
BioMed Central

Page 1 of 13
(page number not for citation purposes)

BMC Bioinformatics

Open AccessResearch article
Grammar-based distance in progressive multiple sequence
alignment
David J Russell*1, Hasan H Otu2 and Khalid Sayood1

Address: 1Department of Electrical Engineering, University of Nebraska-Lincoln, 209N WSEC, Lincoln, NE, 68588-0511, USA and 2New England
Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center Genomics Center, Harvard Medical School, Boston, MA 02215, USA

Email: David J Russell* - drussell@engr.unl.edu; Hasan H Otu - hotu@bidmc.harvard.edu; Khalid Sayood - ksayood@eecomm.unl.edu

* Corresponding author

Abstract
Background: We propose a multiple sequence alignment (MSA) algorithm and compare the
alignment-quality and execution-time of the proposed algorithm with that of existing algorithms.
The proposed progressive alignment algorithm uses a grammar-based distance metric to determine
the order in which biological sequences are to be pairwise aligned. The progressive alignment
occurs via pairwise aligning new sequences with an ensemble of the sequences previously aligned.

Results: The performance of the proposed algorithm is validated via comparison to popular
progressive multiple alignment approaches, ClustalW and T-Coffee, and to the more recently
developed algorithms MAFFT, MUSCLE, Kalign, and PSAlign using the BAliBASE 3.0 database of
amino acid alignment files and a set of longer sequences generated by Rose software. The proposed
algorithm has successfully built multiple alignments comparable to other programs with significant
improvements in running time. The results are especially striking for large datasets.

Conclusion: We introduce a computationally efficient progressive alignment algorithm using a
grammar based sequence distance particularly useful in aligning large datasets.

Background
Generation of meaningful multiple sequence alignments
(MSAs) of biological sequences is a well-studied NP-com-
plete problem, which has significant implications for a
wide spectrum of applications [1,2]. In general, the chal-
lenge is aligning N sequences of varying lengths by insert-
ing gaps in the sequences so that in the end all sequences
have the same length. Of particular interest to computa-
tional biology are DNA/RNA sequences and amino acid
sequences, which are comprised of nucleotide and amino
acid residues, respectively.

MSAs are generally used in studying phylogeny of organ-
isms, structure prediction, and identifying segments of

interest among many other applications in computational
biology [3].

Given a scoring scheme to evaluate the fitness of an MSA,
calculating the best MSA is an NP-complete problem [1].
Variances in scoring schemes, need for expert-hand analy-
sis in most applications, and many-to-one mapping gov-
erning elements-to-functionality (codon mapping and
function) make MSA a more challenging problem when
considered from a biological context as well [4].

Generally, three approaches are used to automate the gen-
eration of MSAs. The first offers a brute-force method of
multidimensional dynamic programming [5], which may

Published: 10 July 2008

BMC Bioinformatics 2008, 9:306 doi:10.1186/1471-2105-9-306

Received: 21 February 2008
Accepted: 10 July 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/306

© 2008 Russell et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

BMC Bioinformatics 2008, 9:306 http://www.biomedcentral.com/1471-2105/9/306

Page 2 of 13
(page number not for citation purposes)

find a good alignment but is generally computationally
expensive and, therefore, unusable beyond a small N.
Another method uses a probabilistic approach where Hid-
den Markov Models (HMMs) are approximated from una-
ligned sequences. The final method, progressive
alignment, is possibly the most commonly used approach
when obtaining MSAs [6].

A progressive alignment algorithm begins with an optimal
alignment of two of the N sequences. Then, each of the
remaining N sequences are aligned to the current MSA,
either via a consensus sequence or one of the sequences
already in the MSA. Variations on the progressive align-
ment method include PRALINE [7], ProbCons [8], MAFFT
[9,10], MUSCLE [11,12], T-Coffee [13], Kalign [14],
PSalign [15], and the most commonly used CLUSTALW
[16]. In most cases, the algorithms attempt to generate
accurate alignments while minimizing computational
time or space. Advances in DNA sequencing technology
with next generation sequencers such as ABI's SOLID and
Roche's GC FLX provide vast amount of data in need of
multiple alignment. In case of large sequencing projects,
high number of fragments that lead to longer contigs to be
combined are generated with much less time and money

[17]. In addition, as more organisms' genomes are
sequenced, approaches that require MSA of the same gene
in different organisms now find a more populated data
set. In both cases computational time in MSA is becoming
an important issue that needs to be addressed.

This work presents GramAlign, a progressive alignment
method with improvements in computational time. In
particular, the natural grammar inherent in biological
sequences is estimated to determine the order in which
sequences are progressively merged into the ongoing
MSA. The following sections describe the algorithm and
present initial results as compared with other alignment
algorithms.

Methods
A general overview of the GramAlign algorithm is
depicted in Figure 1. The set of sequences to be aligned, S,
are regarded as input to the algorithm with S = {s1,...,sN},
where si is the ith sequence and i {1,...,N}.

Distance Estimation
The first step in the procedure involves the formation of
an estimate of the distance between each sequence sm and

Algorithm overviewFigure 1
Algorithm overview. The algorithm operates on a set of sequences S originally read in FASTA format. After a grammar-
based distance matrix D is estimated, a minimal spanning tree T is constructed. The tree is used as a map for determining the
order in which the sequence set is progressively aligned in A. Gaps in the alignment are grouped together using a sliding win-
dow resulting in AAdj. Several outputs are available, including the distance matrix and various sequence alignment formats.

