@,

BiolVled Central

Methodology article

Fr-TM-align: a new protein structural alignment method based on
fragment alignments and the TM-score
Shashi Bhushan Pandit and Jeffrey Skolnick*

BIVIC Bioinformatics

Address: Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, USA

Email: Shashi Bhushan Pandit - spandit3 @mail.gatech.edu; Jeffrey Skolnick* - skolnick@gatech.edu
* Corresponding author

Published: 12 December 2008
BMC Bioinformatics 2008, 9:531

Received: 16 July 2008

doi:10.1186/1471-2105-9-531 Accepted: |2 December 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/531

© 2008 Pandit and Skolnick; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Protein tertiary structure comparisons are employed in various fields of
contemporary structural biology. Most structure comparison methods involve generation of an
initial seed alignment, which is extended and/or refined to provide the best structural superposition
between a pair of protein structures as assessed by a structure comparison metric. One such
metric, the TM-score, was recently introduced to provide a combined structure quality measure
of the coordinate root mean square deviation between a pair of structures and coverage. Using the
TM-score, the TM-align structure alignment algorithm was developed that was often found to have
better accuracy and coverage than the most commonly used structural alignment programs;
however, there were a number of situations when this was not true.

Results: To further improve structure alignment quality, the Fr-TM-align algorithm has been
developed where aligned fragment pairs are used to generate the initial seed alignments that are
then refined using dynamic programming to maximize the TM-score. For the assessment of the
structural alignment quality from Fr-TM-align in comparison to other programs such as CE and TM-
align, we examined various alignment quality assessment scores such as PSI and TM-score. The
assessment showed that the structural alignment quality from Fr-TM-align is better in comparison
to both CE and TM-align. On average, the structural alignments generated using Fr-TM-align have
a higher TM-score (~9%) and coverage (~7%) in comparison to those generated by TM-align. Fr-
TM-align uses an exhaustive procedure to generate initial seed alignments. Hence, the algorithm is
computationally more expensive than TM-align.

Conclusion: Fr-TM-align, a new algorithm that employs fragment alignment and assembly provides
better structural alignments in comparison to TM-align. The source code and executables of Fr-
TM-align are freely downloadable at: http://cssb.biology.gatech.edu/skolnick/files/FrTMalign/.

Background number of protein structures deposited in the Protein

Protein tertiary structure comparison is widely employed
in the field of structural biology, with applications rang-
ing from protein fold classification [1-3], protein structure
prediction and modeling [4-8] to structure-based protein
function annotation [9-11]. With the rapid increase in the

Data Bank (PDB) [12], it is important to develop faster
and better algorithms to compare protein structures. In
general, there are two types of protein tertiary structure
comparisons approaches. The easiest involves the com-
parison of a pair of protein structures with an a priori
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specified equivalence between pairs of residues (as pro-
vided by sequence or threading alignments [13]). The sec-
ond type involves the comparison when the set of
equivalent residues is not a priori given. Therefore, an
optimal structural alignment needs to be identified; this
problem is NP-hard with no exact solution [14]. Never-
theless, a number of methods have been developed that
employ heuristics to search for the best structural align-
ment. These methods use different representations of pro-
tein structure, definitions of similarity measures and
optimization algorithms [15,16]. Some approaches com-
pare the respective distance matrices of each protein struc-
ture, trying to minimize the intra-atomic distances for the
set of aligned substructures [17-21]; this is the approach
employed in the widely used DALI algorithm [18].
Another approach, tries to minimize the inter-atomic dis-
tances between two structures [22-28]; representatives of
this type of algorithm include CE [26], MAMMOTH [28],
and TM-align [22].

In practice, most structural alignment procedures start
with the generation of an initial set of equivalent residues.
Then, using a structural similarity score, the initial seed
alignment is extended and/or refined using methods such
as dynamic programming or Monte Carlo procedures.
Finally, the structural similarity score is assessed; this is
generally done on the basis of the statistical significance of
the structural similarity. In practice, many structural align-
ment algorithms use fragment assembly to build the ini-
tial set of equivalences [18-20,26,28-30]. This involves the
comparison of many, if not all, small fragments in the two
structures. Then, similar fragments are assembled into a
larger, consistent set. Fragments can be secondary struc-
ture elements [20,30] or arbitrary substructures of a given
length as in CE [26] or MAMMOTH [28].

