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Abstract
Background: The regulatory map of a genome consists of the binding sites for proteins that
determine the transcription of nearby genes. An initial regulatory map for S. cerevisiae was recently
published using six motif discovery programs to analyze genome-wide chromatin
immunoprecipitation data for 203 transcription factors. The programs were used to identify
sequence motifs that were likely to correspond to the DNA-binding specificity of the
immunoprecipitated proteins. We report improved versions of two conservation-based motif
discovery algorithms, PhyloCon and Converge. Using these programs, we create a refined
regulatory map for S. cerevisiae by reanalyzing the same chromatin immunoprecipitation data.

Results: Applying the same conservative criteria that were applied in the original study, we find
that PhyloCon and Converge each separately discover more known specificities than the
combination of all six programs in the previous study. Combining the results of PhyloCon and
Converge, we discover significant sequence motifs for 36 transcription factors that were previously
missed. The new set of motifs identifies 636 more regulatory interactions than the previous one.
The new network contains 28% more regulatory interactions among transcription factors,
evidence of greater cross-talk between regulators.

Conclusion: Combining two complementary computational strategies for conservation-based
motif discovery improves the ability to identify the specificity of transcriptional regulators from
genome-wide chromatin immunoprecipitation data. The increased sensitivity of these methods
significantly expands the map of yeast regulatory sites without the need to alter any of the
thresholds for statistical significance. The new map of regulatory sites reveals a more elaborate and
complex view of the yeast genetic regulatory network than was observed previously.
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Background
Transcription factors are proteins that regulate an organ-
ism's genetic program by binding to specific sites in the
genome and modifying the expression of nearby genes.
Mapping these sites is an important step in understanding
transcriptional regulation, and can be significantly facili-
tated by integrating multiple data sources such as
sequence, gene annotations, and phylogenetic conserva-
tion [1,2]. A previously published study [3] reported an
initial regulatory map for Saccharomyces cerevisiae by ana-
lyzing genome-wide chromatin immunoprecipitation
(ChIP) data for 203 proteins. Harbison and co-workers
used motif discovery programs in an effort to detect statis-
tically over-represented sequence patterns (motifs) in the
bound regions that were likely to correspond to the bind-
ing specificity of the immunoprecipitated proteins. Apply-
ing six different algorithms, they identified thousands of
motifs. After extensive filtering and statistical testing, they
reported high-confidence results for sixty-five proteins.
They used these high-confidence motifs to identify sites
that were in regions bound by the corresponding protein
and that were conserved across at least 3 yeast species. We
wished to expand and refine the yeast regulatory map by
using a more sophisticated incorporation of phylogenetic
conservation information.

Recently, many authors have reported algorithms for
motif discovery that use evolutionary conservation. Kellis
et al. presented a computational method involving the
genome-wide discovery of a catalogue of conserved
motifs, which they annotated by searching for overrepre-
sented functional categories among the genes with each
motif [4]. Several programs use an expectation maximiza-
tion-based search over a probability model of DNA
sequence to find conserved motifs. EMnEM [5] and
PhyME [6] both incorporate probabilistic evolutionary
models into EM-based motif searches. Several other
approaches to using conservation information in motif
discovery use Gibbs sampling to sample a probability
space and search for motifs. CompareProspector is a
Gibbs sampling algorithm that uses a pre-computed score
to measure the conservation level across windows in
sequence alignments, and then biases the motif search to
regions that are highly conserved [7]. PhyloGibbs is
another conservation-based Gibbs sampling algorithm
that leverages conservation by assuming the motif must
be present in all species in a conserved region [8].
Recently, another Gibbs sampler was developed to incor-
porate phylogenetic data by employing two substitution
matrices for motif instances and background sites, with
the background model estimated from orthologous
sequence alignments and the motif model assuming half
the branch length of the background model [9]. All these
algorithms have been demonstrated, in certain contexts,

to outperform similar methods that don't take advantage
of conservation information.

Tompa and co-workers [10], who recently assessed a
number of motif discovery programs, demonstrated that
these algorithms perform much better on synthetic data
than on real data. Their results highlight the importance
of evaluating algorithms using experimental datasets such
as those of Harbison et al. Using motif discovery programs
to identify the specificity of proteins from experimental
data is particularly challenging because there are many
statistically significant motifs in such data, and no guaran-
tee that a motif that corresponds to a factor's specificity
will be highly ranked, or even discovered. Harbison et al.,
who used six separate motif discovery programs, observed
that each motif discovery program found the correct motif
for at least one protein that was not found by the other
methods. However, no single program demonstrated a
clear superiority (D. Benjamin Gordon, personal commu-
nication). Their analysis provides a useful benchmark for
evaluating motif discovery approaches on experimental
data.

In this study, we report two improved algorithms for con-
servation-based motif discovery, Converge and Phylo-
Con, and we use these methods to reanalyze the data of
Harbison et al. Using statistical tests identical to the ones
used by Harbison et al, we find that Converge and Phylo-
Con each identify more correct motifs than were found
using the combined results of the six programs employed
in the earlier study. The motifs discovered by Converge
and PhyloCon are often complementary. Combining
these motifs, we were able to significantly expand the map
of yeast regulatory sites without the need to alter any of
the thresholds for statistical significance. The new map
reveals a more elaborate and complex view of the yeast
genetic regulatory network than was observed previously.
The updated map can be viewed and downloaded from
the authors' website [11].

