cultures, we stimulated the mouse TEC
line with 8-Br-cAMP, a membrane permeable cAMP
analog; or forskolin, which stimulates cAMP production
through activation of adenylate cyclase isoforms [63].
For that, TEC co-cultures were either treated or not
with 8-Br-cAMP (1 mM) or forskolin (10 uM) for 6 hrs
and subsequently analyzed by flow cytometry. Two dis-
tinct quantitative parameters were calculated comparing
the treated versus control double positive TEC: the
extent of cell coupling (% double positive cells) and the
cell coupling efficiency (based on calcein geometric
mean fluorescence). Under these conditions, the extent
of coupling was not significantly modified, ranging from
85.0 + 8.2% (Mean + SD) at control level to up to 96.7
+ 1.9% and 95.5 + 2.2% with 8-Br-cAMP and forskolin,
respectively, indicating that the TEC monolayer was
functionally well coupled under control confluent cul-
ture conditions (Figure 2A-D). Nevertheless, treatment
with 8-Br-cAMP or forskolin increased transfer effi-
ciency, inducing respectively, 3.21 + 0.58 and 3.18 *
0.29 fold increase in geometric mean fluorescence of
calcein labeling in double positive cells (Figure 2A-D).
The half maximal effective concentration (EC5g) for 8-
Br-cAMP and forskolin was 98 pM and 0.470 uM,
respectively (Figure 2E-H). Importantly, upregulation of
inter-TEC GJIC triggered by 8-Br-cAMP was not
restricted to the mouse TEC line, since similar results
were seen when TNC-derived primary cultures of
human TEC (Figure 2I) and IT76 M1 cells (data not
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Figure 1 Flow cytometric analysis of the mouse thymic
epithelial cell line, showing inter-TEC gap junction intercellular
communication. CalceinDilc;g(3)” and calcein Dilcig(3)" IT-76M1
cells were co-cultured for 6 hr at 37°C. These cells were then
dissociated and analyzed by flow cytometry to quantify the double
positive [calcein®Dilc,5(3)*] cells. Some calcein™Dilc,5(3)” and calcein®
Dilc;s(3)* cells were separately cultured and used to adjust the
cytometry settings. These cells also were used to establish the
control population (A). Data are presented in the form of dot plots
(A, B, ©), which depict two-dimensionally the labeling pattern of
each cell population considering the fluorescence intensity (log
scale) of calcein and Dilcg(3). In B, the 6 hr co-cultured cells are
shown, where the presence of double positive cells is apparent,
indicating the dye coupling. In C, cells co-cultured for 6 hours in
the presence of 18-B-glycyrrhetinic acid (GRA; 100 uM) exhibited a
complete inhibition of inter-TEC GJIC. These data are representative
of at least 4 experiments.
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shown) were treated with 8-Br-cAMP, as ascertained
after lucifer yellow microinjection and blind evaluation
of the numbers of coupled cells.

We observed the same effect when the intracellular
dye microinjection assay was performed on IT76M1
cells.

We also tested if inter-TEC GJIC could be modulated
by distinct extracellular messenger molecules, which
also signal through cyclic nucleotides. For that we
applied the vasoactive intestinal peptide (VIP), adenosine
and epinephrine. VIP" nerve terminals and VIP recep-
tors have been characterized in thymic parenchyma
[64,65], whereas adenosine, which activates P1 receptors,
has been implicated in thymocyte death [66,67] and epi-
nephrine, a systemic catecholamine, whose actions
include control of TEC cytokine secretion [68]. We trea-
ted mouse TEC line cultures with increasing concentra-
tions of VIP (1 nM to 1 uM), adenosine (1 nM to 100
uM) and epinephrine (100 nM to 1 pM). Neither VIP
(Figure 3A-F) nor adenosine (Figure 3G) changed in the
extent of inter-TEC GJIC. However, treatment with the
adrenoreceptor agonist epinephrine induced an increase
on dye coupling in a dose-dependent manner (Figure
3H).
cAMP elevation upregulates Cx43 at different levels
We also investigated the possible mechanisms underly-
ing the GJIC stimulatory effects of cAMP elevation.
When mouse TECs were evaluated by immunofluores-
cence, the labeling pattern generated with the anti-Cx43
antibody revealed that both 8-Br-cAMP and forskolin
induced an accumulation of Cx43 protein at regions of
intercellular contacts, presenting a punctate pattern of
distribution (Figure 4A-F). The northern blot analysis
revealed an increase in Cx43 mRNA as early as 1 hr
after the treatment with 8-Br-cAMP, which continued
to be observed after 6 and 24 hours of treatment (Figure
4G).

