
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Using iterative cluster merging with improved gap statistics to 
perform online phenotype discovery in the context of 
high-throughput RNAi screens
Zheng Yin†1,3, Xiaobo Zhou†1, Chris Bakal†2, Fuhai Li1, Youxian Sun3, 
Norbert Perrimon2 and Stephen TC Wong*1

Address: 1Center for Bioinformatics, The Methodist Hospital Research Institute and Weill Cornell College of Medicine, 6565 Fannin Street, 
Houston, TX, 77030, USA, 2Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, 
Boston, MA, 02115, USA and 3State Key Laboratory of Industrial Control Technology, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 
Province, 310027, PR China

Email: Zheng Yin - ZYin@tmhs.org; Xiaobo Zhou - XZhou@tmhs.org; Chris Bakal - cbakal@receptor.med.harvard.edu; Fuhai Li - FLi@tmhs.org; 
Youxian Sun - yxsun@iipc.zju.edu.cn; Norbert Perrimon - perrimon@receptor.med.harvard.edu; Stephen TC Wong* - STWong@tmhs.org

* Corresponding author    †Equal contributors

Abstract
Background: The recent emergence of high-throughput automated image acquisition
technologies has forever changed how cell biologists collect and analyze data. Historically, the
interpretation of cellular phenotypes in different experimental conditions has been dependent upon
the expert opinions of well-trained biologists. Such qualitative analysis is particularly effective in
detecting subtle, but important, deviations in phenotypes. However, while the rapid and continuing
development of automated microscope-based technologies now facilitates the acquisition of
trillions of cells in thousands of diverse experimental conditions, such as in the context of RNA
interference (RNAi) or small-molecule screens, the massive size of these datasets precludes human
analysis. Thus, the development of automated methods which aim to identify novel and biological
relevant phenotypes online is one of the major challenges in high-throughput image-based
screening. Ideally, phenotype discovery methods should be designed to utilize prior/existing
information and tackle three challenging tasks, i.e. restoring pre-defined biological meaningful
phenotypes, differentiating novel phenotypes from known ones and clarifying novel phenotypes
from each other. Arbitrarily extracted information causes biased analysis, while combining the
complete existing datasets with each new image is intractable in high-throughput screens.

Results: Here we present the design and implementation of a novel and robust online phenotype
discovery method with broad applicability that can be used in diverse experimental contexts,
especially high-throughput RNAi screens. This method features phenotype modelling and iterative
cluster merging using improved gap statistics. A Gaussian Mixture Model (GMM) is employed to
estimate the distribution of each existing phenotype, and then used as reference distribution in gap
statistics. This method is broadly applicable to a number of different types of image-based datasets
derived from a wide spectrum of experimental conditions and is suitable to adaptively process new
images which are continuously added to existing datasets. Validations were carried out on different
dataset, including published RNAi screening using Drosophila embryos [Additional files 1, 2], dataset
for cell cycle phase identification using HeLa cells [Additional files 1, 3, 4] and synthetic dataset using
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polygons, our methods tackled three aforementioned tasks effectively with an accuracy range of
85%–90%. When our method is implemented in the context of a Drosophila genome-scale RNAi
image-based screening of cultured cells aimed to identifying the contribution of individual genes
towards the regulation of cell-shape, it efficiently discovers meaningful new phenotypes and
provides novel biological insight. We also propose a two-step procedure to modify the novelty
detection method based on one-class SVM, so that it can be used to online phenotype discovery.
In different conditions, we compared the SVM based method with our method using various
datasets and our methods consistently outperformed SVM based method in at least two of three
tasks by 2% to 5%. These results demonstrate that our methods can be used to better identify novel
phenotypes in image-based datasets from a wide range of conditions and organisms.

Conclusion: We demonstrate that our method can detect various novel phenotypes effectively
in complex datasets. Experiment results also validate that our method performs consistently under
different order of image input, variation of starting conditions including the number and
composition of existing phenotypes, and dataset from different screens. In our findings, the
proposed method is suitable for online phenotype discovery in diverse high-throughput image-
based genetic and chemical screens.

Background
Metazoan cells have the ability to adopt an extraordinarily
diverse spectrum of cell shapes. For example, the cuboi-
dal, polarized morphology of epithelial cells differs mark-
edly from that of neuronal cells, which extend long, thin,
and highly-branched projections. The shape of an individ-
ual cell is the result of a complex interplay between the
activity of thousands of genes and the cell's environment.
Understanding this interplay is a fundamental challenge
in developmental and cell biology. Currently, there are
two key aspects to deciphering cellular morphogenesis on
genome-scale. The first is determining the individual
functional contributions of every gene towards the regula-
tion of cell shape, and the second is to describe how com-
plex relationships between cell shape genes affect
morphology. With the advent of high-throughput RNA
interference (RNAi) screening technologies, particularly
in model systems such as Drosophila melanogaster [1], it is
now possible to systematically query the involvement of
genes in the regulation of different cellular processes and
functions. Typically, RNAi-based genetic screens involve
the acquisition of relatively low-content, single-dimen-
sional data which is easily analyzed using conventional
and unbiased means and thus feasible to perform on
genome, or multi-genome scales [1,2]. In order to facili-
tate similar analysis of image-based screens, we and other
researchers have recently developed novel image segmen-
tation algorithms to rapidly quantitate hundreds of differ-
ent parameters at a single-cell level in an automated
fashion [3-6], and we have demonstrated that such image
segmentation algorithms can be used in the context of
genetic screens [7]. Notably however, this and other simi-
lar screens [8] have been 50–100 fold smaller in scale than
typical low-dimensional screens and are not yet genome-
scale. The reduced scale of these screens is due, largely in
part, to the fact that the expert opinion of cell biologists is

still an essential and rate-limiting aspect in the analysis of
many image-based datasets. Although human interven-
tion is not required in screens where the potential pheno-
typic outcomes are few or binary in number (e.g. an
image-based screen where a particular marker is deter-
mined to be nuclear or non-nuclear), such intervention is
currently necessary in order to identify novel/subtle phe-
notypes in image-based datasets of genetic or chemical
perturbations where the dynamic range of cellular pheno-
types cannot be predicted before the data is collected. For
example, in genome-scale screens for regulators of cell
shape, it is impossible to predict a priori the diversity of
morphologies that will ultimately be present in the data-
set. The failure to accurately measure this phenotypic var-
iation will lead to concomitant classification errors,
especially false negatives, and misleading results. Current
methodologies usually employ a two-step procedure to
maximize the amount of variation that is captured in a
particular image-based analysis. First, 100–600 pheno-
typic features are measured on a single-cell level (auto-
matically but somehow exhaustively), and second,
supervised techniques assisted by biologists are used to
both reduce dimensionality of feature space and carrying
out classification on the images. The biologist has to at
least perform preliminary qualitative visual scoring of a
small part of the dataset in order to gain a crude assess-
ment of the phenotypic variance that is present in this
subset. Unfortunately, it is impossible to perform such
analysis in the course of screens where millions of images
are acquired, thus the ability of these screens to identify
new phenotypes is greatly limited. The issues of defining
meaningful phenotypes and describing them using
informative feature subsets are closely related. Automated
feature space reduction schemes have been implemented
in the context of high content screen, including feature
extraction methods examined in [9], factor analysis in
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[10] and SVM-RFE method in [11]. These methods allow
more effective modelling of existing phenotypes, and also
prompt the necessity of updating informative feature sets
so that they can not only model the existing, but also dis-
cover the novel.