Results
Algorithmic overview and improvements
PhyloCon and Converge are both designed to find evolu-
tionarily conserved motifs among a set of genes that are
believed to be co-regulated. These two programs use dif-
ferent inputs, search algorithms and scoring statistics.
PhyloCon [13] begins with unaligned sequences and gen-
erates many local alignments from each orthologous
group. The local alignments are assembled using a greedy
algorithm to identify patterns that are both conserved in
orthologous genes and present in many of the co-regu-
lated promoters. By contrast, Converge [3] searches over
pre-computed, static alignments. Converge is based on an
expectation-maximization (EM) algorithm [14,15] that
has been modified to include conservation in the joint
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probability model. Converge motifs are scored by com-
paring the frequency of matching sequences in the bound
and not-bound genes using a hypergeometric distribu-
tion. The previously published version of PhyloCon
scores sequences using the ALLR statistic [13], which
measures the relative likelihood that a sequence would
emerge from the motif model and the background
sequence model (see Methods).

We made several modifications to the previously pub-
lished PhyloCon and Converge algorithms for this study
(see Methods). The most important modification for Con-
verge was the introduction of a phylogenetic model that
allows for different evolutionary distances between each
species and the primary genome (S. cerevisiae). We modi-
fied the core EM algorithm to dynamically adjust these
distances during motif discovery. Thus, Converge simulta-
neously discovers motifs and their evolutionary history,
and it is able to detect cases where the sets of genes bound
by a particular regulator have diverged in the species being

studied. To improve the performance of PhyloCon, we
introduced a new scoring statistic, the Total Log Likeli-
hood Ratio (TOLLR). This score limits the overfitting of
PhyloCon motifs to datasets that are expected to contain
a significant number of false positives.

Motif discovery performance
PhyloCon and Converge each showed significantly better
performance than the combined results from the six pro-
grams used in Harbison et al. [3]. Using the same
approach as that study, we scored the motifs produced by
each program using empirical p-values. The top-ranked
motif from each program was accepted as the predicted
specificity for the corresponding protein if it had a p-value
< 0.001. We assessed the performance of PhyloCon and
Converge using a set of 87 yeast transcription factors for
which the specificity has been reported in the literature
(see Additional file 1). In Harbison et al., the predicted
specificities derived from a combination of six programs
matched the known specificities for 44 of the 87 proteins

Performance of PhyloCon, Converge, and the combined motif set on data for factors of known specificityFigure 1
Performance of PhyloCon, Converge, and the combined motif set on data for factors of known specificity. Phy-
loCon and Converge both recover more true positives than the suite of 6 programs employed in Harbison et al. Combining 
the results of PhyloCon and Converge significantly increases the number of true positives recovered, and eliminates false neg-
atives, without a large adverse effect on the false positive rate. For definitions of the scoring criteria, see the Methods section.
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(51%). By contrast, PhyloCon produced 50 true positives
(57%) and 9 false positives (10%), and Converge found
51 true positives (59%) and 14 false positives (16%). Phy-
loCon and Converge were unable to find statistically sig-
nificant motifs for 28 (32%) and 22 (25%) of these factors
respectively (Figure 1).

Combining results from PhyloCon and Converge allowed
us to expand the set of discovered motifs without signifi-
cantly degrading performance for the factors with known
specificities. The number of true positives increases to 64
(74%), with 9 false positives (10%), 14 true negatives
(16%), and 0 false negatives. (The criteria for merging
PhyloCon and Converge results as well as the criteria for
classifying motifs into these four categories are described
in the Methods section).

Updated catalog of yeast factor specificities
Combining the results from two conservation-based
motif discovery programs allowed us to significantly
increase the number of transcription factors for which we
could predict binding specificities with high-confidence.
Of the 172 factors investigated (all those that bound at
least 4 probes), we discovered statistically significant
motifs (p < 0.001) for 98 factors, 64 of which had experi-

mentally determined specificities reported in the litera-
ture. The combined results of PhyloCon and Converge
discover 33 more motifs than were found by Harbison
and co-workers, who used the same strict selection crite-
ria. Of the 98 motifs, 43 were discovered by both pro-
grams, 22 were found only by PhyloCon, and 33 were
discovered only by Converge. In some of the cases where
no motif was found but the protein had a known specifi-
city, the input sequences contained few regions that
matched that specificity. In other cases, very few probes
had been bound by the protein. The discovered motifs
were augmented with 26 factor specificities from the liter-
ature, to produce a final catalogue of 124 yeast transcrip-
tion factor binding specificities. The complete list of
discovered motifs is provided in Additional file 2, and sev-
eral examples are shown in Figure 2. In some cases, the
new motifs differ substantially from the motifs reported
in Harbison et al. For example the specificity discovered
previously for Pho2 was SGTGCGsygyG. Our analysis pre-
dicts a specificity of AYTAAr. The new motif is more con-
sistent with the results of gel shift and DNAse footprint
analysis [16] and with the fact that that Pho2 encodes a
homeodomain protein [17], a class of transcription fac-
tors that tend to bind to AT-rich sequences. The factor
Dal82 is now predicted to have a specificity of AAaNwT-

Selected Factor Specificities in the New Yeast Regulatory MapFigure 2
Selected Factor Specificities in the New Yeast Regulatory Map.