Distance
Calculation

Read
Sequences

S
Construct
Minimal
Spanning

Tree

D

Align
Sequences

T

Write
Output

Information

A

Adjust MSA
Gaps

AAdj

BMC Bioinformatics 2008, 9:306 http://www.biomedcentral.com/1471-2105/9/306

Page 3 of 13
(page number not for citation purposes)

all other sequences sn n m. The distance used in
GramAlign is based on the natural grammar inherent to
all information-containing sequences. Unfortunately, the
complete grammar for biological sequences is unknown,
and so cannot be used when comparing sequences. How-
ever, we do know that biological sequences have struc-
tures which correspond to functions. This in turn implies
that biological sequences which correspond to proteins
with similar functions will have similarities in their struc-
ture. Therefore, we use a grammar based on Lempel-Ziv
(LZ) compression [18,19] used in [20] for phylogeny
reconstruction. This measure uses the fact that sequences
with similar biological properties share commonalities in
their sequence structure. It is also known that biological
sequences contain repeats, especially in the regulatory
regions [21]. When comparing sequences with functional
similarity, non-uniform distribution of repeats among the
sequences poses a problem to assess sequence similarity.
As shown below, the proposed distance naturally handles
such cases, which are difficult to be accounted for by
alignment or sequence edit based measures.

An overview of the grammar-based distance calculation is
shown in Figure 2 where a dictionary of grammar rules for

each sequence is calculated. Initially, the dictionary =

 is empty, a fragment f1 = sm(1) is set to the first residue

of the corresponding sequence, and only the first element
sm(1) is visible to the algorithm. At the kth iteration of the

procedure, the kth residue is appended to the k - 1 frag-

ment and the visible sequence is checked. If fk sm(1,...,k

- 1) then fk is considered a new rule, and so added to the

dictionary , and the fragment is reset, fk

= . However, if fk sm (1,...,k - 1), then the current dic-

tionary contains enough rules to produce the current frag-

ment, i.e., . In either case, the iteration

completes by appending the kth residue to the visible
sequence. This procedure continues until the visible
sequence is equal to the entire sequence, at which time the
size of the dictionary is recorded along the diagonal of the
grammar elements matrix, Em, m = |Gm|. As will be shown,

calculating the distance between sequences requires only
the number of entries in the dictionary.

In the next step shown in Figure 2, each sequence is com-
pared with all other sequences. In particular, consider the
process of comparing sequences m and n. Initially, the dic-

tionary = Gm is set to that of sequence m, a fragment

f1 = sn(1) is set to the first residue of the nth sequence, and

Gm
1

G G fm
k

m
k k= ∪−1 { }

G Gm
k

m
k= −1

Gm n,
1

Distance calculationFigure 2
Distance calculation. An N × N grammar-based distance matrix D is estimated from the set of N input sequences S. The first
step in generating D is to approximate the original number of elements in each sequence's dictionary based on an LZ complex-
ity. Each dictionary is extended using all other sequences resulting in new numbers of elements. The grammar-based distance
between sequences m and n is determined by considering the amount by which dictionaries change.

Create LZ
Dictionaries
(1, ..., N)

Extend LZ Dictionaries
(1, ..., N) x (1, ..., N)

Estimate
Distance

E
(complete

matrix)

S

D

E
(diagonal-only

matrix)

BMC Bioinformatics 2008, 9:306 http://www.biomedcentral.com/1471-2105/9/306

Page 4 of 13
(page number not for citation purposes)

the visible sequence is all of sm. The algorithm operates as

described previously, resulting in a new dictionary size Em,

n = |Gm,n|. When complete, more grammatically-similar

sequences will have a new dictionary size with fewer
entries as compared to sequences that are less grammati-
cally-similar. Therefore, the size of the new dictionary Em,n

will be close to the size of the original dictionary Em,m.

In the final step, the distance between the sequences is
estimated using the dictionary sizes. Five different dis-
tance measures were suggested in [20]. This work used the
distance measure

where m, n {1,...,N} are indices of two sequences being
compared. This particular metric accounts for differences
in sequence lengths, and normalizes accordingly. Thus,
the final distance matrix D is composed of grammar-
based distance entries given by (1). Smaller entries in D
indicate a stronger similarity, at least in terms of the LZ-
based grammar estimate. Intuitively, sequences with a
similar grammar should be pairwise aligned with each
other in order for progressive combining into an MSA.

To further improve the execution time, D is only partially
calculated as follows. An initial sequence is selected and
compared with all other sequences. The resulting dis-
tances are split evenly into two groups based on d, one
containing the smallest distances, and the other contain-
ing the largest distances. The process is repeated recur-
sively on each group until the number of sequences in a
group is two. The benefit is that only N log(N) distances
need to be calculated. The validity of only calculating
these sets of distances stems from the transitivity of the LZ
grammars being inferred. That is, if the grammar-based
distances di, j and dj, k are small, it is likely that di, k is also
small. By recursively dividing groups of extreme distances,
only those distances which would likely be used in the
spanning-tree creation process will actually be calculated.