Cluster analysis is widely used to reveal the structure of
unlabeled datasets. Specifically, there are a number of
methods that have been developed in order to estimate
cluster numbers from a dataset such as using a series of
internal indices [12], jump methods [13], and weighted
gap statistics [14]. Moreover, supervised approaches to
cluster validation such as using re-sampling strategy [15],
prediction strength [16], methods based on mixture mod-
els and inference of Bayesian factors[17,18], or strategies
which are application-specific [19] have also been previ-
ously implemented. Nevertheless, most existing methods
are subject to certain hypothesis on a fixed dataset, and
cannot be directly used for online phenotype discovery
where new images continuously extend the dataset and
millions of cells are involved. Improper assumptions on
data structure may cause incorrect division or merging of
biologically meaningful phenotypes. To avoid this prob-
lem, such methods combine each new image with the
whole existing dataset (regardless of the large difference in
cell numbers) and frequently re-run from the very begin-
ning.

Methods for online phenotype discovery should be sensi-
tive and flexible to various phenotypes and avoid frequent
re-modelling involving complete existing datasets. As a
kernel machine based novelty detection method, one-
class SVM is used for "off-line" phenotype discovery [20].
However, two major points limit its application to high-
throughput image-based screens, especially for screens of
cell shape regulators. First, in one-class SVM all the test
samples are classified into two classes, "novel" and
"known", however many high-throughput RNAi datasets
may potentially contain multiple diverse and unique novel
phenotypes which should not necessarily be grouped
together. Subsequent cluster analysis would be needed to
identify and model different novel phenotypes following
the use of one-class SVM. Second, each time a novel phe-
notype is discovered using one-class SVM, the support
vectors need to be modified so that the newly discovered
phenotype are included as "known" in the following
loops, otherwise it will continuously be identified as
novel in future. As mentioned earlier, in a typical RNAi
screen on 1,000–10,000s genes with dozens of images for
each RNAi and 100s of cells in each image, such updating
would involve millions of cells and is intractable.

Here we describe the development of an online pheno-
type discovery pipeline that we implemented in the con-
text of a high-throughput image-based RNAi screen for

regulators of cell shape. A simplified scheme of online
phenotype discovery is shown in Figure 1. Online pheno-
type discovery demands adaptively identifying various
novel phenotypes based on multiple existing phenotypes
(e.g. those identified a priori by biologists), being sensitive
and flexible to various new phenotypes and avoiding fre-
quent re-modelling using large existing dataset. Our
method includes two key components: phenotype model-
ling and iterative cluster merging. First, a Gaussian Mix-
ture Model (GMM) is estimated for each existing
phenotype following [21]. Second, iterative cluster merg-
ing are performed based on gap statistics. When a new
image is incorporated, we sample the GMM of each exist-
ing phenotypes and start a series of merging loops. In each
loop, the image is combined with sample set for one exist-
ing phenotype and we estimate cluster number in such
combined dataset using gap statistics and use GMM of
existing phenotype as part of the reference distributions. If
some cells in the new image are clustered together with
samples from the existing phenotype, they are merged
into the existing phenotype, i.e. they are included into the
dataset of existing phenotype and deleted from the new
image. The iterations continue until sample set from each
existing phenotype has been combined with the new
image and has merged with its counterpart (if any exist).
Upon completion of all loops, the remaining cell groups
in the new image are identified as the candidate of new
phenotypes. By sampling reference dataset from new
image and existing phenotype separately, utilizing the
GMM for existing phenotypes as (part of) reference distri-
bution and involving existing clusters one by one, our
method improves the ideas in [12] and becomes more
effective. Experimental results show that the proposed
method is robust and efficient for online phenotype mod-
elling and discovery in the context of diverse image-based
screens, especially RNAi screens on Drosophila.

Results
Synthetic dataset
Overcoming large sample size difference between two clusters
Difference between sample numbers of distinct clusters
could bias cluster number estimation. We propose to
tackle this problem by using GMMs as reference distribu-
tions for existing phenotypes in gap statistics and validate
our method using simulation.

Each simulated dataset consists of observations from two
populations �1 and �2, each population are sampled
from a two dimensional Gaussian distribution with
means (0,0) for �1 and (0,3) for �2, and an identity cov-
ariance for both groups. Gap statistics [12] are used to esti-
mate number of clusters from the experiment dataset �1
∫ �2. This method uniformly samples different reference
datasets from the support of �1 ∫ �2, and here the
number of reference datasets is set to 20. Then the experi-
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Tasks and simple scheme of online phenotype discoveryFigure 1
Tasks and simple scheme of online phenotype discovery.
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ment dataset �1 ∫ �2 and the 20 reference datasets are
clustered into candidate cluster numbers k = 1... K, and we
set K = 10. For each clustering result, we measure the com-
pactness of obtained clusters using "within cluster disper-
sion". For each cluster number k, such dispersion are
measured separately on experiment dataset and each ref-
erence dataset, and gap statistic for k, denoted as gap(k), is
defined as the average value of difference between the dis-
persion on experiment dataset and that on each reference
dataset, meanwhile we obtained standard deviation of
such difference across 20 reference dataset, and denoted
as sk.

Some typical gap statistic curves are summarized in Figure
2 to illustrate the problem and validate our method. X axis
in Figure 2 indicates candidate cluster number i, and each
data point denote gap(k) while the error bar indicating sk.
Larger value of gap(k) means better compactness when the
dataset is clustered into k clusters (compared with the ref-
erence datasets which simulate mono-genous data), then
a increase from gap (k-1) to gap (k) means the clustering
performance is improved from k-1 to k. We take sk into
consideration when estimating cluster numbers following
[12], and take the estimated cluster number as the first k
with gap(k)>gap(k+1)-sk+1 (the candidate number whose
data point is higher than the bottom of error bar for its
instant right neighbor). Details of gap statistics method
are discussed in Methods section.

