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Abstract
Background: With the advent of high-throughput proteomic experiments such as arrays of
purified proteins comes the need to analyse sets of proteins as an ensemble, as opposed to the
traditional one-protein-at-a-time approach. Although there are several publicly available tools that
facilitate the analysis of protein sets, they do not display integrated results in an easily-interpreted
image or do not allow the user to specify the proteins to be analysed.

Results: We developed a novel computational approach to analyse the annotation of sets of
molecules. As proof of principle, we analysed two sets of proteins identified in published protein
array screens. The distance between any two proteins was measured as the graph similarity
between their Gene Ontology (GO) annotations. These distances were then clustered to highlight
subsets of proteins sharing related GO annotation. In the first set of proteins found to bind small
molecule inhibitors of rapamycin, we identified three subsets containing four or five proteins each
that may help to elucidate how rapamycin affects cell growth whereas the original authors chose
only one novel protein from the array results for further study. In a set of phosphoinositide-binding
proteins, we identified subsets of proteins associated with different intracellular structures that
were not highlighted by the analysis performed in the original publication.

Conclusion: By determining the distances between annotations, our methodology reveals trends
and enrichment of proteins of particular functions within high-throughput datasets at a higher
sensitivity than perusal of end-point annotations. In an era of increasingly complex datasets, such
tools will help in the formulation of new, testable hypotheses from high-throughput experimental
data.

Background
The advent of high-throughput (HTP) investigation of
proteins using proteomic methodologies has created a
need for new approaches in bioinformatic analysis of
experimental results. Most publicly available databases
display information about proteins one record at a time

[1-5]. This is useful in the case where the number of pro-
teins of interest is small. However, a set of proteins iden-
tified in a typical proteomic experiment may contain tens,
hundreds or even thousands of proteins to analyse [6-9],
at which point it is no longer feasible to collect informa-
tion one protein at a time. In addition, there may be pat-
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terns or subsets of interest that exist within the set of
proteins that are not obvious if the proteins are analysed
one at a time. Thus, analysis of data generated in HTP
experiments requires tools that allow the integrated anal-
ysis and interpretation of a collection of proteins.

Several freely available tools facilitate analysis of sets of
proteins or gene products. PANDORA clusters sets of pro-
teins according to shared annotation and displays the
results as a directed acyclic graph (DAG) [10]. Many types
of annotation are incorporated, including Gene Ontology
(GO) annotation [11]. PANDORA provides sets of pro-
teins or allows the user to input a list of proteins of inter-
est. SGD [1,2] provides the yeast community with the
tools GO Term Finder, GO Slim Mapper and GO Annota-
tion Summary for the analysis of a protein and all its inter-
actors as found in SGD. WebGestalt permits the user to
input interesting sets of genes and identify up to 20 types
of annotation to be employed [12]. The sets can then be
visualized in one of eight different ways according to the
type of annotation, e.g., DAG for GO. Separately, the
annotation can be analysed using statistical tests to iden-
tify over- or under-represented categories in the specified
set as compared to a reference set. GOClust is a Perl pro-
gram used to identify proteins from a list of proteins that
are annotated to a selected GO term or its progeny terms
[7,13]. Interestingly, all of the tools described above
incorporate GO annotation to find commonalities within
a list of proteins, emphasizing the importance of using
GO annotation for analysing sets of molecules. Yet none
of these tools provide an integrated display of results facil-
itating interpretation of the biological meaning of the pro-
tein set annotation.

Clustering proteins according to shared annotation may
reveal related subsets that warrant further investigation.
Two separate groups have clustered proteins by their
annotation in order to identify incorrect annotations in
curated databases. Kaplan and Linial measured the dis-
tance between any two proteins as a function of the
number of terms that are annotated to both proteins,
where less common terms, such as heat shock protein,
score higher than more common terms, such as enzyme
[14]. They identified successful hierarchical clustering as
the point in the hierarchy at which one of the clusters con-
tains no false positive annotations. The similarity score
used by Kunin and Ouzounis incorporated the ratio of
common to unique terms between the annotation of two
SwissProt proteins and the frequency of those terms
within SwissProt as a whole [15]. All proteins in SwissProt
were then clustered into >43,000 clusters. Sequence simi-
larity between proteins within clusters was found to be
consistent overall, apart from six types of exceptions, one
of which was SwissProt annotation errors.

As a first step towards investigating the feasibility of clus-
tering proteins by annotation for the purpose of facilitat-
ing interpretation of HTP results, we have employed a
graph similarity distance measure implemented in Bio-
conductor [16,17] and Partitioning Around Medoids
(PAM) clustering to examine the annotation of two pub-
lished HTP proteomic data sets. Zhu et al. [18], hereafter
referred to as the Snyder data set, demonstrated that puri-
fied proteins representing most of the yeast proteome
could be immobilized on chips and tested for interaction
with proteins or lipids. The primary purpose of the publi-
cation was to demonstrate that the proteome array is able
to detect known interactions in addition to identifying
new ones, lending support to the usefulness of the tech-
nique. In Huang et al. [19], hereafter referred to as the Sch-
reiber data set, proteins from the yeast proteome array
that interacted with two small molecules of interest were
tested using in vivo experiments to further examine
whether the loss of the protein affected the cellular
response to the presence of the inhibitors. From this, only
one of 38 interacting proteins identified was chosen for
further study. Here we have assembled these two sets of
proteins as identified in screens of purified protein arrays
and re-analysed them by clustering the proteins according
to their GO annotation, thus generating new hypotheses
about how proteins in these sets may function within the
cell.