Sequence Alphabet
The distance between sequences m and n as determined by
(1) is based on how many additional rules need to be
added to each grammar in order to generate both sm and
sn. Because the real grammars are unknown, Gm and Gn are
approximated by scanning the only observations availa-
ble (i.e., sm and sn). The grammar approximation improves
as the length of the observed sequences increases. And so,
the distance calculations are a function of sequence
lengths, becoming more accurate as the sequences
increase in length. In practice, this calculation works well

for DNA sequences, even of shorter lengths, because the
approximated grammar of a DNA sequence can only con-
tain rules involving words composed of combinations of
elements from the alphabet {'A','C','G','T'}. This small
alphabet allows for a rapid generation of a reasonable
grammar since there are a relatively small number of per-
mutations of letters. From a grammar perspective, amino
acid sequences are generally much more difficult to proc-
ess correctly using (1). The reason being the alphabet con-
tains 23 letters, where each element is not equally
different from all other elements. Due to the relatively
large alphabet size, much longer sequences are necessary
to generate a reasonable grammar approximation. Thus,
the accuracy of distances calculated for sets of short amino
acid sequences are diminished. Additionally, consider the
substitution scores of 'L' and 'M' as taken from the
GONNET250 and BLOSUM62 substitution matrices in
Figure 3. Notice in (a) and (c), that 'L' receives a relatively
high positive value when aligned with any of
{'I','L','M','V'}. Similarly, in (b) and (d), 'M' receives a rel-
atively high positive value when aligned with any of the
same set. Additionally, both 'L' and 'M' generally receive
high negative values when compared to letters other than
{'I','L','M','V'}. When taking this type of scoring into
account, the elements 'L' and 'M' could be considered the
same letter in a grammatical sense.

Thus, GramAlign offers the option to use a "Merged
Amino Acid Alphabet" when calculating the distance
matrix. The merged alphabet contains 11 elements corre-
sponding to the 23 amino acid letters grouped into the
sets {'A','S','T','X'}, {'B','D','N'}, {'C'}, {'E','K','Q','R','Z'},
{'F'}, {'G'}, {'H'}, {'I','L','M','V'}, {'P'}, {'W'}, and {'Y'}.
These groupings were determined by considering all 23
rows of the BLOSUM45, BLOSUM62, BLOSUM80 and
GONNET250 substitution matrices, and only grouping
elements that had a strong similarity across the entire row
in all four matrices. The merged alphabet has the benefit
of containing fewer elements allowing for more accurate
distance estimates based upon shorter observed
sequences. Also, the resultant merged-alphabet substitu-
tion matrices are more consistent in that a merged-letter
score is high only when compared to itself. In practice, the
average alignment scores increased when aligning the
same data sets using the merged alphabet within the dis-
tance calculation, as compared to using the actual alpha-
bet (results not shown). In either case, once the distances
have been calculated, a tree based on these distances is
used to determine which sequences should be pairwise
aligned.

Tree Construction

The next step in the algorithm consists of constructing a
minimal spanning tree T based on the distance matrix D.
In particular, consider a completely connected graph of N

d
Em n Em m En m En n

Em n En m
m n,

, , , ,
, ,

,=
− + −

+
2

BMC Bioinformatics 2008, 9:306 http://www.biomedcentral.com/1471-2105/9/306

Page 5 of 13
(page number not for citation purposes)

vertices and edges, where the weight of an edge

between vertices i and j is given by the (i, j)th element of
the distance matrix, Di, j. This work uses Prim's Algorithm

[22] to determine a minimal spanning tree T which may
be used as a guide in determining the order for progres-
sively aligning the set of sequences S.

Align Sequences
The minimal spanning tree T along with the set of
sequences S, are processed by the "Align Sequences" block
in Figure 1. This block is presented in more detail in Figure
4. The first two sequences from S to be aligned are given

by T as the root sequence of T and the nearest sequence in
terms of the LZ grammar distance. At the conclusion of
the pairwise alignment process, the resulting alignment is
stored in an ensemble of sequences.

In the following we describe the pairwise alignment pro-
cedure, the scoring system and the method for progressive
alignment.

Dynamic Programming
At the core of most progressive MSA algorithms is some
method for performing pairwise alignments between two

N N()−1
2

Substitution scores for amino acid 'L' and 'M'Figure 3
Substitution scores for amino acid 'L' and 'M'. Bar graphs of the substitution scores for amino acid 'L' and 'M' as taken
from the Gonnet250 and BLOSUM62 substitution matrices. The scores are shown based on an alphabetical ordering of amino
acid letters from the leftmost 'A' to rightmost 'Z'.

� � �� �� ��

���

���

�

��

��

��

	�

���

���

���

��
��
���

�
��
��
���
���

�
�
��
���
��
��
��
�

����

�����

 � � � � � � ! " � # $ % & ' � (�) * + ,

� � �� �� ��

���

���

�

��

��

��

	�

���

���

���

��
��
���

�
��
��
���
���

�
�
��
���
��
��
��
#

#���

�����

 � � � � � � ! " � # $ % & ' � (�) * + ,

(a) GONNET250 Row ‘L’ (b) GONNET250 Row ‘M’

� � �� �� ��
��

��

�

�

�

�

	

��

��

�����
���

	
-

�.
�.-
.��
��
�
��
.��

�
�-
��
�

�����	�#��

 � � � � � � ! " � # $ � � � 	 � � � � � �

� � �� �� ��
��

��

�

�

�

�

	

��

��

�����
���

	
-

�.
�.-
.��
��
�
��
.��

�
�-
��
#

#����	�#��

 � � � � � � ! " � # $ � � � 	 � � � � � �

(c) BLOSUM62 Row ‘L’ (d) BLOSUM62 Row ‘M’

BMC Bioinformatics 2008, 9:306 http://www.biomedcentral.com/1471-2105/9/306

Page 6 of 13
(page number not for citation purposes)

sequences. This work uses a version of the [23] dynamic
programming algorithm with affine gap scores as dis-
cussed in [2] to generate each pairwise alignment.

Scoring System
A significant ambiguity regarding the dynamic program-
ming procedure is the scoring function used when com-
paring two elements, or when comparing an element with
a gap.