In most structural alignment methods, structural similar-
ity is assessed by a structure comparison score. One com-
monly used measure is the root-mean-square deviation,
RMSD, between a pair of structures with a specified set of
equivalent residues. As pointed out by Zhang and Skoln-
ick [31] among others [32], statistically significant values
of the RMSD are length dependent. Another problem is
that the RMSD can be reduced by decreasing the coverage
(the number of aligned residues). These issues were
addressed by introduction of the TM-score [31], which is
a modification of the Levitt-Gerstein (LG) weight factor
[33] that weights residue pairs at smaller distances greater
than those at larger distances. The TM-score is length inde-
pendent, with a value of 0.30 (0.01) for the average
(standard deviation of the) TM-score of the best structural
alignment for randomly selected pairs of proteins [34].

Based on the TM-score, a new structural alignment algo-
rithm TM-align [22] was developed. TM-align employs a
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very simple approach that uses both gapless threading and
secondary structure similarity to generate the initial set of
equivalent residues. This set of aligned residues is refined
using dynamic programming to maximize the TM-score.
The scoring matrix used for dynamic programming is
derived from the TM-score rotation matrix, which results
in faster convergence and a better structural alignment.
On average, TM-align provides structural alignments with
higher accuracy and coverage than the most often-used
methods such as DALI and CE. In a separate study [35],
TM-align was compared with other competitive structural
alignment programs using different measures of structural
similarity, with the result that TM-align is one of the best
structural alignment programs [22,35]. However, TM-
align sometimes is unable to identify a good structural
similarity. To address this issue, in the present work, we
improve the TM-align program by generating a better ini-
tial set of equivalences using a fragment assembly
approach. This is followed by heuristic iterations involv-
ing the TM-score rotation matrix and dynamic program-
ming to obtain the structural alignment with the largest
TM-score.

Methods

Datasets

We have used two datasets for the evaluation of different
structural alignment programs. The first dataset is the
same as that used in the original TM-align paper [22] and
consists of 200 proteins that range in size from 46 to 1058
residues. The first dataset is also used in deriving various
parameters for Fr-TM-align algorithm. The second dataset
has 200 proteins, and is a randomly selected, representa-
tive subset of the PDB template library of non-homolo-
gous proteins with pairwise sequence identity of < 35%
[13]. It is comprised of proteins whose length ranges from
40 to 910 residues and includes representatives of all sec-
ondary structure classes, viz. all a, all B or mixed o/p pro-
teins.

Algorithm and implementation

Fr-TM-align employs the backbone C, coordinates of the
protein structures for the structural alignment. The Fr-TM-
align algorithm consists of the following steps:

1. Generation and scoring of aligned fragment pairs

In the first step, an optimal superposition between the
fragments from two protein structures is obtained that
maximizes the structural similarity score as given by the
GL-score, defined as:

L 2

GL — score = 1+-L (1)
; 42
i=1 a
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where d, = 0.5 and L is the length of the fragment. Here,
the value of d, is derived empirically. In order to derive the
empirical value of d,, we have used four reasonable values
ford,=0.25,0.5, 1.0 or 1.5, and the value which resulted
in the maximum average TM-score for all pairs of align-
ments in the training dataset using Fr-TM-align was
selected. In addition, the secondary structure similarity
between the two fragments is given by the SS-score, which
is simply the number of residues with identical secondary
structure normalized by the length of the fragment. The
secondary structure assignment procedure is same as in
TM-align [22].

Let L, and L be the length of the first and second chains
respectively, and let L, be the length of the fragment.
Then, the numbers of fragments are I = L,/Lpand ] = Ly/L,.
The length of the fragment is selected empirically. L, is 8
residues, if the length of the smaller protein is less than
100 residues; otherwise, L= 12 residues. We perform an
all-against-all (I X J) structural superposition of the non-
overlapping fragments from the two protein structures.
The structural similarity and secondary structure similar-
ity of the fragments from the two proteins as given by their
GL-score and SS-score are stored in the G(I, J) and S(I, J)
scoring matrices respectively.

2. Assembly of fragments and generation of seed alignments

In order to generate different seed alignments, the frag-
ments are assembled into a large consistent set. For this,
we employ dynamic programming (DP) with no end gap
penalty to align fragments using the scoring matrices
derived from the fragment comparison in the first step.
We observed that the optimal fragment alignment does
not usually result in the structural alignment with highest
TM-score. Hence, in addition to the optimal alignment
obtained using DP, we generate three suboptimal align-
ments using a variation of the Waterman and Eggert algo-
rithm [36]. The generation of suboptimal alignments
involves re-computing of the forward trace matrix for
finding the optimal path with the modification that the
similarity score of the previously aligned positions is not
used in the calculation of the forward trace matrix. The
optimal path alignment is obtained by back tracing from
the last column/row using this forward trace matrix using
no end gap penalty. Other variations of the DP algorithm
to generate the suboptimal alignment [37] would have
been equally applicable.