Methodologies and concepts
Distance metric
Our objective is to find clusters of proteins such that the
proteins within a cluster are close from a biological per-
spective and correspondingly far from the proteins in
other clusters. The biological perspective that we choose is
GO annotation, and we define distance by referring to the
GO graph. Of the many possible GO-based distance met-
rics (e.g. [20]), we choose the simUI metric included in the
GOstats package of Bioconductor (Figure 1A), in part
because of its universal availability. This metric is based
on the notion of an induced GO graph and treats each of
the three GO aspects separately (Biological Process (BP),
Molecular Function (MF), Cellular Component (CC)).
The GO terms to which a protein maps constitute the
leaves of the graph; thus, a protein with more than one
GO annotation will have more than one leaf in the
induced GO graph. The complete induced GO graph con-
sists of those leaves and all parents of those terms, and so
on until the root node has been obtained. The graph sim-
ilarity between two proteins calculated using simUI equals
the number of common nodes in the two induced GO
graphs divided by the number of nodes in the union of
the two graphs, thus the similarity lies between 0 and 1.
The associated dissimilarity is 1 – similarity. Figure 2 illus-
trates the simUI distance between two yeast proteins. Fig-
ure 2A shows the GO BP annotation for INO4/YOL108C
Page 2 of 13
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:338 http://www.biomedcentral.com/1471-2105/7/338
(GO:0045944 positive regulation of transcription from
RNA polymerase II promoter, GO:0008654 phospholipid
biosynthesis) and Figure 2B shows the GO BP annotation
for RSC30/YHR056C (GO:0006355 regulation of tran-
scription, DNA dependent) as retrieved using GO version
1.10.0 in Bioconductor. The 20 GO terms found in both
induced GO graphs are highlighted in blue and there are
40 unique GO terms in total. Therefore, the graph similar-
ity between INO4/YOL108C and RSC30/YHR056C in GO
BP is 20 common nodes/40 unique nodes = 0.5.

Clustering method and selecting k
The clustering method employed is Partitioning Around
Medoids (PAM) (Figure 1B). The medoid of a cluster is the
protein with smallest average dissimilarity to all other
objects in the cluster. It is important to note that the
medoid is an actual protein as opposed to an abstract
entity such as the cluster mean and thus we find this fea-
ture is helpful in describing the clusters. For a specified
number of clusters k, PAM begins by arbitrarily selecting k
proteins to be medoids. It then forms clusters by grouping
each protein with the closest medoid. The medoids are
then recalculated and the proteins regrouped, and so on
until the clusters cease to change.

The number of clusters, k, must be specified in advance of
the clustering step. A review of 30 procedures for estimat-
ing k is given by Milligan and Cooper (1985) [21].
Dudoid and Fridlyand (2002) discuss several methods in
the context of gene expression data [22]. Unfortunately,
none of the available methods are completely satisfactory
and there is no consensus about the choice of method. We
have adopted a very common method that selects k to
maximize the average silhouette (described below). This
method was chosen because it utilizes the same frame-
work employed in interpreting the clusters.

Cluster analysis is a descriptive technique that can reveal
associations that may not be noticed otherwise. A larger
value of k produces smaller clusters; a small cluster may be
less informative in that it forms connections between
fewer proteins and thus is less likely to point out novel
associations. A small value of k can produce large clusters
which may display associations that do not really exist in
the underlying biology. Therefore, we have followed the
default settings in the silcheck method in Bioconductor
and limited the maximum number of clusters to 9. Addi-
tional subdivision of clusters can be based on biological
knowledge or supplementary analysis, such as inspecting
inter-protein GO distances or further cluster analysis
within a protein cluster. Many of the methods for estimat-
ing k and cluster reproducibility depend on some form of
resampling, such as resampling expression arrays, and are
not applicable in the context of GO similarity.