Typically, the pairwise scoring function c() is simply a
matrix of values, where each column and row represent
one element in the alphabet. In this way, each cell of the
matrix corresponds to some measure representing the
likelihood that two sequence elements should be aligned
with each other. The most well-known amino acid scoring
matrices are the Percent Accepted Mutation (PAM) [24],
BLOck SUbstitution Matrix (BLOSUM) [25] and
GONNET [26]. GramAlign defaults to the GONNET250
substitution matrix for the scoring function c(), as other
progressive alignment algorithms generally use it as the
default choice (e.g., [14] and [16]).

Determining the best gap-open and gap-extension penal-
ties is a challenging problem, made more difficult by
introducing two different penalties to account for the
beginning and ending tail gaps of alignments. The default
gap penalties used by GramAlign have been adjusted to

perform well based on the alignment sets presented in the
results section.

Progressive Alignment
The ensemble is implemented as a doubly-linked list,
where each node of the list represents a single column of
the alignment. Each node of the ensemble contains an
array of letters corresponding to the respective column
alignment, a tally of gaps in the column, a weighted com-
bination of substitution scores, and two gap penalties.
Once the initial ensemble A(0,1) is constructed between the
first two entries in T, the remaining sequences need to be
added to the ensemble in the order defined by T. This is
accomplished by checking T for the next sequence not
already in the ensemble, call it sequence sj where j corre-
sponds to the order in which the sequence was added to
T; that is, j is the priority of the sequence. To progressively
add sj to the alignment, a pairwise alignment between the
ensemble A(0,...,j-1) and sj is created via the afore mentioned
dynamic programming algorithm. While the algorithm
used is a pairwise alignment algorithm the distance calcu-
lated at each step of the pairwise alignment is an average
of the distances between the particular position being
aligned in the new sequence and the corresponding
amino acides or bases in the ensemble at that node. The
new pairwise alignment is merged into the ongoing
ensemble based on the trace-back. The process continues
until all sequences have been added to the ensemble of
sequences. When sequence sj is added to the current

Align sequencesFigure 4
Align sequences. From the spanning tree T and the set of sequences S, a progressive alignment is generated and stored in an
ensemble. When no more sequences remain, the final alignment A is available for post-processing gap adjustments.

Construct
Pairwise

Alignment

T

S A

A(0,1)

Merge New
Sequence

Into
Ensemble

A(0,...,j)

BMC Bioinformatics 2008, 9:306 http://www.biomedcentral.com/1471-2105/9/306

Page 7 of 13
(page number not for citation purposes)

ensemble A(0,...,j-1), each node is updated to reflect the new
column element.

Gap Adjustment
Once all N sequences have been progressively aligned, the
final post-processing block in Figure 1, "Adjust MSA
Gaps", is used to cluster gaps together. The adjustment is
further detailed in Figure 5, where the ensemble A is
scanned so a histogram H of gaps-per-column is gener-
ated.

The histogram H is scanned using an equidistant, user-
adjustable sliding window about each column. For each
column, when the number of gaps is greater than a user-
adjustable threshold percentage of gaps-per-column, the
following steps are taken. For each row in the column
under consideration:

1. If the current row has a gap, move to the next row;

2. Otherwise, scan the current row of the neighboring col-
umns within the window, beginning with the nearest col-
umns and work outward;

3. If a neighboring column has a gap in the current row
and the neighboring column has fewer total gaps than the
center column, shift the gap from the neighboring column
into the column under consideration.

As an illustration, consider a portion of the ensemble

where xm, n represents any element other than a gap in col-
umn n of sequence m, and -m, n represents a gap in column
n of sequence m. And so, the gap histogram for this section
of ensemble is H = {...,1, 2, 3, 4, 0,...}. Assuming the gap
threshold is 0.4, then only columns with more than two
gaps will be considered for adjustment. In the example, H
is scanned until column i is identified as having three
gaps. Following the procedure, each row in column i is
checked until a non-gap entry is found. In the example,
the first non-gap entry x4, i is in row four. Assuming the
gap window is 2, elements in the fourth row of the neigh-
boring columns are checked for gap entries. In particular,
column (i + 1) is checked first, with a gap entry -4, i+1.
However, no shift occurs because a quick check of H
shows that column (i + 1) has more gaps than column i.
Continuing the scan, columns (i - 1) and (i + 2) are
checked before another gap is found in column (i - 2). In
this case, H indicates column (i - 2) has fewer gaps com-
pared to column i, and so a blind shift of entries between
(i - 2) and i occurs, resulting in the ensemble

A

x x x x

x x
i i i i i

i i i i

:

, , , , ,

, , , , ,

1 2 1 1 1 1 1 1 2

2 2 2 1 2 2 1 2

− − + +

− − +

−
− − − ii

i i i i i

i i i i

x x

x x

+

− − + +

− − +

− − −
− −

2

3 2 3 1 3 3 1 3 2

4 2 4 1 4 4 1

, , , , ,

, , , , xx

x x x x
i

i i i i i

4 2

5 2 5 1 5 5 1 5 2

,

, , , , ,

+

− − + +−

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

A

x x x x

x x
i i i i i

i i i i

:

, , , , ,

, , , , ,

1 2 1 1 1 1 1 1 2

2 2 2 1 2 2 1 2

− − + +

− − +

−
− − − ii

i i i i i

i i i i

x x

x x

+

− − + +

− − +

− − −
− −

2

3 2 3 1 3 3 1 3 2

4 2 4 4 2 4 1

, , , , ,

, , , , xx

x x x x
i

i i i i i

4 2

5 2 5 1 5 5 1 5 2

,

, , , , ,

+

− − + +−

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

Adjust gapsFigure 5
Adjust gaps. Gaps in the complete MSA ensemble A are grouped together via a sliding window. After the histogram H of
gaps-per-column is generated, an equidistant column-window is shifted across the alignment, moving one column per interval.
If the center column contains more gaps than some parameter threshold, the columns within the window are scanned for pos-
sible gaps that may be shifted into the center column. The resulting adjusted ensemble AAdj is presented as the final alignment.