Factor Harbison
et al.

Previous
Literature

Reported
Specificity Program

Cha4 PhyloCon

Dal82 GATAAG GAAAATTGCGTT Converge

Gcr2 PhyloCon

Hac1 kGmCAGCGTGTC kGmCAGCGTGTC Converge

Hap1 sCGnTAtnnCC CCGNTANNNCCG Converge

Msn2 mAGGGGsgg MAGGGG PhyloCon

Pho2 SGTGCGsygyG ATTA Converge

Rds1 kCGGCCGa Converge

Yap6 TTACTAA TTACTAA PhyloCon

YDR520C Both

YML081W Converge
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gyG, consistent with previously reported experimental
evidence [18]. The motif reported in Harbison et al.
(GATAAG) is likely to represent the binding specificities
of Gln3, Gat1, and Dal80, which are known to co-regulate
allophanate/oxalurate-dependent genes along with Dal82
[19]. No motif was previously reported for the zinc cluster
protein YDR520C. The motif that we discover contains a
palindromic CGG repeat, consistent with the expected
specificity for a zinc cluster protein [20-22].

An updated regulatory map for yeast
Using the new catalogue of yeast specificities, we are able
to build a more complete and comprehensive regulatory
map for Saccharomyces cerevisiae. We scanned the S. cerevi-
siae genome for putative regulatory interactions using our
updated motif catalogue and the same criteria used by
Harbison et al. As in that study, we restrict our analysis to
the highest confidence sites, defined as those containing
conserved motif matches that were bound by the corre-
sponding factor at a p-value < 0.001. The new map con-
tains a total of 4229 conserved and bound motif sites
across 2022 genes, compared to the 3353 sites across 1883

genes in Harbison et al. The new and the old sets of motifs
have similar information content (mean information
content of 11.77 bits and information content per base of
1.24 bits in the new code, compared to 11.10 bits and
1.25 bits in the old code), suggesting that this increase is
not due to an overall loosening of the specificity esti-
mates. Figure 3 and Figure 4 show the change in the
number of bound genes by factor between the new and
old maps. The net gain in the number of putative regula-
tory interactions between transcription factors and pro-
teins is 636, with 133 of these accounted for by new
binding specificity estimates for 18 factors that had no
previously reported motif.

The improved motifs reveal regulatory interactions for a
number of transcription factors that are consistent with
their known functions. For example, the refined motif for
Msn2 detects regulatory sites in 39 genes that were not
detected in the previous study. Msn2 is known to function
in the transcriptional response to stress [23]. Of the newly
identified targets, there is a significant (p < 0.01) over-rep-
resentation of genes with the GO annotation "stress-

Changes in the number of putative regulatory interactions for factors common to the old and new regulatory codesFigure 3
Changes in the number of putative regulatory interactions for factors common to the old and new regulatory 
codes. For each modified motif, the number of regulatory interactions added and lost relative to the previously reported map 
is shown. Our analysis produced modified factor binding specificities for 85 factors, resulting in a net gain of 398 putatively reg-
ulated genes.
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response". Similarly, the refined Xbp1 motif results in a
gain of 18 regulatory interactions. The new targets are
enriched at a p-value < 0.02 for genes with the GO anno-
tation "morphogenesis", consistent with a previously
reported regulatory role for this transcription factor [24].

The revised map also provides new insights into the regu-
latory roles of several transcription factors. For example,
the revised motif for Hap1 reveals that this transcription
factor has an extensive role in regulating synthesis of
ergosterol, a fungal-specific pathway that is a target for
anti-fungal drugs. The previous map revealed regulatory
interactions of Hap1 with genes for the ergosterol biosyn-
thetic enzymes Erg5, Erg9 and Erg11. In the new map, we
find interactions with genes for six additional enzymes in
this pathway: Erg2, Erg8, Erg10, Erg25, Faa1, and Hmg1.
In addition, the new map details an expanded role for
Hap1 in regulating expression of components of the elec-
tron transport chain. Regulatory interactions with genes
for two components of the cytochrome c oxidase com-
plex, Cox7 and Cox8, were added to the three already
present (Cox4, Cox6, and Cox13). A regulatory interac-
tion with the gene for Qcr6, a component of ubiquinol
cytochrome c reductase, was added to the previously
reported interaction with the gene for Cor2, also a mem-
ber of this complex. Finally, a Hap1 regulatory interaction

with cytochrome c isoform 2, Cyc7, was added to previ-
ously discovered interactions with genes for three other
cytochromes, Cyc1, Cyb2, and Cyt1, in the old regulatory
code.

