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Abstract
Background: Multiple sequence alignment (MSA) is a useful tool in bioinformatics. Although many
MSA algorithms have been developed, there is still room for improvement in accuracy and speed.
In the alignment of a family of protein sequences, global MSA algorithms perform better than local
ones in many cases, while local ones perform better than global ones when some sequences have
long insertions or deletions (indels) relative to others. Many recent leading MSA algorithms have
incorporated pairwise alignment information obtained from a mixture of sources into their scoring
system to improve accuracy of alignment containing long indels.

Results: We propose a novel group-to-group sequence alignment algorithm that uses a piecewise
linear gap cost. We developed a program called PRIME, which employs our proposed algorithm to
optimize the well-defined sum-of-pairs score. PRIME stands for Profile-based Randomized Iteration
MEthod. We evaluated PRIME and some recent MSA programs using BAliBASE version 3.0 and
PREFAB version 4.0 benchmarks. The results of benchmark tests showed that PRIME can construct
accurate alignments comparable to the most accurate programs currently available, including L-
INS-i of MAFFT, ProbCons, and T-Coffee.

Conclusion: PRIME enables users to construct accurate alignments without having to employ
pairwise alignment information. PRIME is available at http://prime.cbrc.jp/.

Background
Multiple sequence alignment (MSA) is a useful tool for
elucidating the relationships among function, evolution,
sequence, and structure of biological macromolecules
such as genes and proteins [1-3]. Although we can calcu-
late the optimal alignment of a set of sequences by n-
dimensional dynamic programming (DP), the DP

method is applicable to only a small number of
sequences. In fact, even when a sum-of-pairs (SP) score
with the simplest gap cost is used as an objective function,
computation of optimal MSA is an NP-hard problem [4].
Hence, many heuristic methods have been developed.
Almost all practical methods presently available adopt
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either a progressive [5-7] or an iterative [8-10] heuristic
strategy.

The group-to-group sequence alignment algorithm is a
straightforward extension of the pairwise sequence align-
ment algorithm, and is the core of progressive and itera-
tive methods. The essential difference of group-to-group
sequence alignment from pairwise sequence alignment is
the existence of gaps within each group of prealigned
sequences. The gap opening penalty used in an affine gap
cost disrupts the independence between adjacent col-
umns, and hence calculating the optimal alignment
between two groups with respect to the SP score was
shown to be NP-complete [11]. Gotoh was the first to
devise a group-to-group sequence alignment algorithm
that optimizes the SP score by using a candidate list para-
digm [12]. An algorithm with a candidate list paradigm,
similar to the branch-and-bound method, prunes the can-
didates that are dispensable for arrival at an optimal solu-
tion. Kececioglu and Starrett proposed another candidate-
pruning method [11]. Although these algorithms can cal-
culate the optimal alignment between two groups, they
require relatively extensive computational resources. Sev-
eral papers have reported faster algorithms that use the
heuristic estimation of gap opening penalties [8,10].

Several studies have discussed the tendency that global
alignment methods perform better than local ones
[13,14]. However, the opposite is also true when some
sequences to be aligned have long insertions or deletions
(indels). One reason for this tendency is that almost all
group-to-group sequence alignment algorithms use an aff-
ine-like gap cost that over-penalizes long indels. To allevi-
ate this problem, several methods have combined
pairwise global and local alignments, or incorporated
consistency information among pairwise alignments
[6,15,16]. Another strategy to prevent over-penalizing
long indels is to use a concave function as the gap cost. It
is relatively easy to choose a concave gap cost that does
not over-penalize long indels, and several pairwise
sequence alignment algorithms using this gap cost have
been developed [17,18]. However, there have been few
attempts to incorporate this gap cost into a group-to-
group sequence alignment algorithm to develop an MSA
program.

In this paper, we propose a novel group-to-group
sequence alignment algorithm with a piecewise linear gap
cost [18], which is the key to a progressive or an iterative
refinement method. The piecewise linear gap cost [18] is
one of the concave functions and consists of L linear func-
tions. Depending on the gap length, this gap cost varies its
inclination, which corresponds to the gap extension pen-
alty. However, in the case of group-to-group sequence
alignment algorithm, it is difficult to calculate the proper

gap extension penalty with only the data structures used
in the previous algorithm that were designed to detect the
opening of new gaps [12,19]. Accordingly, we newly
introduce two additional data structures: 'insertion length
profile' and 'dynamic gap information'. An insertion
length profile vector is associated with each column of a
group of sequences, while dynamic gap information keeps
track of information about gaps inserted into a group dur-
ing the DP process. Together with those used in the previ-
ous algorithm, gap extension penalty can be calculated
efficiently. Using the proposed algorithm, we developed a
program called PRIME.

PRIME stands for Profile-based Randomized Iteration
MEthod. As a result of benchmark tests, the accuracy of
our method is shown to be comparable to the most accu-
rate methods available today, all of which incorporate
pairwise alignment information obtained from all-by-all
pairwise alignment. This implies that the piecewise linear
gap cost is as effective as pairwise alignment information
in improving the alignment accuracy of sequences, some
of which have long indels.

Algorithms
In this section, we first review the previous group-to-
group sequence alignment algorithm with an affine gap
cost [12,19], and then describe a novel one with a piece-
wise linear gap cost. The final subsection outlines a dou-
bly nested randomized iterative strategy with which our
proposed algorithm is integrated. 

The definitions of symbols are as follows. Let Σ be the res-

idue set and |Σ|, the number of elements in Σ. Σ* denotes

the set containing a null and each element in Σ. A null
means that a residue of one sequence does not aligned
with that of another sequence when aligning sequences,
and is denoted by the symbol '-'. A and B denote prea-
ligned groups of sequences. A includes m rows, and B, n
rows. The respective lengths of A and B are I and J. Ap, ai,

and ap,i denote the p-th row of A, the i-th column of A and

the i-th residue of Ap, respectively. Bq, bj, and bq,j are

defined similarly. Both ap,i and bq,j belong to Σ*. Note that

any column of a group must not be a null column, which
consists of nulls only. If all nulls are removed from a
group, each row is an usual sequence. A run of consecutive
nulls in a row is called a gap. A gap length is the number
of nulls constituting the gap. A segment of A that consists
of consecutive columns as to at is denoted by A(s, t); A is

also expressed as A(1, I). s(a, b) is a substitution score
between residues a and b. By g(x), we mean a gap cost
function of gap length x. The pair weight between the p-th
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sequence in A and the q-th sequence in B is wp,q. If the

three-way method [20] is used to calculate the pair

weights, wp,q can be factorized as · , where 

and  are the weights for the p-th sequence in A and the

q-th one in B, respectively.