Create Gap
Histogram

A
Scan

Histogram
and Shift

Gaps

H AAdj

BMC Bioinformatics 2008, 9:306 http://www.biomedcentral.com/1471-2105/9/306

Page 8 of 13
(page number not for citation purposes)

where original indices are kept to depict which entries are
shifted into which locations.

The result is a blind movement of sparse gaps into dense
regions of gaps. Numeric simulations have shown this
post-processing stage does not affect alignment scoring
based upon the method used in the Results and Discus-
sion section (results not shown). And so, the user-defined
parameters are set to a threshold of 1.0 and a window of
0 columns by default thereby disabling the gap adjust-
ment block. Should it be known there are conserved
regions of gaps, the user may decide to enable this process
to encourage gap grouping.

Algorithm Complexity

The algorithm complexity of GramAlign may be broken
into five pieces, beginning with the generation of each

sequence grammar dictionary, Gi for i {1,...,N}, where

N is the number of sequences. Suppose the average
sequence length is L, then each Gi results in complexity

(L), so all dictionaries are generated with complexity

(LN). Next, the distance matrix D is formed by recur-
sively extending a grammar by all other sequences within
it's neighborhood, each of which results in complexity

(L), then splitting the neighborhood into two halves,

resulting in a complexity (LN log(N)). The spanning
tree T is constructed by searching over D with a complex-
ity of (N2). The tree is used as a map in determining the
order in which to perform N - 1 pairwise alignments, each
requiring a complexity of (L2 + L). Thus, the progressive

alignment process takes (L2N). The alignment ensem-

ble is scanned and has gaps shifted in (LN) time. Thus,

the entire time complexity for GramAlign is (LN + LN

log(N) + N2 + L2N + LN), which simplifies to (N2 +
L2N).

Results and Discussion
In this section, example alignments are used to study the
possible advantages of GramAlign. All results were gener-
ated by compiling and executing the respective MSA pro-
grams on the same computer; specifically, an Apple iBook
with a PowerPC G4 operating at 1.2 GHz with 1.25 Gb
system memory and 512 Kb L2 cache. Two sets of experi-
ments were conducted. The first set of experiments were
conducted using the unaligned FASTA files from the BAli-
BASE 3.0 [27] data-set, a well-accepted benchmark data-
base containing example amino acid sequences. The
resulting aligned FASTA files from each algorithm were
scored using bali score, a program provided with the BAli-
BASE distribution that generates a Sum-of-Pairs (SP) score
and a Total-Column (TC) score based on predetermined
reference alignments. The size of the sequences in the

BAliBASE distribution are relatively small and, therefore,
not very useful in demonstrating the advantages to be
obtained using a fast algorithm. The second set of experi-
ments were conducted using sequences generated by Rose
version 1.3 to demonstrate algorithms' capabilities on
large data sets containing either long or numerous
sequences. Rose is a software tool that implements a prob-
abilistic model of sequence evolution, so that a user is
able to generate families of related sequences from a com-
mon ancestor sequence via insertion, deletion and substi-
tution [28]. Rose allows for many parameter adjustments
including rate of mutation, desired average final sequence
length and number of desired sequences. The tool outputs
the unaligned sequences, as well as the real alignment
based on how mutations occur, and an evolutionary tree.
The set of sequences generated by Rose were based on the
default seed file provided with the Rose software distribu-
tion, where the seed file is the method used to input
parameters to Rose.

Note the use of simulated data here is to demonstrate the
speed advantage of GramAlign, while maintaining a sim-
ilar qualitative score. The default values were used to gen-
erate the data and the algorithms were not tuned to the
data. The use of simulated data may actually provide a
biased advantage in quality score to any given alignment
program, depending on how the simulated data is gener-
ated. A wider breadth of simulated data, such as was done
in [29], would provide a better assessment of overall
alignment quality.

BAliBASE Experiments
Alignment files in the BAliBASE database are separated
into five categories (RV1x through RV50), each exhibiting
different classes of alignment issues (e.g., one sequence
might be significantly longer than the other sequences in
a file). The first class is further divided into two subcatego-
ries labeled RV11 and RV12. The results presented in
Table 1 and Table 2 respectively detail the average SP and
TC scores over each category as aligned by GramAlign ver-
sion 1.14 (see Additional file 1), ClustalW version 1.83, T-
Coffee version 4.45, PSAlign using ProbCons as the tree
generation (no version given, archive created on 3/2/
2006), Kalign version 1.04, MAFFT version 5.861, and
MUSCLE version 3.6. Additionally, a fast version was
tested for ClustalW, MAFFT, MUSCLE and MAFFT version
6.240. In particular, the command line options used were
clustalw -quicktree, mafft --retree 1, muscle -maxiters 1 -
diags -sv -distance1 kbit20_3 and mafft --retree 1 --parttree
--partsize 50 to incorporate high-speed progressive
options. In all cases the default parameters were used for
each program. In general, there are no significant differ-
ences in the performance of GramAlign and other algo-
rithms as far as the SP and TC scores are concerned. As
may be seen, GramAlign provides similar alignments in

BMC Bioinformatics 2008, 9:306 http://www.biomedcentral.com/1471-2105/9/306

Page 9 of 13
(page number not for citation purposes)

terms of the quality determined via the scoring method
used.