Network analysis
We examined the network of regulatory interactions
between transcription factors in order to understand the
system-level implications of our improved map. The pre-
viously reported regulatory code and the revised code
were used to generate interaction networks for all the yeast
transcription factors (Figure 5). The new map results in a
striking increase in the complexity of the yeast regulatory
network. Thirty-nine new interactions are reported in the
network, with six interactions lost from the previous ver-
sion. We searched this network for occurrences of six reg-
ulatory network motifs: autoregulation, feed-forward
regulation, multi-component loops, single-input, multi-
input, and regulatory chains, as described in [25]. Table 1
lists the number of each regulatory motif in the new and
old networks. There is an increase in the number of all six
regulatory motif types, with a particularly striking increase
in the number of regulatory chain motifs, owing to the
motif's combinatorial dependence on the total number of
interactions in the network. The overall picture that
emerges from this analysis is of a more complex interplay

Regulatory interactions added through the addition of new factor specificity estimatesFigure 4
Regulatory interactions added through the addition of new factor specificity estimates. A total of 200 genes were 
identified as being putatively regulated by factors with newly reported motifs.
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of transcription factor influences in yeast regulatory net-
works than could be deduced from the previously
reported regulatory code.

The network based on the new map reveals several cases
of feedback regulation that were not present in the previ-
ous version. The regulators Arg81, Rox1, Sut1, and Zap1
are all found to have an autoregulatory interaction in the
new map. Of these, Rox1 [26] and Zap1 [12] have been
previously shown to regulate their own expression. The
map also contains evidence of enhanced roles for a
number of factors in the yeast transcriptional regulatory
network. With its updated specificity, Yap6 now appears
to act as a regulatory hub, displaying five new interactions
with transcription factors, three of which (Phd1, Sok2,
and Hms2) are involved in pseudohyphal differentiation
[27-29]. The stress-induced factor Xbp1, previously impli-
cated in cell-cycle function [30], now displays interactions
with the pseudohyphal determinant Phd1, and Smp1, a
factor required for cell viability in the stationary phase
[31].

Complementarity of motif discovery programs
PhyloCon and Converge each find motifs that are missed
by the other program. This complementarity arises from
differences between the programs in (1) optimization cri-
teria and (2) underlying evolutionary assumptions.

Optimization criteria
The programs search for motifs that maximize different
metrics: the enrichment and ALLR scores (see Methods).
As a result, motifs judged significant by one program can
be ranked poorly by the other. In 11 of the 15 cases where
the correct motif was discovered solely by PhyloCon,
Converge found the same motif, but with a poor enrich-
ment score. Similarly, of the 15 correct motifs reported
only by Converge, seven were also discovered by Phylo-
Con but only with ALLR scores at significance level P <
0.01, and five more were discovered at significance level P
< 0.02.

Evolutionary assumptions
PhyloCon dynamically realigns orthologous sequences,
making no assumptions regarding the relative location of
binding sites. However, it assumes that the sequences
from each species should contribute equally to motif dis-

Yeast transcriptional regulatory networkFigure 5
Yeast transcriptional regulatory network. Nodes correspond to transcription factors and an edge from one factor to 
another indicates that the first factor regulates the second. Red nodes correspond to factors without a previously reported 
specificity. Edges are colored red for interactions unique to the new map, grey for interactions common to the old and new 
maps, and green for interactions unique to the old map. There are 39 new interactions gained and 6 interactions lost relative to 
the previous map.
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covery. Converge, by contrast, assumes that the position
of binding sites will be aligned in the orthologous
sequences, but it makes no assumptions about the impor-
tance of the sequences from each species.

The consequences of these differing assumptions can be
seen by examining the results for Xbp1 and Rds1. The
Xbp1 motif is present in 53% of the S. bayanus sequences
orthologous to the bound S. cerevisiae probes, but only
27% of the S. cerevisiae motif matches align with a match
in S. bayanus. By dynamically realigning the orthologous
sequences, PhyloCon discovers the Xbp1 motif, while
Converge is unable to learn the correct specificity. In the
case of Rds1, the situation is reversed: Converge finds the
motif, while PhyloCon does not. In this case, Converge
determines that there is a very low probability that a
match to the Rds1 motif will occur in S. bayanus in posi-
tions that contain the motif in S. cerevisiae. The Converge
parameter θk, which measures the genome-wide probabil-
ity of observing a motif in aligned genome k when it is
present in the primary genome, falls to 0.058 (see Meth-
ods). As a result, the S. bayanus sequences have almost no
influence on the discovered motif. It is worth noting that
the Rds1 protein from S. bayanus is only 32% identical to
its S. cerevisiae ortholog, compared to approximately 72%
for other transcription factors in these two species. These
data suggest that in S. bayanus Rds1 does not regulate the
orthologs of the genes that are bound by Rds1 in S. cerevi-
siae, and that both the protein and its former binding sites
have evolved.

Discussion
In this study we have demonstrated, on a large scale and
with real data, how the use of phylogenetic conservation
information can improve the ability to learn transcription
factor binding specificities and paint a more detailed pic-
ture of gene regulation in yeast. In Harbison et al., the
authors presented a first draft of the regulatory code for a
eukaryotic organism and speculated that future revisions
might arise out of the collection and analysis of new
experimental data, or through the use of new computa-
tional algorithms that integrate different data sources. In
this work we have presented a revised regulatory code by

combining the results of two complementary algorithms
that integrate sequence and conservation data to discover
sequence motifs. The resulting map provides a broader
picture of regulatory programs in yeast.