Review of previous group-to-group sequence alignment 
algorithm with affine gap cost
The previous group-to-group sequence alignment algo-
rithm that optimizes SP or weighted SP score with an aff-
ine gap cost is based on a two-dimensional DP method
[12]. The key point of this algorithm is to exactly evaluate
the gap opening penalties during the DP process. To
explicitly consider gaps already present in each group, this
algorithm introduces a gap state that denotes the number
of consecutive nulls up to the current position.

Another important feature of this algorithm is the candi-
date list paradigm, which is a variant of branch-and-
bound methods. Because the calculation of gap opening
penalties depends on a previous partial DP path, simple
extension of pairwise sequence alignment algorithm may
not yield globally optimal alignment between two groups
[12]. For rigorous calculation, not only locally optimal
partial paths but also those that possibly contribute to glo-
bally optimal alignment have to be stored at each node of
a DP matrix [11,12]. In the worst case, the number of can-
didates to be stored grows exponentially with the total
number of sequences in the two groups [11]. As discussed
in some papers [8,10,12], the group-to-group sequence
alignment algorithm without the candidate list paradigm
may suffice for good alignment. Moreover, because the
novel group-to-group sequence alignment algorithm
described below requires roughly twice as much computa-
tion time as the previous one at each DP process, we
adopted a simpler algorithm without the candidate list
paradigm.

Basic algorithm

Let an affine gap cost function be g(x) = -(ux + v), where
u(> 0) and v(> 0) are constants called gap extension pen-
alty and gap opening penalty, respectively. The group-to-
group sequence alignment algorithm with the affine gap
cost employs essentially the same recurrent relations as
the pairwise sequence alignment algorithm [21], with
exact evaluation of gap opening and extension penalties.
Like the pairwise sequence alignment algorithm, we calcu-
late four variables at each node, (i, j), of the DP matrix:

, , , and .  holds the best score

among , , and  at (i, j).  is a score of a

partial alignment where ai and bj are aligned.  and

 mean partial alignment scores where ai and bj are

aligned with null columns, respectively. The recurrent
equations are:

where '-' denotes a null column, and  is a partial

DP path. A partial DP path is one from (0, 0) to the node
of the DP matrix in question, representing a partial align-

ment; for example,  represents a partial alignment

with the best score  between A(1, i) and B(1, j)·S(ai,

bj) is responsible for the calculation of substitution scores

and gap extension penalties:

If either a or b is a null, s(a, b) = -u, and if both a and b are

null, s(a, b) = 0. G(ai, bj; ) is the gap opening pen-

alty when ai is aligned with bj:

 and  are the gap states for the p-th and q-th

rows in A(1, i - 1) and B(1, j - 1) on , respectively.

As mentioned above, the gap state is the length of the gap

up to the current position. γ(a, b, x, y) represents whether
a gap opens with respect to a pair of rows. Specifically, if

a is a residue, x ≥ y, and b is a null; or if a is a null, x ≤ y,

and b is a residue; then γ(a, b, x, y) = 1. Otherwise, γ(a, b,
x, y) = 0. In order to evaluate exact gap openings for calcu-

lation of each , the gap states must be updated. If ap,i

is a null,  where d = arg max1≤k≤3 { }.
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Otherwise,  = 0. The other gap states are calculated in

a similar way.

Use of generalized profile

Although equations 5 and 6 require O(mn) computa-
tional steps, these steps can be reduced by using a gener-
alized profile [19] and the three-way weighting method
[20]. The idea of using the generalized profile is that the
same residue types or gap states on a column are treated
together. The generalized profile consists of four vectors
calculated from each column of a group: frequency, resi-
due profile, and two kinds of static gap profile vectors.
These vectors can be obtained in advance of the DP proc-
ess. The frequency and residue profile vectors are used to
calculate S(ai, bj), while the static gap profile vectors are

necessary to calculate G(ai, bj; ).

With the frequency and residue profile vectors, S(ai, bj) is
calculated by

where residue frequency  is the weighted frequency of

occurrence of residue type r (including null) on column

ai, and residue profile . Both

 and  are defined in the same way. The right

hand side of equation 7 requires O(|Σ*|), because each

frequency and residue profile vector consists of |Σ*| val-
ues. When m × n is sufficiently large, the computation
time can be considerably reduced. Although S(ai, bj) is

easy to calculate, the profile-based calculation of G(ai, bj;

) is somewhat complicated, because, in addition

to static gaps, dynamic gaps must be considered explicitly.
A static gap consists of consecutive static nulls that already
exist in each group, while a dynamic gap denotes a run of
dynamic nulls that are inserted into each group during the
DP process. Note that we distinguish static and dynamic
gaps for convenience of the description of our algorithm,
while they contribute to the total alignment score in the
same way. Let us consider an example of the gap opening
penalty calculation when a8 is aligned with b12 (Figure 1).

To keep the discussion simple, we consider A1 and B2 only.

From simple observation, we find that a gap between A1

and B2 has already opened before a8 is aligned with b12.

However, if the gap opening penalty were calculated using
the static gap states only, a gap opening would be detected
wrongly, because a1,8 is a null, b2,12 is a residue, and x1,7 =

0 ≤ y2,11 = 0 where x1,7 and y2,11 are the static gap states of

a1,7 and b2,11, respectively. For correct detection of gap

opening, we need 'running gap states', each of which rep-
resents the sum of the numbers of consecutive static and
dynamic nulls up to the current position. For the example
shown in Figure 1, the running gap state for A2 at column

position a7 is 11, which is composed of 7 static nulls and

4 dynamic nulls.