Phorbol ester induced PKC activation and down-regulates
inter-TEC GJIC

PKC is a serine/threonine protein kinase that phosphor-
ylates gap junctions and these events have been corre-
lated with the reduction of gap junction communication
[69]. Consistent with this finding, and in contrast to
cAMP, when mouse TECs were treated with PMA
(which activates PKC), a decrease of dye coupling was
observed, reducing from 69.26 + 12.29% at control con-
ditions to 37.74 + 12.42% and 25.77 + 0.014% with
PMA at 10 and 100 ng/ml, respectively (Figure 5A-F),
which represents a dye coupling inhibition of up to 60%.
The remaining coupled TEC was not significantly
affected after PMA treatment (data not show). A similar
down regulation of inter-TEC GJIC was seen in TNC-
derived human TEC primary cultures (Figure 5F).
Herein we applied microinjection of Lucifer yellow,
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Figure 2 Increase in cAMP enhances inter-TEC GJIC. Panels A and B depict untreated co-cultures of the mouse TEC line at zero and 6 hours
time points, respectively. The percentage of double positive cells and the calcein geometric mean fluorescence intensity (MFI) of these
populations are depicted at the upper right corer of each panel (%, above; MFI, below). Panels C and D show the inter-TEC coupling, following
6 hours of treatment with 1 mM 8-Br-cAMP or 10 pM forskolin. Both treatments enhanced the calcein mean fluorescence intensity of coupled
cells (double positive cells). These data are representative of at least 4 separate experiments. Such enhancements can also be seen in Panels E to
H, depicting TEC co-cultures treated for 6 hours with increasing concentrations of either 8-Br-cAMP (E-F) or forskolin (G-H). While percentages of
coupled TEC was not significantly modified (E, G), the geometric mean fluorescence of calcein quantified from the double positive cells tripled
after both treatments (F, H). The results are representative of 3 independent experiments (mean SD). Panel | shows that 8-Br-cAMP was also
capable of enhancing inter-TEC GJIC, in primary cultures of human TNC-derived epithelial cells. Numbers of coupled cells were count in blind. *
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Figure 3 Vasoactive intestinal peptide (VIP), adenosine and epinephrine effects on basal levels of inter-TEC GJIC. Co-cultures of the
mouse TEC line were either treated or not (Ct- 6 hrs) with increasing concentrations of VIP (1 - 1000 nM, panels C to F), and the degree of cell
coupling, ascertained by cytofluorometry, did not change as compared to the 6 hours untreated control (B), in relation to both percentages of
coupled cells and calcein mean fluorescence. Values are shown at the upper right corner of each panel, representing the percentage of double
positive cells (above) and the calcein geometric mean fluorescence intensity (below) of these populations. Panel A depicts the flow cytometry
profiles of TEC that were not co-cultured. Panel G shows that adenosine does not alter inter-TEC GJIC as well, as revealed by the percentages of
coupled cells seen after treatment of various doses of the nucleotide. Panel H shows that epinephrine (1 nM to 10 uM) increased the
percentage of dye coupling between TEC in a dose-dependent fashion. Data are shown as mean + standard deviation, being representative of 2
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Figure 4 Increase in cAMP enhances connexin gene and protein expression. Cultures of the mouse TEC line were treated with either 8-Br-
cAMP (1 mM) or forskolin (10 puM) for 6 hrs at 37°C. Cells were then fixed, permeabilized and labeled with the anti-Cx43 polyclonal antibody,
ultimately revealed with the Alexa 488-conjugated secondary antibody. The fluorescence microscopy images (A, C, E) and the corresponding
phase contrast images are depicted (B, D, F). The mouse TEC treated with 8-Br-cAMP (C, D) and forskolin (E, F) presented an increased punctate
labeling of Cx43, mainly at cell-to-cell contact regions, when compared with the untreated controls (A, B). Inserts in A and B show the
fluorescence microscopy image and respective phase contrast image of TEC subjected to isotype control primary antibody and Alexa-488-
coupled secondary antibody (Magnification, x400). Panel G show by northern blot analysis that 8-Br-cAMP also enhances Cx43 gene
transcription. Mouse TEC were treated or not (Ct) with 8-Br-cAMP (1 mM) and cultured for 1, 6 or 24 hrs at 37°C. The total RNA was then
extracted, and 10 - 20 ug of total RNA was loaded in 1.2% agarose gel and plotted onto nylon membrane. For detection of Cx43 mRNA, the
membrane was hybridized with a *’P-labeled cDNA probe for Cx43. Alternatively, the membrane was also hybridized with a *’P-labeled cDNA
for GAPDH. The amount of Cx43 mRNA in IT-76M1 cells was increased after 1, 6, and 24 hours of treatment with 8-Br-cAMP.
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followed by blind counting of coupled cells. Confirming
the participation of gap junctions in this process, 5 mM
heptanol completely inhibited dye coupling among
human TEC (Figure 5F).