Presented in Table 3 are the execution times necessary to
generate the entire data presented in Table 1 and Table 2.
GramAlign finishes in approximately 0.4% of the time
needed by PSAlign, which generated the highest scoring
alignments in five out of the six BAliBASE categories as far
as SP scores are concerned. PSAlign's average SP and TC
score on the other hand were 9.4 and 17.5% better than
GramAlign's scores, which was approximately 223 times
faster. Out of the four approaches MAFFT, MAFFT v6,
MAFFT (fast), MUSCLE (fast), which were 17.1, 49.9,
54.0, and 55.7% faster than GramAlign, respectively, only
MAFFT had a 2% better average SP score than GramAlign.
All other average SP and TC scores were equivalent or
worse than that of GramAlign. Further, the GramAlign
alignments scored equal-to or greater-than 56.9, 59.6,
60.8, and 71.1% of the trials based on TC score, compared
to MAFFT, MAFFT v6, MAFFT (fast), and MUSCLE (fast)
(results not shown). GramAlign finishes in 33% of the
time required by ClustalW using -quicktree, and only 8%

needed by ClustalW, possibly the most widely used MSA
program.

Experiments with Large Data Sets
Long Sequence Experiments
In order to compare the performance of MSA algorithms
on long data sets, two sets of seven FASTA files each con-
taining ten sequences were generated using Rose version
1.3. The first set of seven FASTA files contains protein
sequences and the second set contains DNA sequences. In
both sets, the first file contains sequences with an average
length of 5,000 residues, with each file increasing the aver-
age sequence length by 5,000 residues. Thus, the seventh
file contains ten sequences with an average sequence
length of 35,000 residues.

Figures 6 and 7 depict the execution time required for the
fastest algorithms to align the seven large protein and
DNA sequence sets, respectively. As the average length of
sequences increases, the difference in time required by
GramAlign compared to the other algorithms also
increases. In particular, at an average sequence length of
35,000 residues GramAlign completes the alignments in

Table 1: Average SP scores on BAliBASE.

Algorithm RV11 RV12 RV20 RV30 RV40 RV50

MUSCLE (fast) 0.4904 0.8303 0.8359 0.7076 0.6904 0.6823
MAFFT (fast) 0.4801 0.8161 0.8404 0.7345 0.7187 0.7089
MAFFT v6 (parttree, n = 50) 0.4790 0.8066 0.8096 0.6801 0.6610 0.6985
MAFFT 0.4914 0.8258 0.8459 0.7437 0.7347 0.7253
GramAlign 0.5089 0.8328 0.8270 0.6855 0.7239 0.6903
Kalign 0.5029 0.8504 0.8410 0.7389 0.7259 0.7299
ClustalW (fast) 0.4748 0.8367 0.8258 0.6843 0.6705 0.6715
MUSCLE 0.5578 0.8583 0.8548 0.7492 0.7623 0.7384
ClustalW 0.4908 0.8197 0.8219 0.6841 0.6950 0.6698
PSAlign 0.5924 0.8804 0.8720 0.7554 0.7937 0.7739
T-Coffee 0.5181 0.8650 0.8660 0.7588 0.7452 0.7715

Average SP score for each algorithm for each category offered by the BAliBASE test suite. The bold entries indicate the lowest and highest scores.

Table 2: Average TC scores on BAliBASE.

Algorithm RV11 RV12 RV20 RV30 RV40 RV50

MUSCLE (fast) 0.2421 0.6349 0.2599 0.2457 0.2614 0.2719
MAFFT (fast) 0.2354 0.6209 0.3094 0.2910 0.3108 0.3087
MAFFT v6 (parttree, n = 50) 0.2461 0.6320 0.2978 0.2987 0.3104 0.3435
MAFFT 0.2532 0.6256 0.3168 0.3158 0.3073 0.3303
GramAlign 0.2993 0.6701 0.2917 0.2503 0.3292 0.3006
Kalign 0.2538 0.6749 0.2765 0.2955 0.3253 0.3223
ClustalW (fast) 0.2317 0.6651 0.2680 0.2513 0.2808 0.2752
MUSCLE 0.3217 0.6961 0.3077 0.3087 0.3484 0.3397
ClustalW 0.2395 0.6417 0.2602 0.2478 0.3024 0.2658
PSAlign 0.3503 0.7384 0.3517 0.2992 0.3951 0.3816
T-Coffee 0.2716 0.6986 0.3257 0.3637 0.3659 0.3974

Average TC score for each algorithm for each category offered by the BAliBASE test suite. The bold entries indicate the lowest and highest scores.

BMC Bioinformatics 2008, 9:306 http://www.biomedcentral.com/1471-2105/9/306

Page 10 of 13
(page number not for citation purposes)

3,363 and 3,092 seconds, while the nearest algorithm
(MAFFT in fast-mode) requires 10,362 and 6,981 seconds.
That is, GramAlign finishes in 32% and 44% of the time
required by the next fastest algorithm.

MUSCLE in fast mode encountered a segmentation fault
during the Root Alignment step while running on the

longest test sequences, and so the execution time is not
included in Figures 6 and 7.

Numerous Sequence Experiments
In order to compare the performance of MSA algorithms
on data sets with many sequences, two sets of seven
FASTA files each containing sequences with an average
length of 100 residues were generated using Rose version
1.3. The first set of seven FASTA files contains protein
sequences and the second set contains DNA sequences. In
both sets, the first file contains 100 sequences, with each
file increasing the number of sequences up to the seventh
file, which contains 10,000 sequences.

As shown in [30], the authors of MAFFT added a new heu-
ristic method for generating a spanning tree referred to as
"PartTree". The increase in performance is dramatic and
intended for data sets involving many sequences. Thus,
for this set of experiments, MAFFT version 6.240 was
added with the command line mafft --retree 1 --parttree --
partsize 50, which matches the fastest algorithm pre-
sented in [30]. Figures 8 and 9 depict the execution time
required for the fastest algorithms to align the seven large
protein and DNA sequence sets, respectively. As the

Table 3: Execution time.