When samples from �1 and �2 have identical number of
100, gap statistics can correctly judge sample number as 2,
then we set sample number from �1 as 200, 300, 500,
700, 900 and 1000, and sample number from �2 are fixed
as 100. Figure 2, left and Figure 2, middle show that when
number difference is over six-fold, gap statistics does not
work correctly.

A ten-fold difference of cell numbers between existing
phenotypes and new images is not the worst situation we
would face in online phenotype discovery. Based on the
results given in Figure 2, middle, samples from two obvi-
ously different populations would be merged together.
We propose to solve this bias through fitting a GMM
model for existing phenotypes, as well as using GMM as
reference distribution for each existing cluster in gap sta-
tistics.

Next, we consider �1 as existing cluster with known distri-
bution model. If we use Gaussian model for �1 as refer-
ence dataset for gap statistics, it gives the correct result in
87.4% occasions across 500 experiments even with ten-
fold difference in sample number. Figure 2, right shows
one gap curve with ten-fold difference, where Gap(1)-
(Gap(2)-s2) = -0.0006, meanwhile Gap(2)>Gap(3)-s3,
thus, the estimated cluster number is 2 rather than 3
(although Gap(3)>Gap(2)), because data point for k = 2 is
higher than the bottom of error bar for k = 3.

Gap statistic curves for dataset with different sample numberFigure 2
Gap statistic curves for dataset with different sample number. Each curve represents experiment on one real dataset, 
and twenty reference datasets are defined from this real dataset. For each data point, value on X-axis indicates how many clus-
ters are defined on both the reference dataset and the real dataset and value on Y-axis indicates gap statistic for this cluster 
number, which is defined as the average difference of within cluster dispersions between the clustering results on reference 
datasets and real dataset, the error bars around the data points show the variation across different reference datasets. The 
estimated cluster number is defined as the X value of the first data point with higher Y value than the bottom of 
error bar for its instant right neighbor. During the experiments, the "real" dataset consists of two clusters and different 
reference datasets are used, Left, uniform reference distribution are used, sample number differences are equal, 2-fold, 3-fold 
and 5-fold from bottom to top, gap statistics works; middle, uniform reference are used, sample number differences are 7-fold, 
9-fold and 10-fold from bottom to top, gap statistic fails; right, two clusters having 10-fold difference in sample number, Gaus-
sian distribution is used as reference distribution for the cluster with larger sample numbers, and the cluster number is esti-
mated accurately.
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The results are summarized in Table 1. Generally speak-
ing, when two distinct clusters have ten-fold difference in
sample numbers, original gap statistics method using uni-
form reference fails to estimate cluster number correctly,
while our method of using accurate model as reference
distribution can overcome this issue and give a correct
estimation of cluster number.

Simulating typical cells using seven types of polygons
Seven types of polygons are defined based on the fluores-
cent cell image from a real genome wide RNAi screen
(protocol discussed later), and a simulation dataset is con-
structed based on these different types of polygons. Infor-
mation about these seven polygons is shown in Figure 3
and some details on generating these polygons are intro-
duced in [Additional file 1].

2000 polygons from each of seven types were generated
and used as training dataset, i.e. the set of existing pheno-
types, and another 2000 polygons were generated for each
type to as testing dataset. In each experiment, we started
from a certain set of existing phenotypes and built GMM
from training samples, meanwhile, we iteratively chose
two of seven polygon types and selected 100 polygons
apiece from the testing dataset to form a synthetic test
image, altogether 70 images can be formed for one exper-
iment. Using the model estimated from the training set,
we can identify existing and novel type of polygons from
these synthetic images, and observe the performance of
our method under different number of novel phenotypes
and order of image input.

Performance under different sets of existing phenotypes
Figure 4 shows the general performance of our method
under different sets of existing phenotypes. We changed
the number and composition of existing phenotypes for
different experiments, (different composition means dif-
ferent phenotypes are considered as "existing". GMM for
existing phenotypes were estimated from training dataset
to start each experiment), and for each set of existing phe-
notypes, we divided the testing set into 70 synthetic

images and shuffled the order of image input 50 times.
Whatever set of existing phenotypes we use, the synthetic
images always contain all seven phenotypes. We can
define accuracy for each polygon type as "the proportion
of test samples restored into their original cluster". If one
phenotype is used as existing phenotype in an experi-
ment, the accuracy for this phenotype is defined as the
proportion of testing cells (in this phenotype) merged
into the original existing cluster; while if the phenotype is
novel, the accuracy for this phenotype equals the propor-
tion of testing cells in this phenotype which are left alone
in a separate cluster after all the merging loops. The accu-
racies are then averaged to report general performance of
our method.

Figure 4 shows our method as having consistent accuracy
around 85% for different polygons under different condi-
tions, and the best performance is seen when the number
of existing phenotypes are 3 and 4. When the number of
existing phenotype is 6, more false negatives appears as
novel samples are merged into existing phenotypes, and
thus prompts the importance of cluster validation and
more refined multiple hypothesis tests.

Box and whisker plots for performance under different conditions
As indicated earlier, the test datasets always consist of
seven phenotypes, we can then change the conditions of
experiments (number and composition of existing pheno-
types and order of image input) and observe the perform-
ance for certain phenotype to test the robustness of our
method. Across experiments with different input order of
images and composition of existing phenotypes, the per-
formance on certain phenotypes are ranked, and such dis-
tribution of performance are illustrated using box and
whisker plot. We show the box plots for ellipses and 16-
point stars in Figure 5 and explain the meaning of such
plots in its caption. We observed that larger variation of
accuracy values correlates with lower number of existing
phenotypes, which is because the models of novel pheno-
types are estimated from test samples input in the earlier
stage of experiment and updated as new images are

Table 1: Cross validation results on overcoming the bias of cluster size difference. By using distribution models as reference 
distribution gap statistics can give correct result even under 10-fold difference.

Difference between sample number of �1 and �2 Average cluster number estimation accuracy 
% (Uniform reference distribution)

Average cluster number estimation accuracy % 
(GMM as reference distribution for �1, uniform 

reference for �2)

Equal 100 100
2-fold 88.5 98.1
3-fold 81.8 93.3
5-fold 69.2 91.0
7-fold <20 89.5
9-fold <20 88.9
10-fold <15 87.4
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Information on seven polygon phenotypes used in simulationFigure 3
Information on seven polygon phenotypes used in simulation.
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included. Thus, the accuracy has a larger variance across
different image input order when the number of existing
phenotypes is low. This issue indicates the importance of
more robust strategy of model updating. However, the
overall performance of our method is robust regarding to
different condition of experiments.