Since the phospholipid signaling frequently induces
both PKC activation and [Ca®*]i elevation, we also trea-
ted the mouse TEC line with both PMA and the cal-
cium ionophore ionomycin (1 pg/ml). In these
conditions, a partial but statistically significant inhibition
of dye coupling was still seen (Figure 5G).

Inter-TEC GJIC is not modulated by the presence of
thymocytes

Since thymocytes play an important role in TEC differ-
entiation and organization during ontogeny of the thy-
mus [70,71], we investigated if the contact with
thymocytes could modulate GJIC in the thymic
epithelium.

After the adhesion and establishment of mouse TEC
co-cultures [containing calcein*Dilc;g(3)” and calcein”
Dilc;5(3)" cells], the thymocytes were added at 5 fold or
10 fold excess over TECs. After an additional 5 hours,
the thymocytes were discarded and the TEC co-cultures
were dissociated and analyzed by flow cytometry. In
these conditions, the dye coupling between adjacent TEC
was not significantly modulated by thymocytes, neither at
1:5 nor at 1:10 TEC:thymocytes proportions (Figure 6).
The calcein fluorescence intensity of calcein*Dilc;g(3)"
was not significantly modified as well (Figure 6).

Discussion

In the present study we demonstrated, by various
experimental approaches, that cAMP and PKC are
involved in the modulation of inter-TEC GJIC: the
cAMP agonist 8-Br-cAMP enhanced inter-TEC coupling
whereas PMA-induced PKC activation triggered an
opposite effect.

Using flow cytometry we first detected in a mouse
TEC line, that up to 90% of Dilc;5(3)" cells co-cultured
in 1:1 ratio with calcein+ cells became double positive, a
phenomenon which was readily inhibited by the gap
junction inhibitors 18-B-glycyrrhetinic acid and carbe-
noxolone. This result clearly demonstrates that the thy-
mic epithelium spontaneously forms a GJIC-dependent
functional syncytium in vitro. Under these conditions, 8-
Br-cAMP and forskolin did not significantly modify this
spontaneous percentage of coupled cells. However, both
compounds enhanced up to 3 fold the calcein fluores-
cence intensity of the double positive cells, indicating an
increase in the rate of dye transfer among coupled cells.
Importantly, 8-Br-cAMP also induced an increment in
GJIC in TNC-derived primary cultures of human TEC.
These data clearly show that elevation of cAMP upregu-
lates inter-TEC GJIC, similar to what has been reported
for effects on cell types in other systems [51,55].
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Experiments performed with the mouse TEC line
revealed that 8-Br-cAMP and forskolin treatments
induced an accumulation of Cx43 protein at cell-to-cell
contact regions, seen as punctate clusters. Furthermore,
8-Br-cAMP induced an increase in Cx43 gene transcrip-
tion, suggesting that the protein accumulation may be a
consequence of altered Cx43 protein translation. Such
an alteration in connexin synthesis and accumulation in
the cell membrane is in accordance with previous
description of modulation of gap junctions by cAMP
elevating agonists after long-term evaluations (2-24 hrs,
and 7 days) [51,52,54,57,72-74]. However, short-term
modulation also has been demonstrated, with descrip-
tion of changes in gap junctional conductance within
minutes of treatment with 8-Br-cAMP [75-77]; in some
cell types, changes in dye coupling were also detected
within 2-10 minutes after this treatment [55,56,77]. In
cases of both short- and long-term evaluations alteration
in the degree of connexin phosphorylation has also been
demonstrated [73,76]. Interestingly, some of these
reports have demonstrated that connexin isoforms other
than Cx43 also may be regulated by cAMP analogs,
such as Cx26, Cx40 and possibly Cx32 [49,56,76,77].
Thus, we cannot exclude the possibility that other con-
nexin isoforms, not yet characterized in TEC, might also
be regulated by 8-Br-cAMP and forskolin in IT-76 M1
cells.