Methodology for clustering a list of proteins by graph similar-ity of Gene Ontology annotationFigure 1
Methodology for clustering a list of proteins by graph 
similarity of Gene Ontology annotation. (A) The input 
to the methodology consists of a list of proteins and selec-
tion of one aspect of the Gene Ontology, i.e., Biological 
Process (BP), Molecular Function (MF) or Cellular Compo-
nent (CC). The Bioconductor method simUI is then 
employed to generate a matrix of graph similarities between 
each pair of proteins in the list. (B) The Bioconductor 
method silcheck uses the similarity matrix to select the 
number of clusters, k. The Bioconductor method pam uses 
the similarity matrix and k to cluster the proteins. (C) The 
clustering result is then examined in further detail to pro-
duce a biological interpretation of the GO annotation of the 
inputted list of proteins.
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Silhouette widths and silhouette plots
We assess our clustering results using the silhouette plot,
which graphically illustrates the strength of the clustering
for the entire data set, of each cluster and of the associa-
tion of each protein to the cluster to which it is assigned
(Figure 1B). We label each cluster in the silhouette plot
with the GO annotation of the protein selected as the
medoid to provide a first glance at the annotation patterns
uncovered by clustering.

There are three types of silhouette widths found on a sil-
houette plot. The silhouette width for each object (e.g.,

protein) in the data set (si) measures how well the object
fits in the cluster to which it was assigned. For each object
i, ai = average dissimilarity between i and all other objects
of the cluster to which i belongs. Thus, if there is only one
object in a cluster, si = 0 without further calculation. For all
other clusters C (i.e. all clusters other than the cluster to
which i belongs), di

C = average dissimilarity of i to all
observations in C. Then bi = the smallest value of di

C and
thus represents the dissimilarity between i and its neigh-
bour cluster, the nearest cluster to which i does not
belong. Finally,

Graph similarity scoring methodFigure 2
Graph similarity scoring method. The induced GO graphs for two yeast proteins illustrate graph similarity scoring using 
the Bioconductor method simUI. (A) The GO terms GO:0045944 positive regulation of transcription from RNA polymerase II 
promoter and GO:0008654 phospholipid biosynthesis are assigned to INO4/YOL108C. (B) The GO term GO:0006355 regula-
tion of transcription, DNA-dependent is assigned to RSC30/YHR056C. The graph similarity between these two proteins is cal-
culated by dividing the number of terms that are found in both of the individual induced GO graphs for each protein (shared 
nodes in blue) by the number of unique terms in both graphs. The graph similarity equals 20 shared nodes/40 unique nodes = 
0.5
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The average si of each cluster (si
C) is the mean of the si val-

ues for all objects in the cluster. The average si for the
entire data set (si

D) is the mean of the si values for all
objects in the set. In general, the clustering results for the
object, cluster or data set are strongest when the si, si

C or
si

D are close to 1 (Table 1).

More specifically, when si is close to 1, the average dissim-
ilarity of this object to other objects in its cluster is much
smaller than the average dissimilarity of this object to the
objects in the neighbouring cluster [23]. Therefore, this
object appears to be assigned to the correct cluster. When
si is close to 0, the object lies equally far away from its own
cluster and its closest neighbouring cluster [23], hence
this is more likely to be an intermediate object that lies
between two clusters. Alternatively, the object may legiti-
mately belong to both clusters. An si that is close to -1
indicates that the object may have been misclassified as it
is much closer to the objects in another cluster than to
those in its own cluster [23].

Similarly, an si
C close to 1 indicates that all of the objects

in that cluster are very similar whereas an si
C below 0.25

indicates that this cluster is not clearly separated from the
other cluster(s) [23].

Kaufman and Rousseeuw describe a subjective interpreta-
tion of si

D based solely on experience [23]. They find that
an si

D of 0.51–1.0 indicates a reasonable to strong cluster-
ing structure has been found. An si

D of 0.26–0.50 indi-
cates a weak clustering structure that could be artificial
and the use of additional methods of data analysis is rec-
ommended. An si

D below 0.25 indicates that no substan-
tial structure has been found [23]. As this is by the authors
own admission a subjective interpretation, average sil-
houette widths that fall below 0.25 do not always produce
meaningless clustering results.

Interpretation and evaluation of clusters
We evaluate our clustering results by examining the
induced GO graph of the proteins in a given cluster (Fig-
ure 1C). At this stage, scientific knowledge of the original
purpose of the screen and the molecules being studied
allows the assessment of whether the clustering procedure
described above reveals interesting associations in cellular
role, molecular function or localization for further exper-
imentation and study. The interpretation of the clusters
may lead to a revision of the number of clusters and reit-
eration of the cluster analysis step. Due to the inherently
close relationships between biological annotation terms
and the interconnectedness within each aspect of the GO,

one would not expect clustering by GO annotation to pro-
duce strong clustering structures with clear delineations
between clusters. Therefore, we expect that any clusters
identified will require further analysis using complemen-
tary methods such as examination of other cluster proper-
ties or detailed examination of the proteins in the cluster.

To validate the methodology of clustering by annotation,
we compare our clustering results with an analytic
approach commonly used in DNA microarray analysis,
identification of statistically over-represented GO terms
[24]. We test the appropriateness of our medoid labels by
determining whether the GO annotation of the medoid
protein is a statistically enriched GO term for that cluster.
That is, if the GO annotation of the medoid protein is a
statistically enriched GO term for the proteins in that clus-
ter, it indicates that the medoid label accurately represents
the GO annotation of the proteins in that cluster.