Performance comparison with SVM based methods
One-class SVM [20] tackles the novelty detection problem
of differentiating novel phenotypes from known ones by
estimating a distribution from the core structure of exist-
ing dataset and model such distribution using a series of
support vectors. It then labels each testing samples as
"known" or "novel" using the model built upon support
vectors. Compared with SVM used in classification, a
parameter ν ∈ (0, 1) (denoted as 'Nu' in figures) is
involved in one-class SVM. This parameter is used to
define the core structure of the existing dataset, and it has
two roles, i.e. the asymptotic upper bound of training data
which are labelled as outliers and the lower bound of the
fraction support vectors in training samples. However,
one-class SVM itself cannot be used to handle problems
such as the restoration of multiple existing phenotypes.
We modify one-class SVM to fit it into the scenario of
online phenotype discovery. Each new image is combined
with the support vectors trained from the existing samples
and novelty detection is carried out using one class SVM
with Gaussian kernels of width 0.5 and various parame-
ters ν to define the scale of support vectors and outliers.
After novelty detection, each test sample labelled as

"known" is subject to multiple linear SVM classifiers
(trained from one pair of existing phenotypes) and
assigned into one of multiple existing phenotypes accord-
ing to majority vote among classifiers. We detailed one-
class SVM and our modification in [Additional file 1].

We compared our method and SVM based method and
Figure 6 shows the comparison results in two occasions.
Four sets of parameters are used for one-class SVM. Figure
6left shows the performance when ellipses are considered
as novel phenotype while the other six phenotypes serve
as the set of existing dataset; and Figure 6right shows the
performance when 16-point stars are the only novel phe-
notype. Accuracies for all seven phenotypes were meas-
ured and averaged across 100 experiments with different
orders of image input. In both cases, when ν = 0.1, SVM
based method merged most of the new samples into exist-
ing phenotypes and gave best performance on existing
phenotypes (especially for 16-point stars), while SVM
with ν = 0.5 left out most of the new samples as outliers
and gave the best accuracy for the novel phenotype, mean-
while, the difference between best and worst accuracy in
one experiment could be as large as 25%; our method out-
performed most SVM based method on the accuracies for
at least 3 of 7 phenotypes and the difference between best
and worst accuracy across seven types are never greater
than 10%.

Performance of our method on synthetic datasets with different sets of existing phenotypesFigure 4
Performance of our method on synthetic datasets with different sets of existing phenotypes. For different 
number of "existing phenotypes" (X-axis), the performance on all seven types of polygons is summarized. Accuracy (Y-axis) 
indicates the ratio of test samples restored into its original clusters. All accuracy values are averaged across experiments with 
50 different orders of image input and different composition of existing phenotypes (for number of existing phenotype 1–6, we 
have 7, 21, 35, 35, 21 and 7 different compositions, respectively).
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Box and whisker plots indicating the robustness of performance under different conditionFigure 5
Box and whisker plots indicating the robustness of performance under different condition. The accuracy of each 
experiment is sorted in descending order and plotted on the Y-axis, the two horizontal edges of boxes indicate upper and 
lower quartile of accuracy values while the red line in the box body shows the median value. The whiskers and lines extending 
from the end of boxes show the extent of the rest data, and red crosses (+) are outliers with accuracy values beyond 1.5 times 
of inter quartile range. The performances on two polygon types are shown. Accuracy values of different experiments with dif-
ferent image input order but the same number of existing phenotypes are summarized in box and whisker plots. Upper, per-
formance on ellipses phenotype; Lower, performance on 16-point stars phenotype.
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Cell culture, image segmentation, morphological feature 
extraction and selection
Cell culture and image acquisition
As a next step, we implemented our methods in the con-
text of a high-throughput image-based screen. In particu-
lar, we focused on a novel dataset of images acquired in
the course of a genome-scale RNAi screen for regulators of
Drosophila Kc167 cell shape that have hemocyte-like prop-
erties (Bakal et al, unpublished). By using dsRNA to target
and inhibit the activity of specific genes/proteins, the role
of individual genes in regulating morphology can be sys-
tematically determined. Briefly, Kc167 cells are bathed in
the presence of individual dsRNAs targeting all known
Drosophila protein kinases and phosphatases in 384-well
plates (detailed protocols are available at [22]). Following
a 5-day incubation period, the cells are fixed and stained
with reagents in order to visualize the nuclear DNA (blue
channel in all images), polymerized F-actin (green), and
α-tubulin (red). For each well, sixteen images from each
of the three channels (blue, green and red) were acquired
in an automated fashion using an Evotec spinning-disk
confocal with a 60× water objective. Auto-focusing is per-
formed in a two-step fashion by first focusing on the bot-
tom well at each individual site, and then moving the
objective by the same Z-distance (in this case 3 μm above
the bottom of the well) at each site. The images were cap-
tured at a binning of 2 and have a resolution of 661*481
pixels.

Image segmentation
To analyze the morphology of single cells, it is necessary
to first delineate the boundaries of individual cells. Direct
segmentation of the cell bodies in the F-actin and α-tubu-
lin channels is difficult due to the complex morphology of
cellular boundaries. Segmentation of nuclei in the DNA
channel is relatively easier, and its segmentation results

provide the rough position information of the cell bodies.
Herein, we utilize a two-step segmentation procedure
[5,23] including nuclei segmentation on DNA channel,
and cell body segmentation of images derived by combin-
ing images from the DNA, F-actin and α-tubulin channels.

In nuclei segmentation, the nuclei are first separated from
the background by using a background correction based
adaptive thresholding method [24]. However, the clus-
tered nuclei cannot be separated by the adaptive thresh-
olding method. To separate the clustered nuclei, the
centres of the nuclei are first detected using a gradient vec-
tor field (GVF) based detection method [24]. Specifically,
we filter the nuclei image using a Gaussian filter, which
suppresses the noise and generate local maxima inside
cells, and these local maxima correspond to the nuclei
centres. However, there are still some local maxima due to
noise. To further eliminate the noisy local maxima, we
detect the true cell centres using GVF method. It is a well-
known fact that in an electric field, the electric field lines
point to the positive electrodes, and the free negative elec-
trons move along the electric field lines and stop at these
electrodes. In GVF, the gradient-vector lines also point to
the local maxima. Analogous to the electron moving
inside the electron field, we put one particle on each
detected cell pixel and pushed it along the gradient vector
lines. Consequently, these particles stop at these local
maxima. Since no or very few particles stop at non-
maxima and noisy local maxima, the true cell centres can
be identified by choosing the points that have many par-
ticles [24]. After the centres of nuclei are detected, the
nuclei are segmented using the marker-controlled water-
shed algorithm.