We have used two scoring matrices for DP, G(I, J) and
(G(L, 1)+S(L J))/2, along with three different gap opening
penalties of -0.6, -0.1 and 0.0, which are chosen empiri-
cally to generate various fragment alignments. The frag-
ment alignment, in turn, provides the initial set of
equivalent residues between the two protein structures.
We could use these initial set of alignments as seed align-
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ments and use heuristic iteration to get best structural
alignment. However, we observed that refining the align-
ment with another round of DP before heuristic iteration
results in alignments with improved TM-score.

The fragment alignment is used to generate initial equiva-
lent residues, which are modified by DP using three differ-
ent scoring matrices to form the final set of seed
alignments. The three scoring matrices are: (1) a distance
score matrix generated by rotating one of the structures by
the RMSD rotation matrix based on the aligned residues.
The RMSD rotation matrix is the matrix which minimizes
the distance between pairs of equivalent residues for given
two structures. This provides the best structural superposi-
tion (lowest RMSD) of the predefined equivalent residues
between two structures and is used to calculate the dis-
tance matrix (as defined in equation 2(a)), which is used
in the DP step. (2) Modification of the first scoring matrix
based on the identity of the secondary structure assign-
ment of the residues. When the secondary structure
assignment of the pair of aligned residues is the same, 0.5
is added to the respective score. (3) A distance score
matrix generated using the TM-score rotation matrix
based on the aligned residues. Along with these scoring
matrices, we have used gap opening penalties of -1.0 and
0.0. This step is repeated for each fragment alignment.
Finally, this gives a set of seed alignments, which are
refined using the heuristic iteration procedure discussed
below. The generation of initial seed alignments is an
exhaustive process. However, we can generate fewer seed
alignments by using only one gap opening penalty rather
then using two. This decreases the computational time of
the algorithm. We have implemented this in the faster ver-
sion of the program (see Results section).

3. Heuristic Iteration

The above mentioned initial alignments are submitted to
heuristic iteration as described in TM-align [22]. In this
procedure, we first rotate the structures by the TM-score
rotation matrix (the rotation matrix, which provides the
best TM-score after superposition for a set of equivalent
residues) based on the aligned residues in the initial align-
ment. This rotation matrix is identified in the process of
finding the set of equivalent residues that gives maximum
TM-score. The score similarity matrix is defined as:

1
S(kl) = (2a)
1+d;31/d0(]~min)2
where
dO(Lmin) =1.243 Lmin -15-1.8 (2b)

Here, d,; is the distance of the kth residue in structure 1
from the [t residue in structure 2 under the TM-score
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superposition, with L,;, the length of the smaller protein.
A new alignment can be obtained by implementing DP on
the matrix S(k, 1), with optimal gap opening penalties of -
0.6 and 0.0; these parameters were chosen empirically
(see following paragraph). We then superimpose the
structures by the TM-score rotation matrix according to
the new alignment and obtain a newer alignment by
implementing DP with the new score matrix. The proce-
dure is repeated until the alignment becomes stable and
the alignment with the highest TM-score is returned.

In all the above mentioned DP procedures, we obtained
gap opening penalties with the objective function being
the maximization of the average TM-score of the final
alignment for all pairs of proteins in the training dataset.
For this, we spanned gap penalties from -1.6 to 0.0 with a
bin width of 0.1. The gap opening penalty value selected
was the one that resulted in the maximum average TM-
score of the final alignment for all pairs of proteins in the
training dataset.