Using Motif Discovery algorithms to discover the specifi-
city of transcription factors from experimental data is a
challenging problem. The data of Harbison et al. are par-
ticularly useful for evaluating how motif discovery algo-
rithms perform for this purpose. Aside from the original
study and our current results, we are aware of only one
other paper that has attempted to identify binding specif-
icities from these data. Li and Wong reported a conserva-
tion-based motif discovery program, which they refer to as
a tree sampler, that they applied to many of the same data-
sets that are all included in our analysis [32]. We com-
pared our results to the published results of Li and Wong,
which we downloaded directly from their publication (see
Additional file 3). Applying the same criteria to the results
of all three programs, we find that tree sampler identified
correct motifs in 39 of the 53 (74%) cases reported, while
PhyloCon identified 44 of these motifs (83%), and Con-
verge correctly identified 43 (81%). We note that in their
paper Li and Wong report worse results for PhyloCon than
we obtained. The differences may be due to the fact that
they used an earlier version of PhyloCon or ran it with
non-optimal parameters.

A sound and principled use of conservation information
allowed both PhyloCon and Converge to perform well on
these data. Both programs outperformed the tree sampler
and they each recovered more known factor binding spe-
cificities than a suite of six other programs combined.
PhyloCon and Converge use complementary approaches
to incorporate phylogenetic conservation information
into motif discovery. Converge reduces its search space by
assuming that alignments are high quality and static,
whereas PhyloCon makes no such assumption and
dynamically aligns orthologous sequences. Converge
weights each genome differently and learns these weight-
ings during motif discovery, whereas PhyloCon weights
all orthologous sequences equally. Finally, PhyloCon
searches for motifs by optimizing the ALLR score, whereas
Converge selects EM starting points, and evaluates the
resulting motifs using a hypergeometric enrichment score.
Because of these differences, each program finds some
motifs that are missed by the other one. Combining the
results of these programs leads to a significant elaboration
of the yeast regulatory code.

There is increasing interest in using motif discovery algo-
rithms to discover the binding specificity of proteins from
high-throughput data. However, it is important to recog-
nize the limitations of these methods, which rely largely
on statistical criteria. For example, some proteins are

Table 1: Transcription factor network motifs in the old and new 
regulatory codes

Regulatory motif type This study Harbison et al.

Autoregulation 16 12
Multi-component loop 15 5
Feed-forward loop 71 55
Single-input motif 91 72
Multi-input motif 481 392
Regulatory chain 1452 168
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known to bind DNA indirectly through interactions with
other proteins. Gal80 is an inhibitor of Gal4 that binds
the Gal4 protein and lacks a DNA-binding domain. The
ChIP-chip data reveal that they have many common tar-
gets. Our motif discovery algorithms identify the known
Gal4 motif as the specificity of both proteins. Given the
known physical interactions of Gal4 and Gal80, these
data imply that Gal80 is directed to its targets indirectly
through its association with Gal4. Similarly, Gcr2, which
is known to act together with Gcr1 to regulate glycolysis
genes [33], has a newly reported specificity that matches
the known specificity of Gcr1, suggesting that Gcr2 may
be recruited to the DNA through interactions with Gcr1.
Additional sources of biological data will need to be
incorporated into algorithms to determine whether a
motif represents the specificity of a protein or an interact-
ing factor.

Conclusion
We have demonstrated a practical approach to analyzing
experimental data by combining two complementary
motif discovery programs that use phylogenetic conserva-
tion. We anticipate that progress in mapping the architec-
ture of regulatory programs in eukaryotes will arise from a
more thorough understanding of the relative merits of
various approaches to motif discovery, as well as algorith-
mic developments in integrating various data sources.
Algorithms that make use of phylogenetic conservation,
factor homology, positional information, and other prior
information sources will become more and more impor-
tant as we attempt to apply motif discovery methods to
higher eukaryotes. However, since no algorithmic
approach to motif discovery has demonstrated a clear
superiority across all applications, it will become equally
important to integrate various motif discovery methods in
a more intelligent manner [34]. Ultimately, unraveling
the regulatory code of higher eukaryotes may be greatly
facilitated by a 'mixture of experts' approach to motif dis-
covery that uses the output of multiple algorithms, each
intelligently integrating various data sources in unique
ways, to generate consensus binding motifs for a factor of
interest.

Methods
Motif discovery
The Converge and PhyloCon programs were applied sep-
arately to the chromatin immunoprecipitation data
described in [3]. There are a total of 308 experiments for
172 factors in which at least four probes are bound with
p-value cutoff of 0.001. Alignments of these probe
sequences with three additional yeast species, S. para-
doxus, S. mikatae, and S. bayanus were provided as input to
Converge and the orthologous sequences from all four
species were provided to PhyloCon.