Algorithm Execution Time (sec)

MUSCLE (fast) 301
MAFFT (fast) 313
MAFFT v6 (parttree, n = 50) 341
MAFFT 564
GramAlign 680
Kalign 1,329
ClustalW (fast) 2,071
MUSCLE 6,129
ClustalW 8,720
PSAlign 152,168
T-Coffee 403,815

Execution time necessary to align all trials in the BAliBASE test suite.

Rose protein longFigure 6
Rose protein long. Result of executing the fastest algorithms on the Rose-generated long protein sequence sets.

5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Average Sequence Length (x1000)

E
xe

cu
tio

n
T

im
e

(H
ou

rs
)

Protein Rose Data (Long)

ClustalW (fast)
MAFFT (fast)
MUSCLE (fast)
GramAlign

BMC Bioinformatics 2008, 9:306 http://www.biomedcentral.com/1471-2105/9/306

Page 11 of 13
(page number not for citation purposes)

Rose DNA longFigure 7
Rose DNA long. Result of executing the fastest algorithms on the Rose-generated long DNA sequence sets.

5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Average Sequence Length (x1000)

E
xe

cu
tio

n
T

im
e

(H
ou

rs
)

DNA Rose Data (Long)

ClustalW (fast)
MAFFT (fast)
MUSCLE (fast)
GramAlign

Rose protein manyFigure 8
Rose protein many. Result of executing the fastest algorithms on the Rose-generated numerous protein sequence sets.

10
2

10
3

10
4

−0.5

0

0.5

1

1.5

2

2.5

Number of Sequences (log
10

 Scale)

E
xe

cu
tio

n
T

im
e

(H
ou

rs
)

Protein Rose Data (Many)

ClustalW (fast)
MAFFT (fast)
MUSCLE (fast)
MAFFT v6 (parttree, n=50)
GramAlign

BMC Bioinformatics 2008, 9:306 http://www.biomedcentral.com/1471-2105/9/306

Page 12 of 13
(page number not for citation purposes)

number of sequences increases, the difference in time
required by GramAlign and MAFFT v6 compared to the
other algorithms also increases. In particular, on the sets
containing 10,000 protein and DNA sequences GramA-
lign completes the alignments in 162 and 68 seconds and
MAFFT v6 completes the alignments in 119 and 71 sec-
onds, while the next closest algorithm, MUSCLE in fast-
mode, requires 621 and 456 seconds. That is, GramAlign
finishes in 26% and 15% of the time required by the next
fastest algorithm other than MAFFT v6.

The results imply the promising viability of the proposed
algorithm, especially when aligning either long or numer-
ous sequences such as in whole-genome applications. Fur-
ther, better alignment scores may be achieved with little
change in execution time via the user-alterable parame-
ters.

Conclusion
The primary goal of this work was to introduce a compu-
tationally-efficient progressive alignment algorithm
which can be used for aligning large data sets. The gram-
mar-based distance work presented in [20] was adapted to
generate an estimation of the proper order in which
sequences are to be aligned. Additionally, a merged

amino acid alphabet was determined to allow an
improved grammar-based distance when operating on
protein sequences. Results from extensive alignments
were presented in an attempt to study the overall quality
of the resultant alignments as well as the computation
time necessary to achieve the alignments. Correctly align-
ing multiple biological sequences in an efficient amount
of time is an important and challenging problem with a
wide spectrum of applications. In this work, we adapt
existing ideas in a novel way introducing innovative
improvements. The proposed algorithm achieves reason-
able alignments compared to existing methods while sig-
nificantly reducing execution time. Future work will focus
on determining the best set of user-defined parameters for
generating the highest overall SP and TC scores.

Availability
The current version of GramAlign may be run on-line, or
the source code may be downloaded from the web server
http://bioinfo.unl.edu/GramAlign.html.

Authors' contributions
DJR thought of applying the natural transitivity of the LZ
grammars to the recursive division of the distance matrix,
implemented the entire algorithm, performed all evalua-

Rose DNA manyFigure 9
Rose DNA many. Result of executing the fastest algorithms on the Rose-generated numerous DNA sequence sets.

10
2

10
3

10
4

−0.5

0

0.5

1

1.5

2

2.5

Number of Sequences (log
10

 Scale)

E
xe

cu
tio

n
T

im
e

(H
ou

rs
)

DNA Rose Data (Many)

ClustalW (fast)
MAFFT (fast)
MUSCLE (fast)
MAFFT v6 (parttree, n=50)
GramAlign

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2008, 9:306 http://www.biomedcentral.com/1471-2105/9/306

Page 13 of 13
(page number not for citation purposes)

tions and drafted the initial manuscript. HHO conceived
the idea of using an LZ grammar for progressive align-
ment. KS collaborated with HHO and DJR in the develop-
ment of the algorithm and preparing the final manuscript.
All authors read and approved the final manuscript.

Additional material

Acknowledgements
We would like to thank the National Institutes of Health (NIH) for partial
funding of this work. We would also like to thank the editor and anony-
mous referees for their insightful comments. KS thanks NIH for support
under grant K25AI068151.

References
1. Clote P, Backofen R: Computational Molecular Biology, An Introduction

New York, NY: Cambridge University Press; 1998.
2. Durbin R, Eddy S, Krogh A, Mitchison G: Biological Sequence Analysis,

Probabilistic Models of Proteins and Nucleic Acids New York, NY: Cam-
bridge University Press; 1998.