Alignment quality assessment

There are various metrics used in the literature to objec-
tively assess structural alignment quality [38]. However,
most involve normalization of the RMSD by the number
of aligned residues and protein length. Hence, the metric
is not completely independent of the lengths of proteins
being aligned. Here, we have used a geometric match met-
ric, the TM-score, for the objective assessment of the struc-
tural alignment quality from various structural alignment
programs. This metric provides a balance between cover-
age and alignment accuracy (low RMSD). The TM-score is
defined as:

-1
TM — score = Max

Lali d 2
R
Z ( d(] ( Llargel ) )

target {3

3)
Here, Ly is the length of the target protein that other
PDB structures are aligned to; L,; is the number of aligned

residues; d; is the distance between the ith pair of aligned

residues and do(L;rge) =1.243/Ligrge —15 — 1.8, which

is the average distance between a pair of residues for the
best structural alignment in a randomly selected pair of
structures of length Ly, g
In addition, we have used other scores for the objective
structural alignment quality assessment and for the com-
parison of structural alignment algorithms. The percent-
age of structural similarity (PSI) is defined as the number
of aligned amino acid pairs with C, atoms that are closer
in space then 4 A after optimal superposition normalized
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by the length of the shorter chain in the alignment. The
relevant PSI (rPSI) value does not include fragments
shorter than four aligned amino acid from the calculated
PSI value. The coordinate RMSD (cRMSD) is computed
for all aligned pairs after optimal superposition. The
cRMSD (core) is computed for those aligned pairs that
contribute to the PSI value [35]. Here, PSI/rPSI provides a
more detailed view of the alignment. However, these val-
ues are length dependent.

Results and discussion

In the literature, various structural alignment methods
have been evaluated in different ways [38]. Most evalua-
tions use SCOP [1] or CATH [2] as the gold standard and
assess the structural alignment based on the fold classifi-
cations found in these databases [35,39-41]. Because the
SCOP and CATH classifications are discrete, a drawback in
this kind of evaluation is that the detailed alignment qual-
ity is not taken into account. Moreover, evolutionary
information is also used in the SCOP or CATH classifica-
tion apart from the structure of the protein under consid-
eration. Recent studies [42,43] have shown that
significant structural similarity exists between proteins
belonging to different fold families in the CATH and
SCOP classifications. Here, we have compared different
structural alignments pairs of structures purely by their
geometric match.

Comparison of alignment quality

In the present analysis, we have evaluated the perform-
ance of the structural alignments algorithms CE, TM-align
and Fr-TM-align on two different datasets (as described in
the Methods). We have compared the alignment quality
of Fr-TM-align with other structural alignment algorithms
using cRMSD, TM-score, PSI and rPSI. These measures of
alignment accuracy capture various features of the align-
ment. For example, PSI counts spatially close residues,
whereas rPSI represents core continuous fragments that
are spatially close. The TM-score represents a quality
measure that combines both alignment coverage and
accuracy.

Table 1 shows the summary of structural alignments of
200 x 199 non-homologous protein pairs from the two
datasets that are obtained from CE, TM-align and Fr-TM-
align. Since the TM-score depends on the length of the tar-
get, we count all the comparisons with respect to both
partners in Table 1. Dataset 1 was used for the optimiza-
tion of Fr-TM-align step of fragment selection and assem-
bly. Dataset 2 is used as a testing set.

In Table 1, columns 2-6 show the alignment accuracy as
measured by various scores and columns 7-8 show the
number of aligned residues and coverage averaged over
39,800 protein pairs. Based on cRMSD, the structural
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Table I: Structural alignment by different algorithms for two datasets

Average over all pairs (39,800)2

7cRMSD8 7cR(core)8 7TMS8 7PSI %8 7rPSI %8 7L8 7Tcov %8

Dataset |

CE 57 (1.1) 2.8 (0.2) 0.185 (0.070) 18.9 (10.3) 8.4 (8.3) 69.9 37.2
TM-align 5.1 (1.0) 2.5(0.3) 0.255 (0.087) 29.5 (11.1) 17.7 (11.4) 87.8 423
Fr-TM-align 5.0 (1.0) 2.5(0.3) 0.279 (0.091) 33.1 (12.0) 20.0 (12.3) 93.8 453
Dataset 2

CE 5.7 (1.1) 2.8 (0.2) 0.190 (0.073) 21.5(11.7) 10.5 (10.1) 65.8 39.7
TM-align 48 (1.1) 2.4 (0.4) 0.256 (0.093) 323 (11.5) 21.0 (12.3) 77.1 42.1
Fr-TM-align 4.7 (1.0) 2.4 (0.4) 0.280 (0.097) 35.9 (12.2) 23.1 (13.1) 82.6 45.2

aResults are averaged over all structure pairs. cRMSD, cR(core), L, cov, TM, PSl and rPSI denotes coordinate RMSD (in A), cRMSD (in A) for all
aligned pairs that contribute to PSI, number of aligned residues, coverage of aligned residues, TM-score, percentage structural similarity and
relevant percentage structural similarity (see method section). The number in parenthesis is the standard deviation.