We also investigated whether physiological stimuli,
could signal through cyclic nucleotides, might be
involved in modulation of inter-TEC GJIC. When we
evaluated VIP and adenosine, we did not observe any
change in the degree of cell coupling in the mouse TEC
preparation in any concentration of each molecule used.
Similar results were seen despite the various concentra-
tions applied for each molecule.

We should mention however, that our finding on VIP
is at variance with the data reported by Head and co-
workers [44]. These authors reported an inhibition of
GJIC in a rat TEC. Although by now we cannot explain
such a difference, it may be related to cell line variations
or presumably due to receptor signaling dynamics that
cannot be merely mimicked by a single agonist [78], or
may be related to differences in methodological
approaches given that the authors treated the cells
before GJIC formation.

In any case, adenosine, which may also signal through
cyclic nucleotides depending on its concentration and
the activated P1 receptor [67], did not modify the basal
level of inter-TEC GJIC as well. These results demon-
strate that VIP and adenosine possibly are not physiolo-
gical modulators of GJIC among TECs. A recent review
indicates that adrenoreceptor agonists mediate thymus
homeostasis and local T cell development [79]. In addi-
tion, reports have suggested a role for catecholamines
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Figure 5 Phorbol myristate acetate inhibits GJIC in mouse and human TEC. Panels A to D are flow cytometry profiles showing mouse TEC
co-cultures that were either treated (C) or not (B) with PMA (10 ng/ml) and maintained for 6 hrs at 37°C. Panel A represents the TEC
population, which was separately cultured (Ct - 0 hours). The percentage of double positive cells is depicted at the upper right corner of each
panel. The histograms with the calcein fluorescence profile of each population are depicted in panel D: calcein Dilc;s(3)" cells, not submitted to
co-culture (gray filled profile); control co-cultured TEC (black line); co-cultured TEC treated with PMA (gray line). Data are representative of at
least 4 experiments. Panel E shows a dose-response curve of the effect of PMA treatment upon inter-TEC GJIC. A significant dose-dependent
inhibition of cell coupling is seen, with a plateau being reached in 100 ng/ml. (* p < 0.05). Panel F shows that PMA also down-regulates GJIC in
primary cultures of TNC-derived human TEC. Panel G shows that simultaneous treatment with PMA and ionomycin also significantly inhibited
dye coupling among TEC (* p < 0.05). Co-cultures of the mouse TEC line were treated simultaneously with PMA (10 or 100 ng/ml) and
ionomycin (1 ug/ml) for 6 hrs at 37°C, analyzed by flow cytometry. The percentage of coupled cells and the calcein geometric mean
fluorescence obtained from double positive cells (Mean + SD) are shown. The data are representative of two independent experiments
performed in triplicate.
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on thymic epithelial cells controlling proliferation and
cytokine secretion [68,80]. Our data demonstrate that
epinephrine, and activation of cAMP, lead to an increas-
ing dye coupling in TEC cells suggesting that this med-
iator could endogenously control communication
between thymic epithelial cells and contribute to thymus
physiology. We are currently investigating other endo-
genous molecules which also signal through cAMP, in
order to evaluate its potential to modulate inter-TEC
GJIC.

In a second set of experiments, we demonstrated that
PKC activation (induced herein by the phorbol ester,
PMA) significantly inhibits the dye coupling in both
mouse and human TEC in vitro models.