In a separate but related approach, we test whether cluster-
ing of proteins by annotation is able to identify novel
annotation patterns within the data set by comparing the
GO terms of the medoid proteins to the statistically
enriched GO terms for the entire data set. If the medoid
GO terms are statistically enriched terms in the entire data
set, then our approach has not provided any new informa-
tion about this data set. If, however, the medoid GO terms
are not statistically enriched in the entire data set, our
approach has revealed novel annotation patterns within
the set of molecules that would not have been identified
otherwise.

Results
Generation of similarity matrices for sample data sets
Most of the proteins in the two sample data sets (see
Methods) had corresponding Entrez Gene identifiers. Spe-
cifically, 37 of the 39 proteins in the Schreiber data set and
91 of the 99 proteins in the Snyder data set had Gene IDs.
Similarity scores were calculated using Bioconductor
simUI for each data set (Schreiber, Snyder) for each GO
aspect (BP, MF and CC), which generated six sets of simi-
larity scores.

Schreiber data: proteins that bind small molecule 
inhibitors of rapamycin can play a role in transport or 
redox reactions or be found in nuclear sub-complexes
Screening the yeast proteome array with two different
small molecules, SMIR3 and SMIR4 that were able to
inhibit rapamycin, isolated 39 SMIR-binding proteins
[19], of which 37 were analysed here. For the Schreiber
data set BP k = 5 was selected and for MF and CC k = 9 was
selected. PAM clustering was performed for the three sets
of dissimilarity scores (Figure 3A–C) [see Additional file
1].

s
b a

a bi
i i

i i
= −( )

max( , )
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The si
D for each of the three data sets is shown at the top

of each figure. Each cluster is labelled with the GO anno-
tation(s) assigned to the medoid and the si

C (Figure 3A–
C). The clustering structures in BP and MF were weak over-
all (BP si

D = 0.15, MF si
D = 0.24) and strong in CC (si

D =
0.48). Upon further analysis, some of the clusters within
each of the GO aspects were informative.

The Schreiber BP data set (Figure 3A) had a weak si
D as

mentioned above, as did 4 of the 5 si
C values. However,

Schreiber BP cluster 2 had a strong si
C of 0.42. We col-

lected the GO annotation for the four proteins in this clus-
ter for further examination (Figure 4A). All four proteins
are involved in transport.

The Schreiber MF data set (Figure 3B) had a si
D just below

0.25 which suggests that no substantial clustering struc-
ture was found. Indeed, MF clusters 3 and 4 had low si

C

values indicating that these clusters were not very clearly
separated from other clusters. MF cluster 6 had si

C = 0
because there was only one protein in the cluster. The two
proteins in MF cluster 1 (POR1/YNL055C, POR2/
YIL114C) were both assigned to the GO:0008308 voltage-
gated ion-selective channel activity and were thus a perfect
cluster (si

C = 1.00). MF clusters 5, 8 and 9 were also small
clusters containing 2, 4 and 2 proteins with si

C values of
0.34, 0.35 and 0.55, respectively. Upon examination, it
was clear that the GO MF annotations for the proteins in
each of these clusters are closely related. MF clusters 2 and
7 had moderate si

C values (0.19 and 0.18) and thus may
reveal novel associations between proteins in this set that
may not have been readily observed. We examined the
GO annotation of the five proteins in MF cluster 2 in
detail (Figure 4B) and found that all of these proteins are
able to catalyze redox reactions. Three of the five proteins
use iron as the electron donor while a fourth chelates iron.
This may reveal a novel affinity of SMIR3 and SMIR4 for
proteins that interact with double-charged iron (Fe2+).

The Schreiber CC data set (Figure 3C) had a strong si
D

value (0.48). In fact, CC clusters 2 and 3 had perfect si
C

values, meaning that the proteins in these clusters have
identical GO CC annotation, while CC clusters 1, 4 and 7
also had high si

C values (0.49, 0.63 and 0.80). We would
expect that the 9, 3 and 4 proteins in these clusters, respec-
tively, would have very similar cellular localization anno-
tation. CC clusters 6 and 9 had si

C = 0 as both clusters
contained only one protein. We chose to examine CC
cluster 8 in more detail as it had a moderate si

C value
(0.20) (Figure 4C). The GO subgraph reveals that all four
proteins are found within the nucleus, thus the clusters
labels from the medoid of GO:0005634 nucleus and
GO:0005730 nucleolus are apt. However, there is quite
specific knowledge about the complexes within the
nucleus in which three of these proteins are found. As a
result, the GO graph contained many detailed GO CC
terms causing the graph similarity between these proteins
and the corresponding si

C to appear lower than it might
otherwise appear. This cluster, along with MF cluster 2,
demonstrates that although experience using PAM indi-
cates that clusters with si

C <= 0.25 may not be interpreta-
ble, this does not hold true in all cases and protein clusters
with moderate si

C values should be considered for biolog-
ical interpretation.