Static gap states are compactly represented as a static gap
profile. A static gap profile is obtained by gathering static
gap states with the same values at a column. More specif-
ically, the static gap profile at a column ck consists of two

vectors  and . Each element of both vectors has the

same form: {(g, f)} where g is the gap state of previous col-
umn ck-1 and f is the weighted frequency of the occurrence

of rows whose element on ck is either a residue or null

depending on  or , respectively. Although 

itself may be used to calculate gap opening penalties, its

accumulated form, , is more convenient to reduce the

computation time. If an element in  is (g, f+), f+ repre-

sents the weighted frequency of the occurrence of rows
whose gap states are not less than g. For the example

shown in Figure 1, , , and  are {(0, ), (2,

), (7, )}, {(0,  +  + ), (2,  +

), (7, )}, and {(0, )}, respectively. Since all

gap states are different in the worst case, the total number

of elements of  and  is at most the number of

sequences in the group.

Like a static gap profile, a running gap profile can repre-
sent running gap states compactly. In order to obtain a
running gap profile, another data structure called a gap
mediation profile is required. A gap mediation profile is
defined for each path in the DP process, and records the
total number of dynamic nulls inserted into static gaps
that are currently open. Each element of the gap media-
tion profile is expressed as (s, d), where s is the length of a
static gap and d is the summed length of dynamic gaps

inserted within or after the static gap. Let (A) be the
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gap mediation profile of group A at the DP node (i,

j)· (A) follows a recurrent relation, the initial condi-

tion of which is (A) = {(0, 0)}. We first consider the

case where ai and bj are aligned. For each (g, f) in , if

there exists element (s, d) in (A) such that g = s,

then (s + 1, d) ∈ (A). In the case where bj is aligned

with a null column, then (s, d + 1) ∈ (A) where (s, d)

is an element in (A) or (A) depending on the

maximum operation of equation 4. If ai is aligned with a

null column, (A) equals (A) or (A). In

the case of Figure 1, (A) = {(0, 1), (2, 1), (7, 4)} is

derived from (A) = {(0, 0), (2, 0), (7, 3)}. The other

gap mediation profile vectors are constructed in a similar
way.

Running gap profile vectors  and  are obtained by

combining gap mediation profile (A), and static

gap profiles  and , respectively. For each (g, f+) in

, (s, d) is chosen from (A) such that g = s, and

then (s + d, f+) ∈ . Similarly,  is obtained from

(A) and . For example,  and  at the

node (8, 12) of Figure 1 are {(1,  +  + ), (3,

 + ), (11, )} and {(1, )}, respectively.

Using running gap profile vectors , , , and ,

Equation 6 can be rewritten as:

S • E+ is expressed as

where sp and  are the p-th and q-th elements in S and E+,

respectively, and f(e) is the weighted frequency of element

e. q is chosen such that the gap state of  is the smallest

among the elements in E+ whose gap states are not less
than that of sk. Calculation of S • E+ requires O(|S|) + |E+|),

and hence G(ai, bj; ) at most O(m + n). Using equa-

tion 8 instead of equation 6 can reduce computation from
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ia

Mi j− −1 1
0

, S
ia Êa8
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Example of gap extension penalty calculationFigure 1
Example of gap extension penalty calculation. This fig-
ure shows an example of columns a8 and b12 being aligned. '*', 
'·', and '-' denote a residue, a static null, and a dynamic null, 
respectively. We assume that piecewise linear gap cost g(x) is 
maxk = 1,2{-(ukx + vk)} and critical gap length xc (= Q(v2 - v1)/(u1 - 

u2)N) is 4. Gap extension penalty is u1 if x ≤ 4, otherwise u2. 

Running gap profile vectors  and  are {(1, )} and 

{(1,  +  + ), (3,  + ), (11, )}, 

respectively. Dynamic gap information (A) is {(0, 1), (2, 

2), (7, 1)}. Segment profile  is {(1, ), (3,  + 

), (5,  +  + )}. Similarly, the profile vec-

tors of B are defined:  = {(7, )},  = {(0, )}, 

(B) is empty, and  = {(1, 0), (9, )}. In what fol-

lows, we consider the non-trivial calculation of the gap 
extension penalty with respect to the gap of B1, the target 

gap. By using  and (A), we find that the two 

dynamic gaps specified by (2, 2) and (7, 1) in (A) are 

partially and completely aligned with the target gap, respec-
tively. Consequently, the total number of nulls aligned with 
null columns of dynamic gaps to be removed is 2. Therefore, 
the number of columns of B1 is 5(= 7 - 2). By subtracting 5 
from 8 (the end position of the segment), the starting posi-
tion of A, 3, is obtained. Then, the gap extension penalty with 
respect to the gap of B1 is  (F1·u1 + F2·u2) where F1 = 

 +  and F2 = . Note that A1 is not involved in 

the gap extension penalty because a1,8 is a null.

i 1 2 3 4 5 6 7 8
A1 − · · − − ∗ ∗ · ∗ ∗ − ·
A2 − · · − − · · · · · − ∗
A3 − ∗ ∗ − − ∗ ∗ ∗ · · − ∗
A4 − ∗ ∗ − − ∗ ∗ ∗ ∗ ∗ − ∗

B1 ∗ ∗ ∗ ∗ · · · · · · · ·
B2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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O(mn) to O(m + n) even in the worst case where gap states
on a column are mutually different.

Novel group-to-group sequence alignment algorithm with 
piecewise linear gap cost

In this section, we describe a novel group-to-group
sequence alignment algorithm with a piecewise linear gap
cost. Although this algorithm uses recurrent equations 1
to 4, the algorithms calculating S(ai, bj) and G(ai, bj;

) must be changed. Roughly speaking, the term for

calculating gap extension penalties is transferred from

S(ai, bj) to G(ai, bj; ). After explanation of the

piecewise linear gap cost, we describe these algorithms in
detail.

Piecewise linear gap cost
The piecewise linear gap cost consists of several linear
functions [18]:

where ul > ul+1(≥ 0) and vl+1 > vl(> 0). When L = 1, this cost
is the same as the affine gap cost. This cost could alleviate
over-penalizing long indels, because the inclination of
g(x), which corresponds to a gap extension penalty, ul,
becomes small as gap length increases. In other words,
this cost calculates gap extension penalties based on gap
length. For the sake of simplicity, we restricted our atten-
tion to the case of L = 2. Then, g(x) = -(u1x + v1) if x ≤ xc or
g(x) = -(u2x + v2), otherwise, xc = Q(v2 - v1)/(u1 - u2)N is called
the critical gap length.