Motif discovery with converge
Converge uses phylogenetic conservation information
from high quality sequence alignments to improve the
performance of motif discovery. The input to the algo-
rithm consists of a series of sequences believed to share a
common motif, which we will refer to as probe sequences,
and any available pair-wise alignments of these probes to
orthologous sequences from related species. In the under-
lying model for Converge, the probability that a motif
occurs at a particular position in a probe depends not only
on the sequence of the probe, but also on the sequence of
the corresponding positions in all of the available aligned
orthologs, as explained below. Motifs are discovered using
the Expectation-Maximization algorithm. We based our
implementation of EM in large part on the ZOOPS model
of Bailey and Elkan [14,15], but used a probability model
that incorporates data from the orthologous sequences.
An early version of this program was used in [3]. A com-
plete description of the algorithm is provided in the Addi-
tional file 4.

Selection of seeds for the converge algorithm
Since the EM algorithm performs a local optimization, the
motifs that are discovered depend on the initialization
conditions. We generated initialization seeds for all data
sets at motif widths of 6, 8, 10, 15, and 20 base pairs. For
motif widths less than or equal to 10, we selected seeds by
first identifying the top 400 n-mers in the data set. We cal-
culated a rough conservation score for each n-mer by
counting the total number of bases where the sequence
was conserved across all intergenic regions in at least 50%
of the aligned sensu stricto yeast species. We associated a p-
value with these scores by fitting the result to a binomial
distribution, or when the number of occurrences was suf-
ficiently large, to a normal approximation to the binomial
distribution. We discarded all n-mers with a conservation
p-value greater than 0.1 from consideration as seeds. The
remaining n-mers were scored using the hypergeometric
distribution to give an enrichment p-value associated with
observing the same, or greater, number of n-mer occur-
rences in a randomly selected, equally sized, sample of
probe sequences in S. cerevisiae. We selected the 20 most
statistically enriched conserved n-mers as seeds.

For motif widths greater than 10, we used a gapped model
where an n-mer consisted of two flanking regions of spec-
ified sequence, with the central region allowed to take on
any sequence. This approach was intended to compensate
for the paucity of very large n-mers with multiple occur-
rences in the data sets. Also, many transcription factors are
known to bind specific sequences separated by non-spe-
cific regions of DNA and it was hoped that this seeding
approach would help in the discovery of such motifs. Each
flanking region was set to a size equal to one third of the
motif width, rounded down. The top 400 gapped n-mers
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were identified and subjected to the same conservation
criterion described above. We scored these gapped n-mers
for enrichment and the top 20 were selected as seeds, with
the gapped region initialized to background base frequen-
cies for use in EM.

Expectation maximization
Converge treats a given pair-wise sequence alignment as
arising from a mixture of probability models. The primary
sequence is modelled as a mixture of a 4th order Markov
background and a position-specific scoring matrix (PSSM)
representation of the motif region. A given sequence is
assumed to contain either one or zero motifs. The
sequences aligned to the primary sequence are con-
strained such that they may contain a motif only when a
motif is also present in the primary genome. Aligned
genomes are weighted using a parameter θ, which is the
probability of observing a motif in the aligned genome
when a motif is present in the primary genome. This
parameter, which is shared across all instances of a motif
in a particular genome, is updated iteratively over the
course of the algorithm.

Regions in the sequence alignments that contain gaps in
the primary genome are expunged, since only motifs in
the primary genome are of interest. Sequence regions in
the motif window of supporting genomes are modelled as
a mixture of two PSSMs: one that incorporates gaps and
one that doesn't. This allows regions without gaps in the
aligned sequences to be weighted differently than gapped
regions during the motif search and allows Converge to
take advantage of the information present in gaps in the
alignments. The joint probability model describing the
sequence alignments is:

log P(X,G,Z | Ψ) = log P(X | Z,G,Ψ) + log P(G | Ψ) + log
P(Z1...k | Z0,Ψ) + log P(Z0 | Ψ)

The data is modelled as a joint density over observed data
(X and G) and hidden data (Z). X represents the
sequences, G is a vector of binary variables that indicate
whether a gap is observed in the motif window in the
aligned genomes, and Z is a second vector of binary vari-
ables that indicate motif locations. The motif PSSM,
genome weightings, and gapped region weightings are
subsumed in the parameter vector Ψ. A motif is assumed
to only occur in the aligned sequences when it is present
at the same position in the primary genome. Therefore the
motif position indicator variables for the aligned
sequences, Z1...k, are dependent on the value of the indica-
tor variable in the primary genome, Z0. All gaps in the pri-
mary genome are removed in a pre-processing step.

Converge motif discovery implementation details
For each seed sequence in a data set, we ran the Converge
algorithm until the mean squared difference between
motifs in subsequent iterations was less than 10-3 for each
position in the PSSM, and the value of each θ parameter
changed by less than 10-3. In the M-step, we add 0.01
pseudo counts at each position in the PSSM. We used an
estimate of the prior probability of motif occurrence in a
given probe of 0.2 and set its learning rate to 0.5. The θ
parameter was initialized to a simple measure of phyloge-
netic distance between the aligned species and Saccharo-
myces cerevisiae: the mean number of matches per position
relative to S. cerevisiae in all probe alignments. This gave θ
initialization values of 1.00, 0.80, 0.63, and 0.58 for S.
cerevisiae, S. paradoxus, S. mikatae and S. bayanus, respec-
tively. We estimated background sequence probabilities
using a 4th order Markov model calculated separately for
each species from its set of intergenic regions. The imple-
mentation of Converge was written in Python, with the
computationally intensive EM subroutines written in
C++.