Snyder data: proteins that bind phosphoinositides can be 
related to transport, transfer of phosphorous-containing 
groups or intracellular organelles
Testing purified yeast proteins on an array for interaction
with several phosphoinositides identified a set of 99 pro-
teins [18], of which 91 were analysed here. For the Snyder
data set, k = 9 was selected for all three GO aspects. Silhou-
ette plots of the PAM clustering results for each GO aspect
are labelled with si

D at the top of each figure and medoid
GO annotation, cluster number, number of proteins in
the cluster and si

C for each cluster (Figure 5A–C) [see
Additional file 2]. The medoid labels for BP cluster 7 (Fig-
ure 5A) and CC clusters 3 and 6 (Figure 5C) are listed in
the figure legend. Overall, the si

D for BP and MF were low
(BP si

D = 0.18, MF si
D = 0.20) while CC was moderate (si

D

= 0.40) indicating that further analysis is required.

Snyder BP clusters 1, 2 and 4 had low si
C values (0.11, 0.12

and 0.08 respectively) (Figure 5A). BP cluster 9 contained
two proteins and had a perfect si

C (1.00). The remaining
BP clusters (3, 5, 6, 7 and 8) had si

C values between 0.17
and 0.28 suggesting that they should be examined further.
These clusters contain between 4 and 8 proteins; we
selected the largest cluster, BP cluster 3, for further analy-
sis (Figure 6A). The graph of the GO BP annotation of
these eight proteins appears to uncover widely varying cel-
lular roles but on closer examination we see that seven of
the eight proteins are involved in transport. Indeed, five
are annotated to progeny terms of GO:0046907 intracel-

Table 1: Interpretation of PAM silhouette widths

Statistic Value Interpretation

si close to 1 object assigned to correct cluster
close to 0 intermediate object between two clusters
close to -1 misclassified object

si
C close to 1 well separated cluster

< 0.25 cluster not well separated from neighbour(s)

si
D 0.51–1.00 reasonable to strong clustering structure

0.26–0.50 weak clustering structure, use additional methods
0.00–0.25 no substantial clustering structure
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lular transport. It is the additional GO BP annotations
associated with some of the proteins in this subset, i.e.
GO:0007059 chromosome segregation, GO:0006914
autophagy, GO:0009060 aerobic respiration and
GO:0009061 anaerobic respiration, that make the GO
graph appear complex.

Snyder MF cluster 1 contained nine proteins whose si val-
ues range from 0.11 to -0.12 and thus had a si

C value close
to 0 (Figure 5B). MF cluster 6 contained 14 proteins and
also had a very low si

C value (0.06) but most of these pro-
teins had si values above 0. Snyder MF cluster 7 had a per-
fect si

C value and consisted of two proteins annotated to
GO:0003735 structural constituent of ribosome. MF clus-
ters 3 and 8 had moderate to high si

C values (0.54 and
0.34 respectively). Inspection of the GO annotation of the
proteins in each of these clusters revealed subsets of pro-
teins with very closely related GO MF annotation (RNA
polymerase II transcription factor and nucleotide phos-
phatase activity, respectively). MF clusters 2, 4, 5 and 9
had si

C values ranging from 0.14 to 0.24 and contain
between 4 and 11 proteins. We again chose the largest
cluster, MF cluster 2, to examine in detail (Figure 6B). The
GO graph shows that all eleven proteins are enzymes
belonging to EC class 2, transferases. Although the mole-
cules that these enzymes transfer vary from glycosyl to
nitrogenous to acyl, there is a subset of six proteins that
transfer phosphorous-containing groups.

Many of the clusters in the Snyder CC clustering result
(Figure 5C) had high si

C values indicating tight clusters.
Specifically, the si

C values for CC clusters 1, 2, 4, 5, 6, 7
and 8 ranged from 0.25 to 1.00. Examination of the GO
annotation of the proteins in these clusters quickly
revealed that the medoid GO annotation is an accurate
and useful representation. CC cluster 9 had a very low si

C

value of 0.05 but, as was the case with Schreiber CC cluster
8, the detailed biological knowledge that exists about
nuclear sub-complexes allows the construction of a more
detailed GO tree for these terms, which then lowered the
apparent similarity between these proteins. All four pro-
teins in Snyder CC cluster 9 are found in nuclear com-
plexes and three of four are known to associate with
chromosomes. We chose to illustrate examination of the
GO annotation with the four proteins in CC cluster 3 (si

C

= 0.14) (Figure 6C). Three of these proteins are found in
the mitochondrion, either in the mitochondrial nucleoid
or mitochondrial inner membrane. The fourth protein is
found in both the cytoplasm and nuclear pore complex. It
is not surprising to see that GFD1/YMR255W, which is
found in the cytoplasm and nuclear pore, has a negative si
value for its assignment to this cluster (-0.02) as there are
few shared ancestor terms between these two terms and
the mitochondrion-related terms. However, it is surpris-
ing that PET9/YBL030C has a negative si value for its