To use both F-actin and α-tubulin channels information,
we combine the two channels' signal as I = (IF-actin + Iα-tubu-

Performance comparison between our methods and SVM based methods on two occasionsFigure 6
Performance comparison between our methods and SVM based methods on two occasions. In each experiment, 
six polygon types are used as existing phenotypes. Accuracy denotes the ratio of samples restored to its original phenotypes. 
All the accuracy values are averaged across 100 tests having different order of image input. Four different sets of parameters 
are used for SVM based method. Left Ellipses serve as novel phenotype, the other six serve as existing phenotype; Right 16-
point stars serve as novel phenotype.
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lin)/2, where I, IF-actin and Iα-tubulin denote the combined
image, F-actin channel image and Iα-tubulin channel image
respectively. We then segment the cell bodies using the
combined image. First the cell bodies are separated from
the background using the aforementioned adaptive
thresholding algorithm. The nuclei segmentation results
facilitate the segmentation of cell bodies by providing the
rough position information of cell bodies. Herein, we
employ the marker-controlled watershed and the nuclei
segmentation results to segment the individual cell bod-
ies. To reduce the over-segmentation of cell bodies a feed-
back system proposed in [5] is employed. Three scoring
models, which measure the morphological appearance,
gradient and edge intensity of cell pairs respectively, are
built to identify the over-segmented cell bodies, and guide
the merging procedure [5]. Detailed shape and boundary
information of nuclei and cell bodies is obtained after the
two-step segmentation procedure.

Morphological feature extraction and feature selection
Cellular phenotype identification depends on choosing a
rich set of descriptive features, which is one of the most
critical steps for pattern recognition problems. To capture
the geometric and appearance properties, 211 morphol-
ogy features belonging to five categories are extracted fol-
lowing [23]. The selected features include a total of 85
wavelet features (70 of them from Garbor wavelet trans-
formation [25] and 15 features from 3-level CDF97 wave-
let transformation [26]), 10 geometric region features
describing the shape and texture characteristics of cells
[23], 48 Zernike moments features with selected order of
12 [27], 14 Haralick texture features [28] and a total of 54
phenotype shape descriptor features (36 features of ratio
length of the central axis projection and 18 features of area
distribution over equal sectors) [23]. A feature selection
procedure is necessary to de-noise the dataset and

describe it in the most informative way. As the datasets
and phenotype models are being updated adaptively, an
unsupervised feature selection without relying on pheno-
type labels is used to supply a stable feature subset. It is
based on iterative feature elimination using k nearest
neighbour features following [29]. In this study, an
informative subset of fifteen features is selected to quan-
tify the segmented cells.

Online phenotypes discovery in the context of RNAi high-
throughput screenings
Fitting GMM model for existing phenotypes
We first performed a visual examination on a subset of
dataset in order to define images and cellular morpholo-
gies of typical normal cells, as well as cells in three distinct
cellular phenotypes. We termed these quantitative catego-
ries "Long Punctuate Actin (LPA)", "Cell Cycle Arrest
(CCA)" and "Rho1 (Rho)", collected images in these cat-
egories and combined them with images of 1583 normal
cells, to form our cell database of existing phenotypes. We
estimated a GMM for each existing phenotype using EM
algorithms. A uni-modality model is obtained for normal
and LPA phenotypes, and CCA and Rho phenotypes end
up with 2 and 3 Gaussian terms respectively and the cov-
ariance matrices are set to be diagonal. A brief introduc-
tion of each existing phenotype is shown in Figure 7.

Case 1: merging cells in existing phenotypes
To validate our method's ability of restoring three existing
phenotypes: Normal, LPA and CCA, we carried out 100
times of five-fold cross validation. In each experiment,
20% of cells from each existing phenotypes were taken
out and combined to form a flow of new images, these
cells were divided into seven groups, simulating seven
new images. We defined merging accuracy for each phe-
notype as the proportion of test samples merged into its

Information of four existing phenotypes in training datasetFigure 7
Information of four existing phenotypes in training dataset.
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original phenotype. The mean and standard deviation of
accuracies across 100 experiments was shown in Table 2.

Our method can identify and merge cells into original
phenotypes well. In the third column of Table 2, we list
the typical mistakes made during the merging loops.
Some cells with normal and LPA phenotypes are not
merged correctly, and such mistakes suggest the existence
of previously undefined phenotypes in such images.

Case 2: discovering new phenotypes: cross validation based on 
known phenotypes
To validate our method's ability of discovering new phe-
notypes, we performed the following experiments after
the a priori identification of four existing phenotypes
(Normal, LPA, CCA and Rho1) by biologists. In each
experiment, three of four phenotypes were considered as
existing phenotypes, and cells in the other phenotype
were divided into groups with 100 cells. These cell groups
represent an incoming dataset of new images containing
"novel phenotypes". Given only one phenotype in the
testing images, ideally in each experiment, our method
would identify the first of such cell groups as a new phe-
notype, model this phenotype, assign all the other testing
images to this "novel phenotype", and no testing cells
would be merged by any of the other three phenotypes.
Fifty experiments were performed to identify each pheno-
type, 1000 cells served as "novel group" for normal and
LPA phenotypes while 600 cells were used for CCA and
Rho1 phenotypes. The experiment results are summarized
in Table 3. "Accuracy" is defined as the ratio between the
number of testing cells assigned to a single cluster and the
total number of testing cells, and such accuracy is calcu-
lated after all three merging loops for each experiment.

Case 2 shows our method's ability of identifying novel
phenotypes. We hypothesize that the relatively low accu-
racy for CCA and Rho phenotypes can be attributed to the
small number of samples and incomplete understanding
of which phenotypes is the biological representative for
the entire treatment class. High classification accuracies
for normal cells in both case 1 and case 2 provide strong
validation of the ability of our methods to identify wild-
type cells. While the overlap of normal and LPA serves as
a starting point for novel phenotypes discovery.

Case 3: identifying multiple novel phenotypes from online image 
input and performance comparison with SVM based methods
In this case, we still used the test dataset in case 2, which
included a total of 3,200 cells from four phenotypes. In
each group of experiments we started from the models
(available from previous step) of two existing phenotypes,
and all 3,200 test cells were divided into 32 images with
cells from two phenotypes in one image, and all images
were input with 50 different orders. Altogether, three
groups of experiments were carried out, and in each exper-
iment, normal phenotype were paired with one of the
other three phenotypes, to serve as sets of ''existing pheno-
types''. Both our method and SVM based methods were
used in each experiment, and we can thus validate our
method's ability to deal with multiple novel phenotypes
well as the performance under different order of image
input.

Figure 8 summarizes the average performance of our
method and SVM based methods for each phenotype
across 50 experiments. The results from different sets of
existing phenotypes are shown separately, and "accuracy"
is defined as the proportion of test samples restored into
its original cluster. The performance of our method
degraded with reduced number of existing phenotypes
compared with case 1 and case 2, especially for the Rho1
phenotype, however, it still performed consistently on
existing and novel phenotypes, never failed to reach 80%
mark and outperformed SVM based method in at least
two of four phenotypes on all occasions.