Calculation of substitution score
As mentioned above, the calculation of gap extension
penalties must be separated from the calculation of the
substitution score S(ai, bj) in order to use the piecewise
linear gap cost. Therefore, S(ai, bj) is expressed as:

where . Note that this equation

and the definition of residue profile vector sum over not

Σ* but Σ.

Calculation of gap extension penalty

In the previous algorithm with an affine gap cost, G(ai, bj;

) was responsible for the gap opening penalty

only; however, it must take care of the gap extension pen-
alty in the case of the piecewise linear gap cost. Therefore,

a term for gap extension penalty is added to the right hand
side of equation 8. Let us consider an example of gap
extension penalty calculation for the null on b12 aligned

with the residues on a8 (the last column of Figure 1). The

gap state at b1,12 is 8. With omission of nulls that are

aligned with other nulls, the lengths of the gap on B1 rela-

tive to A2, A3, and A4 are 1, 4, and 6, respectively. Assum-

ing that the critical gap length xc = 4, we obtain the

respective gap extension penalties for A2, A3, and A4 as u1,

u1, and u2. Therefore, the gap extension penalty in ques-

tion is  (F1·u1 + F2·u2), where F1 =  +  and F2

= .

This example indicates two important points for the exact
calculation of gap extension penalty. First, each gap length
is obtained by counting the residues on each row of a spe-
cific range in A called 'relevant segment', A(3, 8) in this
example. Second, the two nulls on B1 at columns b5 and
b11 are aligned with two separate dynamic gaps inserted
into A. The first observation suggests that F1 and F2 for any
segment may be calculated before the DP process. How-
ever, the second observation indicates that the number of
null columns of dynamic gaps aligned with static nulls on
a target gap must be subtracted from the gap state of the
target gap for correct assignment of the relevant segment;
without this subtraction, the relevant segment would be
assigned as A(1, 8) in the above example.

We initially consider the first point, neglecting the pres-
ence of dynamic gaps for a moment. Without loss of gen-
erality, we assume that the residues on ai are aligned with

a null of a target gap on bj whose gap state is g. We define

F0(ai) as the weighted fraction of nulls on ai:

, where δ(a, b) = 1 if a = b, oth-

erwise, δ(a, b) = 0, and '-' denotes a null. F0(ai) is the same

as the null component of the frequency profile at ai, i.e.

F0(ai) = . We also define F1(A, i, g) as the sum of

weights of sequences {Ap} such that ap,i ≠ '-' and the

number of residues within segment A(i - g + 1, i) aligned
with the target gap is less than or equal to xc:

, where

Δ(ap, i, g) = 1 if the number of residues on the p-th row of

A(i - g + 1, i) is less than or equal to xc, otherwise, Δ(ap, i,

g) = 0. Specifically, if , then
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Δ(ap, i, g) = 1, otherwise, Δ(ap, i, g) = 0. Likewise, F2(A, i, g)

is defined as the sum of weights of sequences {Ap} such

that ap,i ≠ '-' and the number of residues within A(i - g + 1,

i) aligned with the target gap is greater than xc. Obviously,

F0(ai)+ F1(A, i, g) + F2(A, i, g) = 1.  (11)

Because there may exist gap states g and g' (0 ≤ g <g' ≤ i)
such that F1(A, i, g) = F1(A, i, g'), we need to store only dis-

tinct F1(A, i, g) values, the number of which is at most the

number of rows of A, m. For actual calculations, we use an
'insertion length profile' associated with each column of a

group. An insertion length profile of column ai,  is

expressed as  = {(i - gk + 1, F1(A, i, gk))}, where gk is a

maximum gap state such that F1(A, i, gk) = F1(A, i, g') for

gk ≤ g' <gk+1. Information about F2(A, i, g) does not need to

be recorded, because it can be easily derived from F0(ai)

and  through equation 11. 

The second point raises the key problem: how to deter-

mine the 'tailored gap state' of the target gap,  = g - s,

where g is the gap state of the target gap and s is the
number of dynamic null columns to be removed for cor-
rect assignment of the relevant segment. For example,
dynamic null columns aligned with b5 and b11 in Figure 1

are removed. To keep track of the dynamic gaps to be
removed, we newly introduce the 'dynamic gap informa-
tion' list. Each element of dynamic gap information is rep-
resented by (p, l), where p and l indicate the position and
the length of a dynamic gap, respectively. For efficiency,
the dynamic gap information list {(pk, lk)} is sorted in

order of pk. The dynamic gap information of group A at (i,

j), (A), is recurrently calculated as follows. When ai

and bj are aligned, (A) is simply copied from

(A). Similarly, when ai is aligned with a null col-

umn, (A) is copied from (A) or (A)

depending on the maximum operation of recurrent equa-

tion 3. When bj is aligned with a null column, (A) is

first copied from (A) or (A), and then a new

element is added to it or its last element is modified. Spe-

cifically, if the last element of (A) is (i, l), it is modi-

fied to (i, l + 1). Otherwise, a new element (i, 1) is added

to (A). The other dynamic gap information lists are

obtained in a similar way.

It is worth mentioning that dynamic gap information

(A) and gap mediation profile (A) contain infor-

mation on dynamic gaps from different viewpoints. The
information held in dynamic gap information is relevant
to the group aligned with a gap in question (group A in
the present example), while that maintained in a gap
mediation profile is relevant to the group containing the
gap (group B in the above example). In addition, each ele-

ment of (A) refers to a single dynamic gap, while that

of (A) records the total length of separate dynamic

gaps inserted within or after a static gap. In the case of Fig-

ure 1, each element of (A) = {(0, 1), (2, 2), (7, 1)}

indicates the dynamic gaps of lengths 1, 2, and 1 inserted
before column a1, after a2, and after a7, respectively, while

that of (A) = {(0, 1), (2, 1), (7, 4) } means the total

length of dynamic gaps inserted after the last non-null res-
idue within or before the present column in A1 or A4, A3,

and A2, respectively.