Silhouette plots of PAM clustering results for Schreiber data setFigure 3
Silhouette plots of PAM clustering results for Sch-
reiber data set. Silhouette plots of PAM clustering results 
for 37 rapamycin-inhibitor binding proteins for GO (A) BP, 
(B) MF and (C) CC. Proteins assigned either the unknown 
term from each GO aspect (GO:0000004 biological process 
unknown, GO:0005554 molecular function unknown and 
GO:0008372 cellular component unknown) or using the evi-
dence code Inferred from Electronic Annotation were not 
included in the clustering. Therefore 30 proteins were clus-
tered in BP, 31 in MF and 32 in CC. The silhouette width for 
the entire set (average silhouette width, si

D) is found at the 
top of each figure whereas the silhouette width for each clus-
ter (si

C) is found on the right-hand side of the figure with the 
cluster number (left of the colon) and number of proteins in 
each cluster (right of the colon). Each cluster is labelled with 
the GO annotation of the medoid, except BP cluster 4 as the 
text did not fit on the figure. Each protein is represented by a 
bar and the width of the each bar represents the silhouette 
width for each protein (si). * GO annotation for BP cluster 4 
is GO:0046856 phosphoinositide dephosphorylation, 
GO:0048017 inositol lipid-mediated signaling and 
GO:0030476 spore wall assembly (sensu Fungi).
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assignment to this cluster as it is assigned to the same GO
term as one of the other proteins in this cluster, SLS1/
YLR129C (GO:0005743 mitochondrial inner mem-
brane). We might expect the simUI similarity between
these two proteins to be high since they are assigned to the
same GO term but SLS1/YLR129C is also assigned to two
other GO CC terms, GO:0042645 mitochondrial nucle-
oid and GO:0016021 integral to membrane. The induced
GO graph for SLS1/YLR129C therefore contained many
nodes that were not found in the induced GO graph for

PET9/YBL030C, thus reducing their simUI-calculated
graph similarity.

GO annotation of medoid is often a statistically enriched 
GO term for the corresponding cluster
We investigated whether the GO annotations of the pro-
teins selected as the medoids, which are used as cluster
labels, are actually representative of the annotation of the
proteins assigned to the cluster by comparing the medoid
GO terms to the statistically enriched GO terms for each
cluster. Identifying statistically enriched GO terms for a

Induced GO graphs for one cluster from each GO aspect for the Schreiber data setFigure 4
Induced GO graphs for one cluster from each GO aspect for the Schreiber data set. Induced GO graphs containing 
the BP, MF or CC annotation for the proteins found in Schreiber (A) BP cluster 2, (B) MF cluster 2, and (C) CC cluster 8, 
respectively. Nodes found in all of the individual induced GO graphs for the proteins in the cluster are shown in blue. The sil-
houette width for each cluster (si

C) is shown in the upper right hand corner. The medoid protein for each cluster is italicized 
and underlined.
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set of molecules is a common method of analysis for
microarray results [24-26]. In this method, the GO anno-
tation of a selected subset of molecules is compared to the
GO annotation of a reference set of molecules (e.g. the
yeast proteome or all molecules on an array) and any term
or any of its ancestor terms that occur more often in the
selected subset than in the reference set are said to be sta-
tistically enriched. If the GO annotation of the medoid is
representative of the annotation of the proteins in the
cluster, we would expect the cluster label GO terms or
closely related GO terms to be statistically enriched for
that cluster.

We employed FunSpec, a free online tool that identifies
statistically enriched annotation for yeast molecules via
hypergeometric distribution [25]. First we submitted the
list of molecules for each of the 50 clusters (Schreiber: 5
BP, 9 MF, 9 CC, Snyder: 9 BP, 9 MF, 9 CC) to FunSpec [27]
and collected the statistically enriched GO terms from the
relevant GO aspect (i.e., BP terms only for BP clusters, etc).
We found that 42 of 50 clusters had one or more statisti-
cally enriched GO terms (p < 0.01). For 33 of 42 clusters,
the medoid GO term chosen as the cluster label was (one
of) the statistically enriched GO term(s). For 8 of the 9
remaining clusters, one or more of the statistically
enriched GO terms was an ancestor or progeny term of the
medoid GO term, indicating that the medoid GO term is
related to the statistically enriched GO terms. Indeed, 4 of
8 related terms were direct parent terms of the medoid GO
term. In summary, 78% (33/42) of the cluster labels
selected by PAM are statistically enriched GO terms for
their cluster and are thus appropriate and useful GO terms
to apply as cluster labels.

GO annotation of medoid proteins uncover patterns not 
found in statistically enriched GO terms for the data set
We then examined whether the approach of clustering
proteins by their annotation revealed patterns in the pro-
tein set that were not revealed by existing methods. As
mentioned, sets of genes identified in DNA microarray
experiments are often examined for statistically over-rep-
resented GO terms. We hypothesized that if the clustering
is able to uncover new annotation patterns, the GO terms
assigned to the medoid proteins or closely related GO
terms would be distinct from the list of GO terms over-
represented in the entire data set.