The fact that the same inhibitory effect was seen in a
mouse TEC line as well as in primary cultures of
human TEC deserve further discussion. The study by
Chanson et al. [56] demonstrated that GJIC inhibition
was induced by phorbol esters in a liver-derived cell line
but not in differentiated primarily cultures of pancreatic
exocrine cells. Similarly, the inhibitory effect of phorbol
esters on GJIC was observed in primary cultured devel-
oping lens cells, which express Cx43 and Cx49, but not
in lentoid cells (differentiated lens cells), which express

Cx46 and Cx49, demonstrating that the effects of these
compounds might be dependent on the cellular differen-
tiation stage and its pattern of Cx expression [81].

By contrast, the presence of thymocytes apparently is
not involved in the control of inter-TEC GJIC, at least
in the co-culture experimental conditions that we used.
Nevertheless, further studies are still necessary in order
to completely discard a role for thymocytes in the con-
trol of inter-TEC communication mediated by gap
junctions.

Conclusions

In summary, our data strongly indicate that cAMP and
PKC intracellular pathways are involved in the homeo-
static control of the gap junction-mediated communica-
tion in the thymic epithelium, exerting respectively a
positive and negative role upon cell coupling. Impor-
tantly, this control is phylogenetically conserved in the
thymus, since it was seen in both mouse and human
TEC preparations.

In a second vein, we showed that two other extracellu-
lar messenger molecules, which also signal through cyc-
lic nucleotides, VIP and adenosine, did not mimic the
positive action of 8-Br-cAMP, but epinephrine was able
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to reproduce this effect, suggesting a specificity control
of cAMP in the mechanism of inter-TEC GJIC.

Overall, our work provides new clues for a better
understanding of how the thymic epithelial network can
work as a physiological syncytium.

Methods

Chemicals

Lucifer yellow, triton X-100, 18-B-glycyrrhetinic acid
(GRA), forskolin, 8-bromoadenosine 3’,5’-cyclic mono-
phosphate (8-Br-cAMP), phorbol 12- myristate 13-acet-
ate (PMA) and ionomycin were purchased from Sigma
Chemical Co. (St. Louis, MO, USA). Calcein-AM and
Dilc;5(3) dyes were obtained from Molecular Probes
(Eugene, OR, USA), and heptanol was from Merk
(Darmstadt, Germany). Collagenase A, dispase II and
DNAse grade II were purchased from Boehringer Man-
nheim Biochemicals (Indianapolis, IN, USA), whereas
fetal calf serum was from Hyclone Laboratories (South
Logan, UT, USA).

Thymic epithelial cultures

The mouse TEC line, IT-76 M1, was obtained from
BALB/c-derived thymic stromal cells after continuous
culture. The epithelial nature of this line was ascertained
by the presence of desmosomes and cytokeratin fila-
ments [82-84]. These cells were routinely maintained in
culture with RPMI 1640 medium supplemented with
10% fetal bovine serum, at 37°C in a 5% CO2
atmosphere.

In addition to the mouse TEC line, we used in some
experiments, primary cultures of human TEC, obtained
after isolation of thymic nurse cells complexes. For that,
fragments of human thymus were obtained from chil-
dren subjected to cardiac surgery, following the guide-
lines of the Oswaldo Cruz Foundation’s ethics
committee. Thymic nurse cells (TNC) are thymic lym-
phoepithelial complexes that harbor a variable number
of thymocytes [85]. When settled in culture, TNCs gra-
dually release thymocytes, and after 3-5 days, a thymo-
cyte-free primary culture of epithelial cells is established.
The TNC isolation was performed according to the pro-
cedures currently done in our laboratory [86]. In brief,
human thymic fragments were minced (~1 mm®) and
gently agitated for 20 min in RPMI 1640 medium.
Released thymocytes were discarded and the thymic
fragments were suspended in collagenase A solution (0.2
mg/mL) and further agitated at room temperature (RT)
for 20 min. The supernatant was again discarded and
the remaining fragments were dissociated enzymatically
with a CDD solution (collagenase A - 0.2 mg/mL; dis-
pase II - 0.2 mg/mL; DNAse grade II - 5 pg/ml) for 20
min at 37°C. The digestion product was centrifuged and
the pellet suspended in PBS. These cell suspensions
were carefully layered above 10 mL of fetal calf serum
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(Cultilab, Campinas, Brazil) placed in 15 mL tubes. The
typically heavier TNCs were allowed to sediment. The
TNCs obtained by this process were cultured, and after
complete thymocyte release, resulting epithelial cultures
were used in all experiments.