alignments from Fr-TM-align have on average better accu-
racy in comparison to both CE and TM-align for both
datasets. Similarly, cRMSD (core) is also better on average
for both TM-align and Fr-TM-align in comparison to CE.
However, cRMSD (core) shows no difference between Fr-
TM-align and TM-align. Based on another alignment accu-
racy score PSI or rPSI, Fr-TM-align performs better in com-
parison to both CE and TM-align for both the datasets. All
three programs show a significant decreased value in the
value of rPSI in comparison to PSI. This shows that all
three programs achieve high PSI value by finding aligned
fragments of length less than four residues in length.

Based on another structural alignment accuracy measure
(TM-score), Fr-TM-align resulted in structural alignments
with higher TM-score in comparison to both TM-align and
CE. The higher TM-score could result from better identify-
ing structurally similar regions with/without including
more residues in the aligned region or by decreasing the
number of aligned residues. As shown in Table 1, the aver-
age coverage and average number of aligned residues is
higher for Fr-TM-align in comparison to TM-align and CE
for both datasets. Hence, the improvement observed in
TM-score by Fr-TM-align mainly results from the better
identification of structurally similar regions in the pair of
structures. This is also evident by the observed higher PSI/
rPSI value for the alignments from Fr-TM-align. This sug-
gests that Fr-TM-align better identifies structurally similar
regions with increased accuracy and higher coverage.
Next, we tested the statistical significance of the observed
increase in the mean TM-score, PSI and rPSI for Fr-TM-
align in comparison to TM-align and CE, using the
unpaired t-test for the independent samples. The
improvement in the mean TM-score, PSI and rPSI for Fr-
TM-align is found to be statistically significant (p-value <<
0.001).

While the data in Table 1 are averaged over all structure
pairs, where the majority have different folds and low TM-
score, a more realistic assessment is to evaluate the per-
formance of different methods for the most significant
match to a given target protein. Various methods employ
different metrics of structural similarity: CE uses the CE z-
score, whereas TM-align and Fr-TM-align use the TM-
score. In the present analysis, we used both measures of
structural similarity, the CE z-score and TM-score, to
extract the most significant structurally similar protein
pairs for the evaluation of the three methods.

In Table 2, for datasets 1 and 2, we analyzed protein pairs
identified as being the most structurally similar as
assessed by their CE z-score. For each protein in datasets 1
and 2, the protein pair with the highest CE z-score was
selected from the CE alignments, and the structural align-
ment was generated by CE, TM-align and Fr-TM-align. It is
evident from Table 2 that structural alignments from Fr-
TM-align have better alignment accuracy than those from
both CE and TM-align, when structural similarity is
assessed by cRMSD. Moreover, on average, the Fr-TM-
align generated alignments have higher coverage. Thus,
using the TM-score as the metric for structural similarity,
Fr-TM-align is able to better identify structurally similar
regions in comparison to both CE and TM-align. This con-
clusion also holds when other measures of alignment
quality (PSI/rPSI) are used.

Next, we used the TM-score to select the most structurally
similar protein pairs. That is, for each protein in both
datasets, we selected the template protein with the highest
TM-score obtained by Fr-TM-align. Then, structural align-
ments between the selected pair of proteins are also gen-
erated by CE and TM-align, and the averages reported in
Table 3. As is evident, structural alignments from Fr-TM-
align have comparable or better accuracy in comparison
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Table 2: Comparison of best structural alignment (alignment with highest CE z-score) from CE

Average of pairs with best z-score from CE (200 proteins for each dataset)2

7cRMSD,8 7cR(core),8 7TM_8 7PSl; %8 7rPSI; %8 7L,8 Tcov, %8

Dataset |

CE 4.0 (1.4) 2.4 (0.4) 0.403 (0.203) 47.5 (23.5) 36.9 (24.5) 118.5 57.8
TM-align 4.0(1.2) 2.2 (0.4) 0.446 (0.194) 52.8 (21.2) 43.9 (23.9) 129.7 60.9
Fr-TM-align 3.9 (1.1) 2.2 (0.4) 0.459 (0.188) 54.7 (19.9) 45.7 (22.9) 132.6 62.3
Dataset 2