Motif discovery with PhyloCon
"PhyloCon" stands for Phylogenetic Consensus. This
algorithm is specifically designed for regulatory motif dis-
covery when both phylogenetic information and gene co-
regulation information are available. Here we briefly
describe the original algorithm [13] and several algorith-
mic improvements we made to accommodate this study.

The input provided to PhyloCon is a collection of pro-
moter sequences from a species, together with ortholo-
gous sequences. For each group of orthologous sequences,
PhyloCon first tries to generate many local, ungapped
multiple sequence alignments by applying the wconsen-
sus algorithm [35]. These alignments, including the opti-
mal one and many sub-optimal ones, are converted to
profiles that represent conserved regions in the promot-
ers. PhyloCon then compares profiles generated from dif-
ferent orthologous groups and identifies ungapped high
scoring local alignments between any two profiles. The
alignment uses a Smith/Waterman-style dynamic pro-
gramming algorithm, and the scoring function for align-
ing two positions from two profiles is the "average log
likelihood ratio" (ALLR) statistic, described below. Two
promoters bound by the same transcription factor, often
have their binding sites optimally aligned in high scoring
pairs (HSPs). Once a HSP is determined, the parental pro-
files are merged, and a new profile is created according to
the HSP. Such newly generated profiles represent the
shared portion between two orthologous groups, presum-
ably containing the shared motif. PhyloCon then com-
pares these profiles to other new profiles that contain
non-overlapping orthologous groups, as well as to pro-
files that represent the initial conserved alignments of sin-
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gle orthologous group. HSPs between any two
comparable profiles are found and new profiles are gener-
ated. PhyloCon continues profile comparison cycles until
no new profile can be created from existing profiles. By
using the ALLR statistic, PhyloCon is often able to pre-
cisely locate the boundaries of common sections between
two profiles. Therefore, unlike most other motif finders,
PhyloCon does not require the length of the motif a priori.

The ALLR statistic
The ALLR is a recently developed, powerful statistic for
hypothesis testing [13]. Given two profiles, it compares
the joint probability of observing one profile's training
data given the log likelihood ratio of the other profile with
the background distribution. This statistic is, therefore, a
useful one to determine whether profiles derived from
distinct sets of sequences should be merged.

For profile comparison, the ALLR is implemented in the
following manner. A profile is essentially a string of col-
umns, each column being a distribution vector fb = {fA, fC,
fG, fT}, which represents the estimation of base frequen-
cies at this position; nb = {nA, nC, nG, nT} denotes the
observed base count at this position; pb = {pA, pC, pG, pT}
denotes background base frequencies. A pseudo-count
proportional to prior base frequency is added to reduce
small sample biases. Consider two columns i and j from
two independent profiles, which correspondingly have
base frequency vectors fbi or fbj, and observed count vec-
tors nbi or nbj. The ALLR statistic is formulated as:

The ALLR score between two aligned profiles is the sum of
the scores between each pair of aligned positions. The
expected score is negative, which makes this statistic suit-
able for Smith/Waterman alignment methods.

The TOLLR statistic
Datasets coming from experiments are often "corrupted
samples," in which only a subset of the sequences con-
tains the desired motif. For example, chromatin IP exper-
iments may contain both sequences that are directly
bound by the assayed transcription factor and sequences
that are bound by another protein that happens to interact
with the first protein. Motif discovery algorithms must
define the correct motif based on sequences containing
the true positive sites without incorporating sequences
that don't contain true sites.

PhyloCon uses a greedy algorithm to compare profiles
and to build new profiles in steps, or cycles. New profiles

created in the current cycle always contain one more
group of orthologous sequences than those generated
from the previous cycle. We observe that by monitoring
the trends of the best ALLR scores coming from compari-
sons in each cycle, we can discover the subset of sequences
that contain true positives. Let's consider the scenario
where, among a total of N orthologous groups, M groups
share a conserved motif. The motif usually emerges in a
few cycles, after which the best ALLR score from each
cycle, usually corresponding to the shared motif, slowly
decreases as weaker matching profiles are compared and
incorporated. At the end of cycle M-1, the best ALLR score
remains high although is lower than the previous cycle, as
the resulting profile likely contains all true positives.
However, in the next cycle the best ALLR score drops sig-
nificantly because at least one false positive is forced into
the comparison. To pinpoint this boundary, we intro-
duced a related statistic called TOLLR (Total Log Likeli-
hood Ratio), which is defined as the product of the ALLR
statistic and the total number of sites from all genomes
and all orthologous groups that constitute the motif. Fol-
lowing the trend of best TOLLR scores in each cycle we
observed that, unlike the ALLR's continuously decreasing
behavior, the best TOLLR score increases first, often peak-
ing at a later cycle, and then changes only slightly. The rea-
son is that when a profile corresponding to a true motif
emerges, usually the true positive sites/profiles that fit the
model described by this profile will be recruited for creat-
ing a new profile, therefore the total log likelihood ratio
increases as more true positives are brought into the
model from the entire search space. Once there are no
more true positives left and a false positive is forced into
the model, the total log likelihood ratio drops. Therefore,
the peak TOLLR usually indicates the identification of the
best overall motif.