Given a dynamic gap information list Di, j(A) = {(pk, lk)}

and a gap state g, we can easily derive the tailored gap state

 with the following algorithm, in which s denotes the

total number of dynamic gap columns to be removed and
tk indicates the distance in the reverse direction from the

current position i to the start position of the k-th dynamic
gap inserted into A(1, i):

Algorithm getTailoredGapState(Di,j(A), g)

1. s ← 0

2. for k ← |Di,j(A)| down to 1

(a) tk ← s + i - pk+ lk

(b) if tk ≤ g, then s ← s + lk

(c) else if tk - lk <g, then s ← s + g - (tk - lk)

(d) if tk ≥ g, then return  ← g - s

3. retrun  ← g - s
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The gap extension penalty for the target gap is then
obtained by

wB{u1·F1(A, i, ) + u2·F2(A, i, )},  (12)

where wB is the weight given to the sequence containing
the target gap. Note that step 2c in this algorithm exam-
ines whether or not the dynamic gap in question is par-
tially aligned with the target gap. For the example
considered in Figure 1, t3 = 0 + 8 - 7 + 1 = 2, and s = l3 = 1
are calculated after the first iteration of steps 2 in this algo-
rithm. In the second iteration, we obtain t2 = 1 + 8 - 2 + 2
= 9. Because t2 = 9 > g = 8 and t2 - l2 = 7 <g = 8, we can rec-
ognize that the dynamic gap is partially aligned with the
target gap, and hence the number of dynamic null col-
umns to be removed 8 - 7 = 1 is added to s. The gap exten-
sion penalty, u, summed over all the nulls on column bj
can easily be calculated with the following algorithm:

1. u ← 0

2. for h ← 1 to | |

(a)  ← getTailoredGapState(Di,j(A), gh)

(b) u ← u + fh{u1·F1(A, i, ) + u2·F2(A, i, )}

3. return u

where (gh, fh) is the h-th element of . Because we have

already prepared running gap state profile , the com-

putation is done in O(|Di,j(A)|·| |). To obtain the total

gap extension penalty at each DP step, we must also con-
sider the opposite situation where residues on bj are

aligned with gaps on ai in a similar way.

Doubly nested randomized iterative strategy
The doubly nested randomized iterative strategy involves
refinement of alignment, phylogenetic tree, and pair
weights until these are mutually consistent [9]. After prep-
aration of an initial alignment with such progressive
methods as the oligomer counting based method [8,10],
this strategy refines the initial alignment as follows:

1. Calculate a distance matrix from the multiple align-
ment

2. Construct a phylogenetic tree from the distance matrix

3. Calculate pair weights from the phylogenetic tree

4. Iteratively refine the alignment using the phylogenetic
tree and the pair weights

(a) Divide the alignment into two groups based on a ran-
domly chosen branch of the tree

(b) Align these two groups using a group-to-group
sequence alignment algorithm

(c) Repeat steps 4a to 4b until no better weighted SP score
is obtained

5. Repeat steps 1 to 4 until the weighted SP score of the
alignment does not improve anymore at step 4

Results
PRIME
We developed a program called PRIME (Profile-based
Randomized Iteration Method). PRIME is written in ISO
standard C++, implementing the doubly nested rand-
omized iterative strategy similar to our previous MSA pro-
gram, Prrn [9]. However, PRIME employs our proposed
algorithm with a piecewise linear gap cost in contrast to
Prrn that uses an affine gap cost. Another algorithmic dif-
ference between PRIME and Prrn is that the latter uses the
candidate list paradigm in the group-to-group sequence
alignment algorithm and the anchoring method, whereas
the former adopts a simpler DP method without anchor-
ing heuristics. The parameters of PRIME including selec-
tion of substitution matrix and gap cost parameters are
optimized using an older BAliBASE, version 2.01 [22].
Because only about 20% of the sequences in BAliBASE
version 3.0 [23] used for the test are common to those in
BAliBASE version 2.01, we do not think that these param-
eters are over-fitted against BAliBASE version 3.0. Initial
MSAs are constructed using a simple progressive method
with the proposed group-to-group sequence alignment
algorithm based on a distance matrix calculated from
pairwise sequence alignment. The PRIME source code is
provided as an additional file [see Additional file 1], and
can be downloaded at PRIME website [24]. The future ver-
sion of PRIME will be available at this site.

Benchmarks
To evaluate the performance of PRIME and other MSA
programs shown in Table 1, we execute two benchmarks:
BAliBASE version 3.0 [22,23,25] and PREFAB version 4.0
[8]. In the case of PREFAB, we also test two global pairwise
sequence alignment programs as controls: PSApiecewise and
PSAaffine. PSApiecewise and PSAaffine use the piecewise linear
gap cost and the affine gap cost, respectively.

BAliBASE
BAliBASE is categorized into five references according to
the nature of sequences to be aligned (Table 2). Reference
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ĝ

gh
m gh

m

Ŝ
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1 is further divided into two sub-references based on
sequence identities. Although the previous BAliBASE ver-
sion 2.01 has been widely used, it had a problem that
some sequences were trimmed off non-homologous
regions [26]. Therefore, two test sets are prepared in BAli-
BASE version 3.0: full length set and homologous region
set. Each sequence in the full length set is not trimmed off
non-homologous regions, whereas the homologous
region set consists of alignments of trimmed sequences
and hence corresponds to the previous BAliBASE. How-
ever, reference 4 is excluded from the homologous region
set due to its objective.

Alignment evaluation based on BAliBASE
To evaluate alignment accuracy based on BAliBASE, we
use sum-of-pairs and column scores [14]. The sum-of-
pairs score (SPS) is defined as the proportion of correctly
aligned residue pairs:

where I and J are the number of columns of test and refer-

ence alignments, respectively.  is defined as:

If aligned residue pair ami and ani of the test alignment also

exists in the reference alignment, Pi(m, n) = 1. Otherwise,

pi(m, n) = 0.  is the total number of aligned pairs on

column j of the reference alignment. The column score
(CS) represents the proportion of correctly aligned col-
umns:

If the column of the test alignment is identical to the i-th
column of the reference alignment, ci = 1.

Otherwise, ci = 0.