Figure 9 shows the box and whisker plots for our methods
under three different sets of existing phenotypes. The var-
iation of accuracy across different order of image input
can be as large as 8% (Figure 9bottom, accuracy for CCA
phenotype), but the accuracy is never less than 80% For
two experiment with the lowest accuracies and shown as
outlier in the box and whisker plot (Figure 9top, CCA and
Figure 9bottom, LPA), the order of image input was vali-
dated, and on both occasions we observed a small group
of novel cells emerging at the beginning of image flow
with all their counterparts appearing very late. Thus, the
model for novel phenotypes was only built based on a
small group of cells, and most test cells appeared later
were merged by similar phenotypes with more stable
models. This indicates the necessity of better cluster vali-

Table 2: Cross validation results on merging cells into existing phenotypes

Phenotype Average merging accuracy and standard deviation % Typical Mistakes

Normal 98.6 (1.7) left alone
LPA 93.8 (2.9) Merged into Normal, left alone
CCA 92.4 (2.4) left alone
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dation and model updating solution, which are proposed
in our method.

Having multiple phenotypes in a single image is a chal-
lenge in the analysis of image based high-throughput
screens. Our method successfully tackle such cases and
identify multiple phenotypes from online image input,
and can therefore provide a better perspective for further
quantification of the whole image, en route to the identifi-
cation for the role of each gene.

Identifying "rl/tear-drop" phenotype in the context of Drosophila 
genome-scale RNAi screen
Typically, a new image which is incorporated into the
dataset may have less than fifty cells, which can severely
impact the ability to quantitatively determine and distin-
guish novel phenotypes. But such images can still be
incorporated into our analysis by discarding images with
cell numbers <10, and putting together cells from multi-
ple new images to make a combined dataset having at
least 100 cells. We collected cells from four existing phe-
notypes, assembled them as training dataset, modelled
existing phenotypes and used such phenotype models to
analyze images acquired as part of a Drosophila genome-
scale RNAi screen. Implementation of our method
revealed a phenotype that was undetected by visual
inspection which we termed as "rl/tear-drop". These cells
are small in size and having smooth boundaries and non-

round shape. Figure 10 supplies some information and
typical images for this phenotype. Such phenotype was
initially discovered in wells where cells had been incu-
bated in the presence of rl RNAi. Drosophila rl, or rolled is
the homolog of mammalian ERK kinase and is a central
regulator of a host of cellular processes [30]. Importantly,
the rl/tear-drop phenotype was not scored during human
inspection of the images. The detection of cells with the rl/
tear-drop phenotypes in an image or well often correlates
with detection of cells with an LPA phenotype, and we
hypothesize that rl/tear-drop represents a phenotypes that
occur as cells transition from normal to LPA. We collected
more than 500 cells with the rl/tear-drop phenotype
through analysis of replicate experiments, modelled this
phenotype with GMM, and used it to analyze cells from
the new images. Our method detects rl/tear-drop cells in
experiments where CG10673, CG7236, Nipped-A and Pten
have been targeted by RNAi. Although the nature of the
relationship among these genes needs further investiga-
tion, we have previously identified Nipped-A and Pten as
regulators of ERK activity following insulin stimulation
[2], suggesting a relevant relationship between these
genes. Altogether, these results demonstrate that our
online phenotype discovery methods can be used to pro-
vide unexpected and novel biological insight.

We also tested our method using two published dataset
from Drosophila RNAi screen [7] and HeLa cell cycle phase

Table 3: Cross validation results on discovering new phenotypes

Phenotype to be identified # of cells to be identified Average accuracy with standard deviation % Typical Mistakes

Normal 1000 95.2 (3.5) Left alone
LPA 1000 90.3 (3.1) Merged into Normal, left alone
CCA 600 89.6 (2.7) Merged into Rho1
Rho1 600 87.4 (4.2) Left alone

Performance comparison between our method and SVM based methods with multiple phenotypes in imagesFigure 8
Performance comparison between our method and SVM based methods with multiple phenotypes in images. 
Given certain group of existing phenotypes, and images including multiple phenotypes, the accuracy values for four phenotypes 
across 50 image input orders are shown. Four different sets of parameters are used for SVM based method. Left Normal and 
LPA as existing phenotypes; Middle Normal and CCA as existing phenotypes; Right Normal and Rho as existing phenotypes.
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Box and whisker plots indicating the robustness of performance with multiple phenotypes in imagesFigure 9
Box and whisker plots indicating the robustness of performance with multiple phenotypes in images. The accu-
racy of each experiment is sorted in descending order and plotted on the Y-axis, the two horizontal edges of boxes indicate 
upper and lower quartile of accuracy values while the red line in the box body shows the median value. The whiskers and lines 
extending from the end of boxes show the extent of the rest data, and red crosses (+) are outliers with accuracy values 
beyond 1.5 times of inter quartile range. Given certain group of existing phenotypes, and images including multiple phenotypes, 
the accuracy values for four phenotypes across 50 image input orders are shown. Top Normal and LPA are existing pheno-
types; Middle Normal and CCA are existing phenotypes; Bottom Normal and Rho are existing phenotypes.
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detection [ref. s3 in Additional file 1], compared its per-
formance with SVM based methods and validated our
method's ability of handling dataset from various organ-
isms. These experiments are described in [Additional file
1], the results on Drosophila dataset from [7] are reported
in [Additional file 2] and results on HeLa dataset are
reported in [Additional file 3, 4].

All other functions are developed in Matlab 7.0 and ran in
PC with Intel® Core™ 2 T7200 2.00 GHz CPU and 2.00 GB
of RAM. Starting from four existing phenotypes, the aver-
age running time for our method based on improved gap
statistics is 1.8 seconds on a group of 100 segmented cells,
10.2 seconds on a group of 600 cells and 19.4 seconds on
a group of 1000 cells. Considering the fact that cell
number in each image is seldom over 300 in the reported
high content screen, our method is suitable for online
application.

Discussion
Online identification and validation of novel morpholog-
ical phenotypes are major challenges in specific high-
throughput image-based screens. Manual phenotype
labelling of high-throughput image-based data is a labori-
ous and inordinately time-consuming process, while
available automatic identification methods usually clas-
sify cells into a limited set of predefined phenotypes
which may be determined through biased means and will
not be updated according to the online image input. As
millions of images are now generated during the course of

a comprehensive genome-scale screen, new methods are
needed to effectively identify novel phenotypes in such
massive databases. Here we report the development of an
online phenotype discovery method which models exist-
ing phenotypes, compares cells in new images with exist-
ing phenotype models through cluster analysis, assigns
some new cells to existing phenotypes, and finally identi-
fies and validates novel phenotypes online.