CE 4.1 (1.4) 2.5 (0.4) 0.366 (0.170) 44.5 (22.4) 34.6 (23.1) 101.7 55.9
TM-align 4.1 (1.3) 2.3 (0.4) 0.408 (0.164) 48.5 (21.0) 39.5 (22.7) 112.4 58.8
Fr-TM-align 4.0 (1.3) 2.2 (0.4) 0.426 (0.161) 50.9 (20.4) 42.0 (22.5) 117.1 60.6

2 For each protein, we selected the protein pair with the highest z-score using the CE program. We used the same set of protein pairs selected
from CE for comparison with the other programs. cRMSDg, cR(core), Lz, covz, TMg, PSI; and rPSI; denotes coordinate RMSD (in A), cRMSD (in
A) for all aligned pairs that contribute to PSI, number of aligned residues, coverage of aligned residues, TM-score, percentage structural similarity
and relevant percentage structural similarity (see Methods). The number in parenthesis is the standard deviation.

to CE and TM-align when assessed by their cRMSD.
Indeed, Fr-TM-align gives comparable or higher structural
alignment accuracy as assessed by cRMSD, cRMSD (core),
PSI and rPSI in comparison to both CE and TM-align.

For a more detailed analysis, we have mostly used the TM-
score to compare the alignments from TM-align and Fr-
TM-align. As discussed before, the TM-score provides an
appropriate combined quality measure of coverage and
accuracy (low RMSD). In addition, we have previously
shown that the TM-score also has the strongest correlation
with foldability using MODELLER [44], in comparison
with other structural similarity scores [31].

Comparison of TM-align and Fr-TM-align

As shown in Table 1, on average, for both the training and
testing datasets, Fr-TM-align resulted in alignments with
higher TM-score (by ~9%) and higher average number of
aligned residues (by ~7%) in comparison to TM-align.

Here, we explore in detail the distribution of differences in
TM-score between Fr-TM-align and TM-align. For a pair of
protein structures, if Fr-TM-align results in a higher TM-
score, when the second protein is used as target length,
usually, it usually also results in a higher TM-score when
the first protein is used for target length. Hence, in order
to avoid double counting, we have considered only
19,900 pairs of structures with TM-score calculated with
respect to the length of the smaller of the two proteins.
Figures 1A and 1B shows the difference in TM-score
between Fr-TM-align and TM-align plotted against the
TM-score from TM-align for dataset 1 and dataset 2,
respectively. As is evident from Figure 1, Fr-TM-align
results in a better TM-score for most (~86%) pairs of struc-
tures. However, in a few cases (~7%), Fr-TM-align could
not recover the structural alignment as given by TM-align.

Next, we compare the number of aligned residues. As
shown in Figure 2, for most (~66%) protein pairs, Fr-TM-

Table 3: Comparison of best structural alignment (alignment with maximum TM-score) from Fr-TM-align

Average of pairs with best TM-score from Fr-TM-align (200 proteins for each dataset)2

7cRMSD8 7cR(core)u8 7TM8 7PSly %8 7rPSly %8 L8 Tcovy %8

Dataset |

CE 4.5 (1.5) 2.5 (0.4) 0.392 (0.207) 39.1 (26.6) 29.3 (26.6) 120.9 59.2
TM-align 4.6 (1.7) 2.3 (0.4) 0.488 (0.163) 46.5 (24.5) 37.1 (27.2) 162.5 70.4
Fr-TM-align 4.5 (1.6) 2.3 (0.4) 0.522 (0.144) 50.0 (23.4) 40.4 (26.5) 170.6 74.5
Dataset 2

CE 4.8 (1.5) 2.6 (0.4) 0.354 (0.175) 35.8 (24.2) 25.7 (24.1) 108.5 58.0
TM-align 4.7 (1.5) 2.3 (0.4) 0.451 (0.142) 43.9 (21.6) 34.1 (23.3) 139.3 67.5
Fr-TM-align 4.5 (1.5) 2.3 (0.4) 0.497 (0.127) 49.2 (22.0) 39.1 (24.4) 149.1 732

aFor each protein, we selected the protein pair with the highest TM-score using the Fr-TM-align program. We used the same set of protein pairs
selected from Fr-TM-align for comparison with the other programs. cRMSD,, cR(core)y, Ly, covy, TMy, PSly and rPSly, denotes coordinate RMSD
(in A), cRMSD (in A) for all aligned pairs that contribute to PSI, number of aligned residues, coverage of aligned residues, TM-score, percentage
structural similarity and relevant percentage structural similarity (See Methods). The number in parenthesis is the standard deviation.
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align)).

align results in a higher number of aligned residues.
Hence, Fr-TM-align results in a higher TM-score with
increased coverage. In addition to TM-score, we have also
used PSI to compare alignment quality between TM-align
and Fr-TM-align. Figures 3A and 3B show the frequency
distribution of PSI (%) for the training and testing data-
sets respectively. Fr-TM-align identifies alignments with

higher PSI in comparison to TM-align. In fact, Fr-TM-align
assigns a PSI > 40% in ~27% of alignments, whereas TM-

align is onl

y able to assign a PSI > 40% in ~17% of the

protein pairs.