We submitted six lists of proteins representing the protein
sets that were clustered for each of the two data sets for
each of the three GO aspects. The number of proteins was
slightly different for each GO aspect from the same dataset
because proteins that were annotated to unknown GO
terms (GO:0000004 biological process unknown,
GO:0005554 molecular function unknown and
GO:0008372 cellular component unknown) were

Silhouette plots of PAM clustering results for Snyder data setFigure 5
Silhouette plots of PAM clustering results for Snyder 
data set. Silhouette plots of PAM clustering results for 91 
phospholipid binding proteins for GO (A) BP, (B) MF and (C) 
CC. Proteins assigned either the unknown term from each 
GO aspect (GO:0000004 biological process unknown, 
GO:0005554 molecular function unknown and GO:0008372 
cellular component unknown) or using the evidence code 
Inferred from Electronic Annotation were not included in 
the clustering. Therefore 72 proteins were clustered in BP, 
63 in MF and 78 in CC. The silhouette width for the entire 
set (average silhouette width, si

D) is found at the top of each 
figure whereas the silhouette width for each cluster (si

C) is 
found on the right-hand side of the figure with the cluster 
number (left of the colon) and number of proteins in each 
cluster (right of the colon). Each cluster is labelled with the 
GO annotation of the medoid, except BP cluster 7 and CC 
clusters 3 and 6 as the text did not fit on the figure. Each 
protein is represented by a bar and the width of the each bar 
represents the silhouette width for each protein (si). * GO 
annotation for BP cluster 7 is chromatin silencing 
[GO:0006342] and histone deacetylation [GO:0016575]. † 
GO annotation for CC cluster 3 is mitochondrial inner mem-
brane [GO:0005743], integral to membrane [GO:0016021] 
and mitochondrial nucleoid [GO:0042645]. ‡ GO annotation 
for CC cluster 6 is plasma membrane [GO:0005886] and 
integral to membrane [GO:0016021].
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Induced GO graphs for one cluster from each GO aspect for the Snyder data setFigure 6
Induced GO graphs for one cluster from each GO aspect for the Snyder data set. Induced GO graphs containing 
the BP, MF or CC annotation for the proteins found in Snyder (A) BP cluster 3, (B) MF cluster 2, and (C) CC cluster 3, respec-
tively. Nodes found in all of the individual induced GO graphs for the proteins in the cluster are shown in blue. The silhouette 
width for each cluster (si

C) is shown in the upper right hand corner. The medoid protein for each cluster is italicized and 
underlined.
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excluded. Thus, the following six sets were submitted to
FunSpec: (1) Schreiber BP – 30 proteins, (2) Schreiber MF
– 31 proteins, (3) Schreiber CC – 32 proteins, (4) Snyder
BP – 72 proteins, (5) Snyder MF – 63 proteins and (6)
Snyder CC – 78 proteins. We searched the list of statisti-
cally enriched GO terms for each of these six data sets for
the GO terms assigned to the medoid proteins. Only 8 of
the 50 medoid GO terms were found to also be statisti-
cally enriched when examining the entire data set. Even if
we expanded the search to look for any ancestors or prog-
eny of the medoid GO terms, only 19 of 50 cluster labels
(38%) are identified by FunSpec as statistically over-repre-
sented. This suggests that the process of clustering the pro-
teins by their GO annotation and selection of a
representative GO term with which to label each cluster is
a valuable and useful way to identify novel annotation
patterns within the data set that are not identified by exist-
ing methods.

Discussion
Compared to listing the statistically enriched GO terms
for a set of molecules, this novel approach generates sets
of related molecules labelled with representative GO
terms that are in fact assigned to one of the molecules in
the set. The GO annotations of the medoid proteins help
to uncover patterns that are not identified by searching for
statistically enriched GO terms. These labelled subsets
make the annotation patterns found within the set of mol-
ecules much more readily apparent than annotation pat-
terns represented in a DAG.

We examined a set of proteins identified by their ability to
interact with one of two small molecule inhibitors of
rapamycin [19]. One subset was found to contain four
proteins involved in transport. It is known that mamma-
lian target of rapamycin (mTOR) is involved in nutrient
and protein transport [28,29] and that rapamycin inhibits
this function of the mTOR pathway. Thus it is reasonable
that small molecules that inhibit the effect of rapamycin
on the cell could also affect transport pathways. Another
subset contained four proteins that bind Fe2+. It has been
shown that removal of growth factors can cause a loss of
surface transporters for several types of molecules, includ-
ing iron [30]. By exogenously stimulating growth factor
receptor pathways, an mTOR-dependent mechanism can
maintain these transporters on the cell surface. Thus, it
would be interesting to investigate whether the subset of
proteins identified here are involved in the regulation of
cell surface iron transporters by the mTOR pathway. A
final subset contains four proteins known to be located in
nuclear complexes. Study of these proteins may reveal the
mechanisms by which the mTOR pathway is involved in
various nuclear events such as DNA damage and transcrip-
tion [29].