GMM is used for modelling existing phenotypes and gap
statistics, with GMM as reference distribution for existing
phenotype, plays a key role in cluster analysis and merg-
ing. We built GMM for existing phenotypes, sampled
datasets from the model and used them as reference dis-
tribution in gap statistics method, following this pipeline
we can cover the complete properties of phenotypes more
efficiently. Furthermore, gap statistics are dealing with
only one existing phenotype plus a part of the new image
in each merging loop, and the content of new image is
iteratively updated with the merging procedure. We
present Additional file 5 to validate the idea of modeling
existing phenotype using GMM, the detailed information
of GMM estimated from four existing phenotype in our
real dataset are reported along with histograms for some
typical feature. 

For analysis of high content screen data, many researchers
choose to summarize the information of single cells or
objects to supply a normalized signature for higher level
concepts (e.g. treatment conditions, genes, complexes,

Information for the rl/tear-drop phenotypeFigure 10
Information for the rl/tear-drop phenotype. "Typical cells" summarizes the properties of the rl-tear drop phenotype and 
"Typical image" shows an image with cells merged by rl-tear drop, LPA and Normal phenotype respectively.
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etc). Thus it is critical to identify different phenotypes
related to a same treatment condition. Our method can be
used in identifying multiple phenotypes in single well and
supply detailed insight into related questions. The per-
formance of our methods relies on the quality of image
processing, feature selection, phenotype modelling, and
cluster analysis methods. Using iterative cluster merging,
our future goals are to build more reliable phenotype
models and to construct complete pipelines of cluster
analysis with detailed validation procedures to obtain
more reliable definition of clusters.

Conclusion
We propose an online phenotype discovery method for
high-throughput RNAi screen, which can be used in the
course of many image-based screens. This method is
based on adaptive phenotype modelling and iterative
cluster merging using improved gap statistics. Given data-
sets for existing phenotypes, the method can build a
model of each existing phenotype, identify novel pheno-
types in images obtained from ongoing screening and
assign newly obtained cell images into different pheno-
types. Compared with traditional novelty detection tech-
niques, our approach avoids frequent re-modelling
involving the huge existing dataset and can handle multi-
ple existing phenotypes in a flexible manner. Implemen-
tation of our methods in the analysis of images acquired
during a genetic screen for regulators of Drosophila cell
morphology demonstrates the power of these computa-
tional tools in efficiently discovering meaningful new
phenotypes.

Methods
Online cluster discovery: problem formulation

Suppose we have identified K0 non-overlapping cellular

phenotypes, the i-th cell in the m-th existing phenotype is

denoted by vector , with each cell

described by p morphological features. Then, let

 denotes dataset for the m-th phenotype,

with um indicating the number of cells for m-th pheno-

type. Thus, we denote the dataset of all available cells, ,
as:

and the total number of existing cells is . Simi-

larly, when a new image  is obtained, the i-th cell in this

image is also described using p features, and denoted by ei

[ei1, ei2 ... eip], and , where ν is the number of

cells in . New images are continuously obtained, and
each new image  contains tens of cells while there are
thousands cells for each m, thus v <<um <u.

Given a new image , we need to adaptively determine
number of new phenotypes Knew, based on K0,  and .

Cells in  while belonging to some existing phenotype

m should be identified, and used to update model for

m. It is unfeasible to involve every single cell in  into

cluster discovery, because the large scale of  could bias
cluster analysis towards existing phenotypes and add
computation burden. On the other hand, "new cluster"
identified only according to  is vulnerable to outliers.
Thus an efficient method to utilize  is necessary.

Outline of the proposed approach

We propose to discover new clusters through iterative
cluster merging. The dataset of each existing phenotype

m is first fit to a GMM and sample dataset  is

obtained from such model. Each  is combined with a

new image  one by one to detect possible new pheno-
types. Our online phenotype discovery method is out-
lined as below:

(1) Phenotype modelling. A GMM is fit to each existing
phenotypes using Expectation-Maximization (EM) algo-
rithm following [21].

(2) Sampling existing phenotype and combining existing
information with the new image. We sample from the

GMM of one existing clusters, say m, m ∈ {1, 2... K0}, get

the sample set , and put  together with new image

, we denote this combined set as , thus

 should have comparable cell numbers as ν, the cell

number in , so that phenotype information would not
be overwhelmed due to limited cell number of . We

empirically set sample number of  as ν to 5ν.

(3) Estimating the cluster number in . An improved gap
statistics method is used in which we take reference data-

set from the range of feature values of  and  sepa-
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rately, and use GMM as the reference distribution for

reference samples obtained from the support of .

(4) Defining clusters on . Based on the estimated clus-
ter number from step 3, a partition of  is obtained using
Partitioning Around Medoids (PAM) [31] method.

(5) Merging samples from  to existing phenotypes.

(a) If some samples from  are assigned to a same cluster

as at least 95% samples from , they are considered as

a candidate for merging.

(b) Validate merging operation using a statistical test with
Bonferroni correction. For each merging candidate, calcu-
late its p value under the GMM for m, reject the merging

operation and keep this sample in  if p value is smaller
than 1/K0, or else merge this candidate into m and delete

it from .

(6) Returning to step 2 to sample another existing pheno-
type and start new merging loop.

(7) Updating phenotype models. After each existing phe-

notype m, m ∈ {1, 2... K0}merges their counterparts in

, define clusters left in  as new phenotypes and esti-
mate GMM for them.

Through modelling and re-sampling,  becomes more
flexible and re-useable, allowing us to cover complete
properties of phenotypes. Following data modelling and
sampling, the information from existing phenotypes is
combined with new image one by one in the loops from
step 3 to 5. Thus in each single loop, the task of estimating
cluster number is simplified to identifying difference
between new image  and only one existing phenotype.
After each m merges its counterpart in , clusters left in

 are identified as new phenotypes.

Cluster modelling and sampling

Given the dataset , we model each phenotype m using

a GMM:

where N denotes Gaussian distribution. We denote the
number of Gaussian terms for phenotype m as Qm and

define parameters for m as

 . Initially,

the covariance matrix Σm, t is set to be diagonal. We use

Expectation-maximization (EM) algorithm to estimate

{πm, μm, Σm} from m. In the initialization of EM algo-

rithm, Qm is set to four, and m is first partitioned into Qm

clusters using fuzzy C-means clustering method, and then
initial parameters are estimated using the standard vector
quantization method. For each class, Qm is reduced to the

minimum possible using minimum description length
(MDL) technique, following [21]. We obtain random

samples from the GMM to form set  having i.i.d m,

, and  is combined with new image  to form .

When estimating cluster number in  using gap statis-

tics, GMM is used as reference distribution for .

Estimating cluster numbers using improved gap statistics

To estimate the number of clusters from an unlabeled
dataset, many existing methods focus on the within clus-
ter dispersion Wk, resulting from clustering datasets (e.g.