Immunofluorescence

To evaluate connexin expression, TEC were cultured on
glass coverslips until confluence. The cells were fixed in
cold (-20°C) methanol and further permeabilized by a
solution containing 0.2% Triton X-100. The cells were
then incubated overnight at 4°C with anti-connexin 43
rabbit polyclonal antibody (Zymed Laboratories, South
San Francisco, CA, USA). After washing, the cells were
incubated for 1 hour at room temperature with appro-
priate alexa 488-conjugated secondary antibody (Mole-
cular Probes, Eugene, OR, USA) to reveal the specific
labeling. The cells were washed twice, and the coverslips
were mounted in PBS-glycerol (3:1) containing 0.1%
para-phenylene diamine, an anti-oxidation agent. Cells
were analyzed in a Nikon Eclipse TE-300 microscope
with phase-contrast and epifluorescence optics, and
photographed using a SPOT-RT digital camera (Diag-
nostic Instruments, Sterling Heights, Michigan, USA).
Dye microinjection assay

The evaluation of GJIC by intracellular dye microinjec-
tion assay was performed as previously described [39].
Human TNC-derived epithelial cells and [T76 M1 cells
were cultured in small Petri dishes until confluence.
Visualization of cells was performed with an inverted
microscope equipped with epifluorescence optics (Axio-
vert 100, Carl Zeiss, Oberkochen, Germain). The glass
microelectrodes were pulled from borosilicate glass
(World Precision Instruments, New Haven, CT, USA)
using a pipette puller (model PC-10, Narishige, Tokyo,
Japan), filled with lucifer yellow (50 mg/ml in 150 mM
LiCl) and positioned using a three-dimensional micro-
manipulator model (MMO-203, Narishige, Tokyo,
Japan). Cells were then iontophoretically microinjected
with lucifer yellow through brief current pulses. After 1
minute, the number of adjacent cells that acquired the
lucifer yellow was quantified. To ascertain that the dye
coupling was mediated by GJIC, in some experiments
human TEC were also treated with heptanol (5 mM), a
gap junction inhibitor.

Cytofluorometry

GJIC was evaluated using flow cytometry as previously
described [61,87]. After confluence, one sample of the
mouse TEC line was loaded with calcein-AM (0.5 M)
for 30 minutes, while the other was labeled with the
lipophilic molecule Dilc;g(3) (10 pM) for 1 hour. Cells
were then washed 5 times with PBS and enzymatically
dissociated. Calcein*Dilc;5(3)" cells and calcein Dilc;g(3)
* cells were co-cultured at 1:1 ratio, being treated (dur-
ing the co-culture period of 6 hours) or not with drugs
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of interest. Thereafter, cells were dissociated and the
double positive cells [calcein™ Dilc,4(3)*] were quanti-
fied by flow cytometry, using a FacsCalibur device (Bec-
ton-Dickinson, Mountain View, CA, USA). Double-
positive cells thus corresponded the functional calcein
transfer from calcein™Dilc;4(3)” to calcein™Dilc;5(3)"
cells. At least 10* cells were acquired in each experi-
mental condition. In some experiments, TEC were also
co-cultured with freshly isolated thymocytes. For this
purpose, thymuses were obtained from BALC/c mice,
maintained at the Oswaldo Cruz Foundation Animal
Facilities (Rio de Janeiro, Brazil).

RNA extraction and Northern Blotting

Total RNA was extracted from the mouse TEC line,
using TRIzol Reagent (Gibco/BRL, Grand Island, NY,
USA). For northern blots, 10-20 pg of total RNA was
loaded in 1.2% agarose gel containing 0.12 mg/L ethi-
dium bromide. Gels were blotted onto a nylon mem-
brane and fixed by ultraviolet light. For detection of
Cx43 mRNA, membranes were pre-hybridized for 1 hr
at 65°C in rapid hybridization buffer. Then the mem-
brane was hybridized for 2 hrs at 65°C with rapid hybri-
dization buffer with a *’P-labeled cDNA probe for Cx43
or GAPDH. Membranes were washed once in 2x stan-
dard saline citrate buffer containing 0.1% SDS at room
temperature, then exposed to X-ray film.

Statistics

For statistical comparisons we applied the two- tail
paired Student’s ¢ test, implemented by the GraphPad
Prism software. Differences with p < 0.05 were consid-
ered significant.
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