PhyloCon motif discovery implementation details
The PhyloCon algorithm was implemented as a C pro-
gram. All analysis, including those using the real data and
those using the randomized control data, was done using
PhyloCon-v3b, with default parameter settings, except for
the parameter s being set to 0.5. This parameter deter-
mines the stringency and length of the initial multiple
sequence alignments within each orthologous group. The
top 50 profiles from each orthologous group were
recorded for subsequent comparison. At each comparison
step, the ALLR statistic was used to rank the most similar
profile pairs and determine if two profiles should be
merged. A new profile was generated whenever two pro-
files were merged, and the TOLLR score was given to the
new profile. The program terminated when no pair of pro-
file comparison gave an ALLR score higher than the
default threshold (5.0). Finally, profiles were reported in
the rank of their TOLLR scores.
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Assessing motif significance
We used the approach of Harbison et al. to empirically
estimate the significance level of the motif generated by
PhyloCon and Converge. The number of promoters
bound by transcription factors in the experiments ranges
from 4 to 176, with an average of 55. From all promoters
in the yeast genome where an orthologous sequence
group could be formed based on sequences of multiple
genomes, we randomly created datasets from 4 to 160
orthologous groups in size. For each sample size, 50 to
100 datasets were generated. Then we applied PhyloCon
and Converge to these randomized datasets and estimated
normal distributions for the motif scores (ALLR, TOLLR,
and hypergeometric enrichment) at each sample size.
After motif discovery on real datasets, motif scores were
compared to the normal distribution of the most closely
matching random sequence sample size. P-values were
determined using z-scores calculated from the mean and
standard deviation of this distribution.

Combination of PhyloCon and converge motifs
The motifs produced by PhyloCon and Converge were
assembled into a common catalogue of factor specificities.
The set of motifs significant at p < 0.001 produced by each
program were compiled and ranked by statistical signifi-
cance. The motifs generated by each program were com-
pared, with matches defined as an average Euclidean
distance between the PSSM columns of less than 0.18.
This empirical threshhold identified reasonable matches
when the sequence logos of the motifs were compared vis-
ually.

In cases where either PhyloCon or Converge generated
two or more instances of the same significant motifs we
chose the one with the lowest p-value. When PhyloCon
and Converge both found the same motif, and it was
determined to be significant by both programs, we aver-
aged the motifs. Averaging was performed, as in Harbison
et al., by identifying the alignment of the motif matrices
with minimum KL divergence (enforcing a minimum
overlap of 6 bases), and then averaging the probabilities
at each position. If there were no significant motifs com-
mon to both programs, the most statistically significant
motif at a level of p < 0.001 was reported. This is the same
strict significance criterion employed by Harbison and co-
workers.

Measurement of error rates
Estimates of false positive, true positive, false negative,
and true negative rates for Converge, PhyloCon, and the
combined set of motifs were calculated using the set of
factors for which a specificity had been previously
reported in the literature (see Additional file 1). A pro-
gram was judged to produce a false positive when its top-
ranked significant motif did not match the known specif-

icity. When a matrix was available for the known specifi-
city, a match was defined as an average Euclidean distance
between the PSSM columns of < 0.18. For the remaining
motifs, a match was determined empirically by assessing
whether the motif PSSM was consistent with reported
binding sites. True positives were defined as top-ranked
statistically significant motifs that matched the known
specificity. A false negative was defined as the case when
the program produced no statistically significant motif,
but the correct specificity was discovered by another pro-
gram (PhyloCon, Converge, or one of the six programs
from [3]). A true negative was defined as the case when the
program produced no significant motif, and no other pro-
gram was able to discover the known specificity.

Regeneration of the yeast regulatory code
The yeast regulatory code was generated using the new cat-
alogue of motifs and the methods described in [3]. For the
purposes of generating the code, any motifs in the cata-
logue disagreeing with known specificities (false posi-
tives) were replaced with the literature motif. Any
previously reported motifs that were not found by Phylo-
Con or Converge were added to the catalogue so that the
regenerated map would be comprehensive. The S. cerevi-
siae genome was scanned for occurrences of the motifs in
the catalogue using the same conservative criteria used by
Harbison et al. A threshold cutoff of 60% of the maximum
possible log-likelihood score for the motif defined a
match. Only sites that were conserved in 3 out of the 4
yeast species, and corresponded to a probe bound by the
factor at p < 0.001, were included in the regulatory code.
We include a site in the map if it contains the factor's
motif, it is conserved across at least 3 out of 4 yeast sensu
stricto species, and it is bound at p < 0.001 in the location
analysis of Harbison et al. A factor is said to have a regula-
tory interaction with a gene if there are one or more
bound instances for that factor in the intergenic region
upstream of a given gene. Other versions of the map that
were generated with looser criteria for binding and/or
conservation are available from the authors' website [11].

Availability and requirements
PhyloCon is implemented as a C program on a Linux
operating system. It is freely available for academic users.
Non-academic users may require a license from Washing-
ton University. Converge is implemented in Python v. 2.2,
with computationally intensive subroutines implemented
in C++, on a Linux operating system. Both programs may
be downloaded from [11].
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