We also examined a set of proteins known to interact with
phospholipids [18]. We identified a subset of seven pro-
teins that are involved in different types of transport.
Many of the processes involve intracellular membrane-
bound compartments such as Golgi apparatus, mitochon-
dria and vacuole. Thus, it is reasonable to expect that these
proteins bind phospholipids in the membranes of these
compartments. We also identified a group of eleven trans-
ferases, of which six transfer phosphorous-containing
groups. Many protein kinases that are involved in signal
transduction are known to bind and be regulated by phos-
pholipids [31,32]. Thus it would be interesting to investi-
gate whether the activity of these kinases are regulated by
their interaction with phospholipids. Lastly, we identified
a cluster of four proteins with phospholipid-binding abil-
ity that are localized to the mitochondrial inner mem-
brane or the membrane-integral nuclear pore complex,
both of which are phospholipid-containing structures.
Examination of these proteins may determine whether
their localization depends on their ability to bind phos-
pholipids.

For both of these data sets, our analysis revealed annota-
tion patterns that were not identified by the authors in the
original article nor were they identified by an existing
method for analysing the annotation of sets of molecules.
Indeed, the annotation patterns that were identified
themselves suggest potential follow-up experiments to
examine the mechanisms and impact of the interactions
identified in the protein array screens.

We are currently working to create a web-based software
tool to automate this method of analysis. In principle, this
method does not only apply to protein array results but
could also be used to analyse any set of genes or proteins.
Preliminary work to analyse two protein datasets from
higher organisms shows, not unexpectedly, that fewer of
the proteins in the dataset have GO annotation than was
found to be the case with the yeast datasets but that clus-
ters maintain moderate to high si

C values (0.18–0.41)
(data not shown). While the annotation of proteins from
higher organisms is not as comprehensive as the annota-
tion of yeast proteins, we have found that analysis of the
existing publicly available GO annotation still produces
functional themes that suggest testable hypotheses. As
annotation of higher organisms grows, the application of
this analytic approach will improve.

Conclusion
The growing field of high-throughput experimentation is
creating a rising need for tools that facilitate the integrated
analysis of sets of molecules. Clustering can be used to
identify annotation patterns within a set of proteins, such
as is generated by protein array screens. Visual display of
Page 11 of 13
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these annotation patterns can suggest new testable
hypotheses as the basis for further analysis.

Methods
Collection of sample data sets
The results of two yeast proteome array screens were
selected for analysis. The set of 39 proteins that bind to
either Small Molecule Inhibitor of Rapamycin (SMIR)3 or
SMIR4 was obtained from Supplementary Table 3 of
Huang et al [19] and is hereafter referred to as the Sch-
reiber data set. The set of 99 proteins that bind to phos-
phatidylinositol-and phosphatidylcholine-containing
liposomes but not liposomes containing only phosphati-
dylcholine was obtained from Supplementary Table 1 of
Zhu et al [18] and is hereafter referred to as the Snyder
data set. A Perl program taking systematic open reading
frame (ORF) names for each protein in the data sets as
input was used to obtain standard names and Entrez Gene
identifiers (Gene IDs) from the file gene_info.gz [33].
Thus for each data set, a list of systematic ORF names,
standard names and corresponding Gene IDs was gener-
ated. All proteins in the Schreiber data set are classified by
SGD as having Feature Type of verified or uncharacterized.
Most proteins in the Snyder data set are classified by SGD
as having Feature Type of verified or uncharacterized
except two pseudogenes (YCL075W and FDH2/
YPL275W), one transposable element (YNL054W-A) and
one silenced gene (HMRA1/YCR097W). These proteins
were included in the cluster analysis but not the biological
analysis.

Distance measure by graph similarity
The distance between each pair of proteins within each
data set was determined using GO version 1.10.0 in Bio-
conductor [16,17]. Gene IDs were used to retrieve three
induced GO graphs for each protein, one for each branch
of the Gene Ontology (GO), molecular function (MF),
biological process (BP) and cellular component (CC).
Note that proteins with unknown GO annotations
(GO:0000004 biological process unknown, GO:0005554
molecular function unknown and GO:0008372 cellular
component unknown) and GO annotations assigned
using the evidence code Inferred from Electronic Annota-
tion were excluded. The similarity between each pair of
proteins within each branch of GO was then determined
using the simUI method in Bioconductor. This measure of
similarity between two proteins falls between 0 and 1,
where 1 represents proteins that have identical GO anno-
tation. Note that three similarity matrices corresponding
to the three branches of the GO were generated for each of
the Schreiber and Snyder data sets.

Clustering and visualization
Because the selected clustering method, Partitioning
Around Medoids (PAM), requires input of dissimilarity

between objects, the similarity matrices were converted to
dissimilarity matrices using the equation dissimilarity = 1-
similarity. The method silcheck in Bioconductor was used
to select the number of clusters, k, based on the maximum
average silhouette. Bioconductor was also used to perform
PAM clustering and generate silhouette plots. Induced GO
graphs were created manually.
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