PREFAB
PREFAB is another MSA benchmark. Each alignment of
PREFAB is generated automatically, while that of BAli-
BASE is constructed by human expertise. PREFAB consists
of three data sets: main, long gap, and weighting sets. The
main set corresponds to the previous PREFAB version 3.0,
which is not categorized unlike BAliBASE. Each alignment
of the long gap set, a subset of the main set, contains one
or more gaps whose lengths are more than 10. The weight-
ing set involves alignments each of which includes more
sequences of one sub-family than that of the other sub-
families. Whereas each reference alignment of BAliBASE is
provided as an MSA, each reference alignment of PREFAB
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Table 2: BAliBASE version 3.0 contents

no. of alignments characteristic of alignment

Reference 1.1 37 phylogenetically equidistant (less than 20% identity)
Reference 1.2 42 phylogenetically equidistant (20 to 40% identity)
Reference 2 39 families including orphan sequences
Reference 3 29 equidistant families (less than 25% identity)
Reference 4 48 long N/C terminal extensions (excluded from homologous region set)
Reference 5 14 long internal insertions

Table 1: List of evaluated programs

program version option

PRIMEpiecewise blosum62, g(x) = max{-(x + 9), -(0.5x + 21.5)}
PRIMEaffine blosum62, g(x) = -(x + 9)
Prrn [9] 3.4 -b2 -mblosum62 -u1 -v9
MAFFT* [15] 5.662 --maxiterate 1000 --localpair (L-INS-i)
ProbCons* [16] 1.09 default
T-Coffee* [27] 2.02 default
MUSCLE [8] 3.52 default
DIALIGN-T [28] 0.2.1 default
POA [5] 2 -do_global -do_progressive blosum80_trunc.mat
ClustalW [7] 1.83 default

Programs with * employ pairwise alignment information when calculating multiple alignment. Parameters or options of each program other than the 
gap penalty ones are chosen to obtain as accurate an alignment as possible.
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is provided as a pairwise alignment of a pair of PDB
sequences of known structures.

Alignment evaluation based on PREFAB

For alignment evaluation of PREFAB, the quality score is
employed, which measures only two PDB sequences
within each alignment. The quality score (QS) is the ratio
of correctly aligned residue pairs of the reference pairwise

alignment: , where J is the number of res-

idue pairs in the reference alignment. If the residue pair of
the test alignment is also aligned in the reference align-
ment, pi = 1. Otherwise, pi = 0. Note that if the reference

alignment is pairwise alignment, quality score, sum-of-
pairs score, and column score have the same value.

Results of BAliBASE benchmark test
Full length set
The average sum-of-pairs and column scores of the full
length set are shown in Tables 3 and 4, respectively. The
last columns of both tables are the rank sum of the Fried-
man test. The program with the smallest rank sum means
that the program consistently constructs the most accurate
alignments even if it does not achieve the largest average
score. The p-values of the Friedman test are shown in the
additional file [see Additional file 2]. The Friedman test
indicates that the tested programs are classified into three
groups according to their performances. The most accu-
rate group consists of PRIMEpiecewise, PRIMEaffine, MAFFT,
ProbCons, and T-Coffee. The second most accurate one is
Prrn and MUSCLE. The accuracies of DIALIGN-T, POA,
and ClustalW are comparable to each other but are signif-
icantly lower than those of Prrn and MUSCLE. Figure 2
shows the performance difference between PRIMEpiecewise
and PRIMEaffine. In this figure, we plot the difference in
alignment scores of PRIMEpiecewise and PRIMEaffine. A posi-
tive difference score means that PRIMEpiecewise constructs
more accurate alignments than PRIMEaffine, and vice versa.
Although the difference is not statistically significant,
PRIMEpiecewise shows better performance than PRIMEaffine,
as expected.

Homologous region set
The average sum-of-pairs and column scores of the
homologous region set are shown in Tables 5 and 6,
respectively. The p-values of the Friedman test are shown
in the additional file [see Additional file 3]. Unlike the
results of the full length set, little difference in accuracy
was detected between PRIMEpiecewise and PRIMEaffine. Figure
3 shows the performance difference between them.
Because the terminal non-homologous regions trimmed
off in the homologous region set are usually long, for the
full length set, the piecewise linear gap cost treats the long
terminal gaps more effectively than the affine gap cost,

and hence PRIMEpiecewise shows better performance than
PRIMEaffine. However, because the difference between
these gap costs is relatively small in the homologous
region set, PRIMEpiecewise and PRIMEaffine show similar per-
formance. The relative performance of the nine programs
examined is nearly the same as that of the full length set
in a statistical sense.

Effects of non-homologous regions
We examine the effects of non-homologous regions in
more detail. The critical difference between the full length
and homologous region sets is the existence of non-
homologous regions at N/C terminals. Therefore, the dif-
ference in alignment scores obtained by the same program
for the corresponding members in the full length and
homologous region sets indicates to what extent the pro-
gram properly deals with terminal gaps. Figures 4 and 5
show the average difference of sum-of-pairs and column
scores between the full length and homologous region
sets. Each difference score is calculated by subtracting the
alignment score of the full length set from that of the
homologous region set. A positive difference score means
that the non-homologous regions adversely affect align-
ment accuracy, whereas a negative score indicates
improvement in alignment accuracy due to the presence
of such regions. If the score difference is close to 0, the
program is considered to be robust against the non-
homologous regions. The results indicate that PRIMEpiece-

wise is less affected by such regions than PRIMEaffine. This
follows the general tendency that terminal gaps reduce
more significantly the accuracy of global alignment pro-
grams including Prrn, MUSCLE, POA, and ClustalW than
that of MAFFT, ProbCons, and T-Coffee that incorporate
local alignment information in some ways. These observa-
tions indicate that PRlMEpiecewise deals with terminal gaps
better than conventional global MSA programs, although
not as well as those incorporating local alignment infor-
mation.

Results of PREFAB benchmark test
The average quality scores of the three sets of PREFAB are
shown in Table 7. The overall tendencies of relative per-
formances and the Friedman tests of the main and long
gap sets are nearly the same as those of BAliBASE. How-
ever, in the case of the weighting set, all programs except
POA are comparable to each other. Because POA does not
use sequence weights, 'biased sub-family composition'
might adversely affect the performance of POA compared
with the other programs.

Computation time
The computation time of each program for executing the
benchmarks is compiled in Table 8. The computer we
used is Pentium3 933 MHz with 1 GB memory, running
on RedHat Linux 7.3. PRIMEpiecewise and PRIMEaffine are

QS
J

pii
J= =∑1
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Score differences between PRIMEpiecewise and PRIMEaffine on full length setFigure 2
Score differences between PRIMEpiecewise and PRIMEaffine on full length set. The horizontal axis denotes reference 
alignment ID, and the vertical axis, the difference in sum-of-pairs or column scores on respective alignments of the full length 
set using PRIMEpiecewise and PRIMEaffine. A positive difference score of an alignment is an indication that PRIMEpiecewise shows bet-
ter performance than PRIMEaffine for the alignment, and vice versa.