Next, we have analyzed the relative improvement in the
TM-score by Fr-TM-align. The TM-score difference (dTM)
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Figure 2

A) Scatter plot showing the number of aligned residues from Fr-TM-align versus the number of aligned resi-
dues from TM-align for dataset |. B) Similar data as in A, but plotted for dataset 2.
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is defined as (TM-score (Fr-TM-align) - TM-score (TM-
align)). The exact value of dTM which shows a significant
change in the alignment quality is difficult to quantify. In
fact, the numerical value of the TM-score has a contribu-
tion from the mean square distance between residues as
well as from the number of aligned residues. The origin of
a given dTM value depends on the TM-score as well. For
example, an increase of 0.05 (dTM) in the TM-score from
the initial value of 0.85 most likely arises because align-
ments with lower RMSD at identical coverage are gener-
ated. Whereas given an initial TM-score of 0.45, the
increase to 0.5 most likely reflects both a decrease in
RMSD and an increase in alignment coverage. Since most
TM-scores of interest (as we are interested in detecting
more distant similarities), are below 0.6, we have empiri-
cally considered a dTM > 0.05 as a significant improve-
ment and a dTM between 0 and 0.05 as not so significant
only for the heuristic comparison of performance of TM-
align with Fr-TM-align.

We present the results below only for dataset 2. Using this
criterion (dTM > 0.05), Fr-TM-align shows improvements
in TM-score for ~28% of protein pairs being compared. Of
the 19,900 pairs, ~56% of protein pairs have a dTM
between 0.0 and 0.05, and for ~8%, the TM-score remains
unchanged. We have also assessed the correlation
between dTM and the TM-score from TM-align, to see if
Fr-TM-align results in improved TM-scores for only a
range of TM-score as reported from TM-align. dTM is
divided into 5 bins (dTM < -0.05; -0.05 < dTM < 0.00;
dTM = 0.0; 0.00 < dTM < 0.05 and dTM > 0.05). For a bin
size of 0.1 of TM-score as reported from TM-align, we cal-
culated the fraction of proteins in the above mentioned
dTM bins. Figure 4 shows the fraction of proteins in each

0.5
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dTM bin for the range of TM-scores. It is evident that Fr-
TM-align clearly improves the TM-score over all the ranges
of TM-score as reported from TM-align. It is interesting to
note that significant improvement (dTM > 0.05) is
observed for more protein pairs in the lower ranges of TM-
score. It was previously reported that using TM-align, the
average TM-score for a randomly related protein structures
is 0.30 [34]. In our study, of the 40% of protein pairs in
the range of TM-score (0.2-0.3), ~35% of pairs of protein
pairs show an improvement of more than 0.05 in TM-
score by Fr-TM-align. This suggests that many pairs, which
previously were defined as randomly related by TM-align,
now have a significant TM-score. Next, we evaluated the
dependence of dTM on the length of the proteins being
aligned. Figure 5 shows the histogram of the fraction of
proteins in various dTM bins versus the length of the
smaller of the two proteins. It is evident from Figure 5 that
improvement in TM-score by Fr-TM-align is not strongly
dependent on the lengths of the structurally aligned pro-
teins.

In Figures 6A and 6B, we show illustrative examples of the
improvement in structure alignments when Fr-TM-align is
used. Figure 6A shows the structural alignment between
1AIM B and 2GZQ A, which have a common f-sheet
core. Fr-TM-align is able to align the common B-sheet; in
addition, it is able to extend the alignment to include
another two B-stands relative to the alignment obtained
from TM-align. Figure 6B shows the alignhment between
1AOL and 1AKP, which have B-strand regions in com-
mon. In comparison to the structural alignment from TM-
align, Fr-TM-align extends the region of structural similar-
ity in the common region of B-strands, which results in a
better TM-score value.