) into k clusters, C1, C2,... Ck with Cr denoting the indi-

ces of samples in clusters r and fi, j denotes the value of j-

th feature measured from i-th data point. Based on

, we have . Wk

tends to decrease monotonically as the number of clusters
k increases, but from some k on, such decrease flattens
markedly. Statistical folklore has it that error measure
based on Wk should have an "elbow" at the desirable clus-

ter number, thus different criterions based on Wk are

defined.

Gap statistics [12] method utilizes the output of any clus-
tering algorithm under different k, compares the change of
Wk to the dispersion expected under a reference null dis-

tribution, the gap between the logarithms of these two
dispersions are employed to detect cluster number. Gap
statistics can detect homogenous non-clustered data
against the alternative of clustered data [14]. This ability is
critical when all cells in new image  belong to the same
phenotype.
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To estimate cluster number in  (defined in equation
(2)), we first select a number K which is larger than the
expected cluster number, e.g. in our case K = 5. For each k
= 1, 2... K,  is divided into k clusters and gives a series
of Wk. Then we generate B reference datasets from ,

cluster them into k clusters and obtain

. We use PAM [31] for clus-

tering. Considering the mean dispersion

 across B = 20 reference datasets, and

their standard deviation ,

the item  is taken into consideration for

a better control about the rejection of null model [12],
and estimated cluster number k' is:

The reference distribution is a null model of data struc-
ture. In [12], reference datasets are sampled uniformly
either from the range of observed values for each feature,
or the range of a box aligned with the principle compo-
nents of data. However, it is encouraged to estimate refer-
ence distribution from existing samples rather than
simply using uniform distribution because the bounding
box of the whole dataset always includes some "blank"
area. The existing cluster definition can help us focus on
where the data really lies, and avoid generating a reference
dataset violating the properties of original one. Here, we

sampled  from GMM of each existing phenotype and

it makes sense to use this GMM as the reference distribu-

tion for .

The problem now is to generate reference dataset from

GMM, because  is combined with new image  to

form the dataset , and the model of  is unavailable.

We have to deal with  and  separately because the

distribution of  is unavailable. We propose to solve this

problem by generating reference dataset from  (GMM

reference distribution) and  (uniform reference distri-

bution) separately and combine two sets together, i.e.

substituting  with

We discuss more detail of this strategy in the [Additional
file 1], and supply a figure as [Additional file 6] to illus-
trate the motivation and innovation of our strategy.

Gap statistics method repeatedly carries out clustering
using a set of candidate cluster numbers, and pick up the
number supplying best within cluster dispersion as esti-

mated cluster number. GMM is an accurate model for ,

and using GMM as reference distribution can avoid the
risk of split biological meaningful clusters and retain bio-
logical properties of existing phenotypes. The selection of
K and B controls the number of clustering operation to be
carried out and greatly influences the complexity of the
whole methods. An effective way of utilizing existing phe-
notypes can greatly reduce K and make gap statistics
method more suitable for online phenotype discovery in
high-throughput image-based screens.

Cluster definition and merging

We use Partitioning Around Medoids (PAM; also known
as K-medoids) [31] to do clustering on combined set .
PAM provides better flexibility and robustness of choos-
ing suitable dissimilarity measurements for different
applications [32] and more efficient compared to Fuzzy
clustering methods, especially in our cases where cluster-
ing are carried out frequently.

After clustering, we get a non-overlapping partition of

, where the

cluster number K' is determined through gap statistics,
and we adjust the cluster labels to make sure that 1

includes the largest ratio of samples from existing pheno-

type . Merging operation is done according to this par-

tition. Datasets , m ∈ {1, 2,... K0} are combined with

 one by one, and in each loop, the overlapped part of

 and  (if any) is located in 1, deleted from  and

included as part of existing cluster:
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after all merging loops, clusters left in  are defined as
new phenotypes.

The above merging strategy is based on theoretical case of

, but in reality, when we consider random sam-

ple set  from GMM of an existing phenotype, it is pos-

sible that some samples are randomly far from the centre
of existing phenotype and thus assigned into different

clusters with their majority counterparts in . We take

two strategies to protect the merging operation from influ-
ence of outliers.

(1) Merging operations only happens when some cells in
 are assigned into 1, together with more than 95% of

samples . And such cells are considered candidates for

merging operation.

(2) For each merging candidate in , we carry out statis-
tical test with Bonferroni correction. We calculate the p

value for each candidate with respect to the GMM for ,

i.e. possibility of obtaining a value at least as extreme as (if
not more) this candidate under the GMM. The corrected p
value for each candidate is defined as its p value with

respect to the GMM of  divided by number of existing

phenotypes K0. If the corrected p value is lower than 0.05/

K0, the merging operation is rejected and we keep that

candidate in .

In the merging loops, we focused on identifying samples
of existing phenotypes from . While some cells of 
are merged into existing phenotypes, novel clusters grad-
ually stand out.
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Additional file 1
Supplementary materials on performance validation and algorithm 
details. Methods of simulating real cells using polygons are noted. Docu-
ments and results for two more validation experiments are provided, and 
two published dataset using different organisms were involved in these 
experiments. More details of four existing phenotypes used in the main text 
are presented, including the histogram of specific feature and key param-
eters for estimated GMM. Our improvement on gap statistics method and 
one-class SVM novelty detection are also discussed in detail.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-264-S1.doc]

Additional file 2
Performance comparison on restoring biological meaningful cluster 
from published high throughput screen dataset. These two histograms 
report the comparisons on the ability of restoring biological meaningful 
pheno-clusters between our method and SVM based method. The compar-
ison carried out on a published high throughput screen dataset based on 
Drosophila BG-2 cell line, and results using two different groups of exist-
ing phenotypes are presented separately.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-264-S2.tiff]

Additional file 3
Typical images and information for datasets of four cell cycle phases 
in HeLa cells. In this figure, typical images and some information from a 
published dataset of HeLa cells are summarized. This dataset consists of 
single channel fluorescent images of HeLa nuclei in four cell cycle phases 
and it was used to illustrate the prospect of combining our method to data-
set from various organisms.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-264-S3.tiff]

Additional file 4
Performance comparison on cell cycle phase identification using HeLa 
dataset. These three histograms report performance comparisons between 
our method and SVM based method. The comparisons were carried out on 
the HeLa dataset described in Additional file 3, and the results using three 
different groups of existing phenotypes are presented separately.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-264-S4.tiff]

Additional file 5
Information on four existing phenotypes for case 1–4: histogram for 
major axis length and complete model parameters. This figure extends 
the information in Figure 7 of main text. The histogram for major axis 
length helps to show the necessity of modelling each morphological feature 
using GMM, and the parameters of estimated models are also available.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-264-S5.tiff]
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