-1.000

-0.500

0.000

0.500

1.000

Ref. 5Ref. 4Ref. 3Ref. 2Ref. 1.2Ref. 1.1

S
co

re
 d

iff
er

en
ce

Reference alignment ID (full length set)

Sum-of-pairs score Column score

Table 3: Average sum-of-pairs scores of full length set

Ref. 1.1 Ref. 1.2 Ref. 2 Ref. 3 Ref. 4 Ref. 5 Overall Ranksum

PRIMEpiecewise 0.643 0.933 0.922 0.859 0.910 0.882 0.861 809
PRIMEaffine 0.635 0.931 0.898 0.851 0.882 0.871 0.846 912
Prrn 0.574 0.923 0.901 0.820 0.859 0.821 0.821 1055
MAFFT 0.671 0.938 0.923 0.852 0.918 0.892 0.868 656
ProbCons 0.648 0.942 0.905 0.835 0.887 0.879 0.851 764
T-Coffee 0.613 0.933 0.916 0.826 0.900 0.858 0.846 884
MUSCLE 0.570 0.909 0.888 0.808 0.857 0.839 0.815 1260
DIALIGN-T 0.489 0.888 0.859 0.744 0.817 0.780 0.768 1668
POA 0.474 0.857 0.857 0.733 0.805 0.754 0.753 1804
ClustalW 0.497 0.864 0.848 0.722 0.786 0.713 0.748 1682

Each column shows average sum-of-pairs scores using all alignments of each reference of the full length set. Overall and Ranksum columns show the 
average sum-of-pairs scores and the rank sum of the Friedman test using all alignment of the whole full length set, respectively. A smaller rank sum 
means better accuracy.
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Table 4: Average column scores of full length set

Ref. 1.1 Ref. 1.2 Ref. 2 Ref. 3 Ref. 4 Ref. 5 Overall Ranksum

PEIMEpiecewise 0.416 0.839 0.445 0.566 0.573 0.552 0.572 846
PRIMEaffine 0.391 0.826 0.413 0.539 0.483 0.496 0.531 958
Prrn 0.334 0.791 0.406 0.469 0.491 0.411 0.499 1080
MAFFT 0.449 0.839 0.436 0.560 0.607 0.544 0.583 759
ProbCons 0.401 0.851 0.374 0.462 0.530 0.509 0.532 847
T-Coffee 0.324 0.832 0.384 0.459 0.563 0.534 0.525 1017
MUSCLE 0.313 0.795 0.343 0.380 0.460 0.408 0.465 1246
DIALIGN-T 0.246 0.723 0.290 0.347 0.462 0.389 0.423 1554
POA 0.224 0.678 0.265 0.343 0.413 0.323 0.389 1690
ClustalW 0.221 0.707 0.219 0.271 0.404 0.237 0.368 1497

Each column shows average column scores using all alignments of each reference of the full length set. Overall and Ranksum columns show the 
average column scores and the rank sum of the Friedman test using all alignment of the whole full length set, respectively. A smaller rank sum 
means better accuracy.

Score differences between PRIMEpiecewise and PRIMEaffine on homologous region setFigure 3
Score differences between PRIMEpiecewise and PRIMEaffine on homologous region set. The horizontal axis denotes 
reference alignment ID, and the vertical axis, the difference in sum-of-pairs or column scores on respective alignments of the 
homologous region set using PRIMEpiecewise and PRIMEaffine. A positive difference score of an alignment is an indication that 
PRIMEpiecewise shows better performance than PRIMEaffine for the alignment, and vice versa.
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somewhat slower than most programs tested. The compu-
tational speed would be significantly improved by incor-
porating anchoring heuristics and refining source codes.

Discussions and Conclusion
The group-to-group sequence alignment algorithm is the
key to most heuristic MSA algorithms. Although many
group-to-group sequence alignment algorithms focus on
position-specific gap opening penalties [7,8,10,12], they
use essentially a constant gap extension penalty similar to
that of the affine gap cost. For global MSA algorithms, use
of the constant gap extension penalty could lead to dete-
rioration of alignment accuracy when some of the
sequences to be aligned have long indels. To our knowl-
edge, POA version 2 [5] is the sole precedent that incorpo-
rates length-dependent gap extension penalties into the
group-to-group sequence alignment algorithm. Examina-
tion of POA with various options indicated that length-
dependent gap extension penalties with global alignment
strategy are effective to improve alignment accuracy when
some of the sequences to be aligned have long indels
(data not shown).

In this paper, we proposed a novel group-to-group
sequence alignment algorithm with the piecewise linear
gap cost, and developed a program called PRIME. The
advantage of using the piecewise linear gap cost is that this
gap cost more accurately models the occurrence of long
gap in a simple way than other gap cost does. As a result
of BAliBASE benchmark test, PRIME achieved alignment
accuracies comparable to the most accurate programs
available today including L-INS-i of MAFFT, ProbCons,
and T-Coffee. Unlike others, PRIME does not rely on pair-
wise alignment information. This implies that the intro-
duction of length-dependent gap extension penalties
could contribute to improving the alignment accuracy
even when pairwise alignment information is not used.

It should be noted that our proposed algorithm has two
inherent drawbacks. First, it is considerably slower than
many popular algorithms. Second, selecting the parame-
ters of the piecewise linear gap cost is somewhat more
complicated than that of the affine gap cost. However,
these drawbacks would not be serious enough to reduce
the advantages of our proposed algorithm and PRIME.