Dataset 1 0 TM-align Dataset 2 o TM-align
B Fr-TM-align B Fr-TM-align
@ 0.4 1
£
2
9]
5 03+
“—
S
S o021
©
o
L o1
04 Al B
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
PSI (in %) PSI (in %)
Figure 3

A) Histogram showing the fraction of protein pairs in various PSI (in %) bins for the dataset |. B) Similar data as

in A, but plotted for dataset 2.
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Histogram showing the fraction of protein pairs with
improved/decreased or unchanged TM-score by Fr-
TM-align with respect to the TM-score reported by
TM-align. dTM is defined as (TM-score (Fr-TM-align) — TM-
score (TM-align)).

On average, Fr-TM-align takes ~4.5 seconds of CPU time
per structure pair on a single core of a 2 GHz AMD
Opteron processor. This is ~12 times slower than TM-
align. The speed of the program might limit its application
for performing structural alignments on a very large scale,
but with the increase in the number of cores/processor,
this is not likely to be a practical impediment. To increase
the speed of Fr-TM-align, we have implemented a slightly
fast version of the algorithm, which essentially scans a
smaller number of initial seed alignments with the heuris-
tic iteration (as discussed in Methods). This is provided as
an option before the execution of the program. On aver-
age, for all structure pairs compared, Fr-TM-align with the
fast option takes ~2.8 seconds with a final average (stand-
ard deviation) in the TM-score of 0.277 (0.093). This is
comparable to the average (standard deviation) TM-score,
0.279 (0.094), obtained using the slower and more sensi-
tive version of Fr-TM-align. The faster version of the algo-
rithm results in a TM-score improvement of ~8.6% in
comparison to TM-align and is ~7 times slower. This
could potentially be used for large scale scanning to detect
remote structural similarities. The slower version provides
slightly better structural alignments for some structure
pairs. The source code and executables of Fr-TM-align are
available at:  http://cssb.biology.gatech.edu/skolnick

files/FrTMalign/.

Conclusion

We have developed an improved structural alignment
algorithm Fr-TM-align that uses a fragment alignment and
assembly approach to generate initial seed alignments
which when refined generates more significant structural
alignments than those provided by the original TM-align

http://www.biomedcentral.com/1471-2105/9/531
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Figure 5

Histogram showing the fraction of protein pairs with
improved/decreased or without any change in TM-
score by Fr-TM-align with respect to the length of
the smaller protein of the two proteins being aligned.
dTM is defined as (TM-score (FrTMalign) — TM-score (TM-

align)).

program. We have compared Fr-TM-align with other com-
peting structural alignment algorithms, TM-align and CE,
using various alignment quality assessment scores such as
PSI and the TM-score. The evaluation shows that Fr-TM-
align performs better in comparison to both TM-align and
CE. In comparison to TM-align, on an average, Fr-TM-
align results in an improved TM-score (by ~9%) and
increased coverage (by ~7%) in comparison to TM-align.
A more detailed comparison between Fr-TM-align and
TM-align shows that alignments from Fr-TM-align have an
improved TM-score for ~86% of protein pairs. The
improvement in TM-score by Fr-TM-align is observed for
all lengths of protein pairs and over all TM-score
(obtained from TM-align) ranges. However, Fr-TM-align
achieves this higher accuracy and coverage at the expense
of longer computation time. On an average, Fr-TM-align is
~12 times slower than TM-align. Nevertheless, the ability
of Fr-TM-align to detect more subtle structural similarities
is a more desirable attribute. For a more practical applica-
tion of Fr-TM-align, we have modified the algorithm that
has reduced the computation time by ~1.6 times with a
decrease in final TM-score only by ~1% relative to the
slower version of the algorithm.
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Figure 6
Two examples showing the structural alignments from Fr-TM-align and TM-align. A) The structural alignment
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between 2GZQ _A (186 residues) and 1AIM B (99 residues). B) The structural alignment between 1AOL (228 residues) and
IAKP (114 residues). The first row shows the ribbon diagrams of the native structures. The beta-sheets in the native struc-
tures are colored in cyan to highlight the structurally similar region, while the remainder of the structure is transparent gray.
The second row is the structural alignment given by TM-align and Fr-TM-align. L denotes the number of aligned residues. The
longer of the two proteins is shown in light green color and the smaller protein is shown in light yellow color. The aligned
(unaligned) regions are shown in the thick backbone (thin) backbone.
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