3. Edgar RC, Batzoglou S: Multiple Sequence Alignment. Current
Opinion in Structural Biology 2006, 16:368-373.

4. Mitrophanov AY, Borodovsky M: Statistical Significance in Bio-
logical Sequence Analysis. Briefings in Bioinformatics 2006, 7:2-24.

5. Lipman DJ, Altschul SF, Kececioglu JD: A Tool for Multiple
Sequence Alignment. Proc Natl Acad Sci USA 1989,
86(12):4412-4415.

6. Notredame C: Recent Evolutions of Multiple Sequence Align-
ment Algorithms. PLoS Computational Biology 2007,
3(8):1405-1408.

7. Simossis VA, Heringa J: PRALINE: a Multiple Seqeunce Align-
ment Toolbox that Inegrates Homology-Extended and Sec-
ondary Structure Information. Nucleic Acids Research
2005:W289-W294.

8. Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S: ProbCons:
Probabilistic Consistency-Based Multiple Sequence Align-
ment. Genome Research 2005, 15(2):330-340.

9. Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: A Novel Method
for Rapid Multiple Sequence Alignment Based on Fast Fou-
rier Transform. Nucleic Acids Research 2002, 30(14):3059-3066.

10. Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: Improve-
ment in Accuracy of Multiple Sequence Alignment. Nucleic
Acids Research 2005, 33(2):511-518.

11. Edgar RC: MUSCLE: Multiple Sequence Alignment with High
Accuracy and High Throughput. Nucleic Acids Research 2004,
32(5):1792-1797.

12. Edgar RC: MUSCLE: A Multiple Sequence Alignment Method
with Reduced Time and Space Complexity. BMC Bioinformatics
2004, 5(113):.

13. Notredame C, Higgins DG, Heringa J: T-Coffee: A Novel Method
for Fast and Accurate Multiple Sequence Alignment. Journal
of Molecular Biology 2000, 302:205-217.

14. Lassmann T, Sonnhammer E: Kalign – an Accurate and Fast Mul-
tiple Sequence Alignment Algorithm. BMC Bioinformatics 2005,
6(298):.

15. Sze S, Lu Y, Yang Q: A Polynomial Time Solvable Formulation
of Multiple Sequence Alignment. Journal of Computational Biology
2006, 13(2):309-319.

16. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: Improving
the Sensitivity of Progressive Multiple Sequence Alignment
Through Sequence Weighting, Position-Specific Gap Penal-
ties and Weight Matrix Choice. Nucleic Acids Research 1994,
22(22):4673-4680.

17. Sundquist A, Ronaghi M, Tang H, Pevzner P, Batzoglou S: Whole-
Genome Sequencing and Assembly with High-Throughput,
Short-Read Technologies. PLoS ONE 2007, 2(5):.

18. Ziv J, Lempel A: A Universal Algorithm for Sequential Data
Compression. IEEE Transactions on Information Theory 1977,
23:337-343.

19. Ziv J, Lempel A: Compression of Individual Sequences via Var-
iable-Rate Coding. IEEE Transactions on Information Theory 1978,
24:530-536.

20. Otu HH, Sayood K: A New Sequence Distance Measure for
Phylogenetic Tree Construction. Bioinformatics 2003,
19(16):2122-2130.

21. Gusev VD, Nemytikova LA, Chuzhanova NA: On the Complexity
Measures of Genetic Sequences. Bioinformatics 1999,
15(12):994-999.

22. Albertson MO, Hutchinson JP: Discrete Mathematics with Algorithms
New York: John Wiley & Sons, Inc; 1988.

23. Needleman SB, Wunsch CD: A General Method Applicable to
the Search for Similarities in the Amino Acid Sequence of
Two Proteins. Journal of Molecular Biology 1970, 48(3):443-453.

24. Dayhoff MO, Schwartz RM, Orcutt BC: Atlas of Protein Sequence and
Structure, National Biomedical Research Foundation, 1978 chap. A Model
of Evolutionary Change in Proteins 5:345-352.

25. Henikoff S, Henikoff JG: Amino acid substitution matrices from
protein blocks. Proc Natl Acad Sci USA 1992, 89:10915-10919.

26. Gonnet GH, Cohen MA, Benner SA: Exhaustive matching of the
entire protein sequence database. Science 1992,
256(5062):1443-1445.

27. Thompson JD, Plewniak F, Poch O: BAliBASE: a benchmark
alignment database for the evaluation of multiple alignment
programs. Bioinformatics 1999, 15:87-88.

28. Stoye J, DEvers , Meyer F: Rose: Generating Sequence Families.
Bioinformatics 1998, 14(2):157-163.

29. Nuin PA, Wang Z, Tillier ER: The Accuracy of Several Multiple
Sequence Alignment Programs for Proteins. BMC Bioinformat-
ics 2006, 7(471):.

30. Katoh K, Toh H: PartTree: an Algorithm to Build an Approxi-
mate Tree from a Large Number of Unaligned Sequences.
Bioinformatics 2007, 23(3):372-374.

Additional file 1
An archive of the source code for the version of GramAlign at the time of
publishing. An executable may be generated by unzipping this file and
using an ANSI C compiler to build the code.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-306-S1.zip]

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Distance Estimation
	Sequence Alphabet

	Tree Construction
	Align Sequences
	Dynamic Programming
	Scoring System
	Progressive Alignment

	Gap Adjustment
	Algorithm Complexity

	Results and Discussion
	BAliBASE Experiments
	Experiments with Large Data Sets
	Long Sequence Experiments
	Numerous Sequence Experiments

	Conclusion
	Availability
	Authors' contributions
	Additional material
	Acknowledgements
	References