Table 5: Average sum-of-pairs scores of homologous region set

Ref. 1.1 Ref. 1.2 Ref. 2 Ref. 3 Ref. 5 Overall Ranksum

PRIMEpiecewise 0.772 0.940 0.955 0.903 0.891 0.894 613
PRIMEaffine 0.781 0.938 0.954 0.907 0.896 0.897 634
Prrn 0.763 0.936 0.954 0.894 0.887 0.889 698
MAFFT 0.753 0.940 0.946 0.890 0.897 0.886 654
ProbCons 0.788 0.953 0.953 0.910 0.907 0.904 489
T-Coffee 0.704 0.939 0.940 0.878 0.888 0.870 821
MUSCLE 0.735 0.931 0.943 0.882 0.870 0.875 907
DIALIGN-T 0.573 0.901 0.897 0.793 0.821 0.798 1406
POA 0.634 0.877 0.923 0.822 0.800 0.816 1370
ClustalW 0.664 0.905 0.922 0.816 0.788 0.827 1263

Each column shows average sum-of-pairs scores using all alignments of each reference of the homologous region set. Overall and Ranksum columns 
show the average sum-of-pairs scores and the rank sum of the Friedman test using all alignment of the whole homologous region set, respectively. 
A smaller rank sum means better accuracy.

Table 6: Average column scores of homologous region set

Ref. 1.1 Ref. 1.2 Ref. 2 Ref. 3 Ref. 5 Overall Ranksum

PEIMEpiecewise 0.588 0.849 0.595 0.636 0.575 0.665 640
PRIMEaffine 0.589 0.847 0.582 0.648 0.593 0.666 640
Prrn 0.561 0.834 0.601 0.630 0.558 0.654 708
MAFFT 0.552 0.846 0.532 0.631 0.578 0.640 670
ProbCons 0.591 0.875 0.540 0.625 0.583 0.658 548
T-Coffee 0.476 0.840 0.491 0.625 0.540 0.607 822
MUSCLE 0.496 0.823 0.496 0.574 0.501 0.596 946
DIALIGN-T 0.338 0.761 0.370 0.452 0.429 0.485 1339
POA 0.390 0.712 0.424 0.459 0.371 0.493 1348
ClustalW 0.416 0.791 0.443 0.475 0.394 0.529 1193

Each column shows average column scores using all alignments of each reference of the homologous region set. Overall and Ranksum columns 
show the average column scores and the rank sum of the Friedman test using all alignment of the whole homologous region set, respectively. A 
smaller rank sum means better accuracy.
Page 13 of 17
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Unlike most popular algorithms, PRIME can circumvent
the time-consuming process for obtaining pairwise align-
ment information, and hence it is theoretically advanta-
geous for aligning a large number of sequences. Our
preliminary examination confirmed the expected depend-
ency of computational time on the number of sequences
to be aligned. However, the current version of PRIME is
still slower than most of other programs over the exam-
ined range of the number of sequences (data not shown).
One of the reasons is that the current PRIME does not use
any heuristics, such as anchoring or grouping method
used in Prrn, for reducing the computation. To improve
calculation speed of PRIME without a loss of accuracy, we
are attempting to incorporate these heuristics. To further
improve alignment accuracy, we will investigate several
problems including the conditions under which PRIMEaff-

ine constructs more accurate alignment than PRIMEpiecewise,

the potential of other objective functions, and the effect of
incorporating pairwise alignment information.

Availability and Requirements
Project name: PRIME project

Project home page: http://prime.cbrc.jp/

Operating system(s): Platform independent

Programming language: C++

Licence: GNU GPL version 2 or later

Any restrictions to use by non-academics: None

Average sum-of-pairs score differences between full length and homologous region setsFigure 4
Average sum-of-pairs score differences between full length and homologous region sets. Each point means average 
sum-of-pairs score difference in respective alignments on each reference of the full length and homologous region sets. 
PRIMEpcw denotes PRIMEpiecewise, and PRIMEafn, PRIMEaffine. The smaller absolute value of a score indicates that the introduction 
of long terminal indels less affects the alignment accuracy of a program.
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Table 8: Computation time

BAliBASE PREFAB

PRIMEpiecewise 9.4 × 105 5.5 × 105

PRIMEaffine 4.9 × 105 4.3 × 105

Prrn 6.8 × 105 1.9 × 105

MAFFT 1.9 × 104 2.7 × 104

ProbCons 6.4 × 104 1.9 × 105

T-Coffee 7.2 × 105 2.0 × 106

MUSCLE 7.9 × 103 1.6 × 104

DIALIGN-T 3.0 × 104 1.2 × 105

POA 1.0 × 104 2.6 × 104

ClustalW 8.3 × 103 2.7 × 104

BAliBASE column shows total times (sec.) of constructing all alignments of the full length and homologous region sets by each program, while 
PREFAB column, those of calculating whole alignments of the main and weighting sets only.

Table 7: Average quality scores of PREFAB

Main Weighting Long gap

QS Ranksum QS Ranksum QS Ranksum

PRIMEpiecewise 0.721 8151 0.649 588 0.658 1408
PRIMEaffine 0.718 8355 0.637 617 0.651 1504
Prrn 0.722 8120 0.624 621 0.653 1455
MAFFT 0.722 7744 0.639 585 0.660 1352
ProbCons 0.705 8659 0.620 594 0.637 1443
T-Coffee 0.700 9126 0.627 584 0.631 1640
MUSCLE 0.680 10446 0.607 642 0.596 1918
DIALIGN-T 0.621 13277 0.587 754 0.541 2506
POA 0.603 14662 0.554 868 0.513 2789
ClustalW 0.617 12952 0.603 650 0.519 2583
PSApiecewise 0.591 14525 0.638 627 0.498 2804
PSAaffine 0.581 14789 0.621 670 0.489 2856

Each QS and Ranksum columns show the average quality scores and the rank sum of the Friedman test using quality scores on all alignments of each 
reference set, respectively. A smaller rank sum means better accuracy.
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Average column score differences between full length and homologous region setsFigure 5
Average column score differences between full length and homologous region sets. Each point means average col-
umn score difference in respective alignments on each reference of the full length and homologous region sets. PRIMEpcw 
denotes PRIMEpiecewise, and PRIMEafn, PRIMEaffine. The smaller absolute value of a score indicates that the introduction of long 
terminal indels less affects the alignment accuracy of a program.
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Additional material

Additional File 1
PRIME source code. This tar.gz archive includes the source files of 
PRIME. To compile PRIME, one can check 'INSTALL' and 'Makefile' in 
the archive. Although 'Makefile' basically assumes GNU make and g+ +, 
another compiler can be used with a few modification of 'Makefile'.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-524-S1.gz]
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