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Abstract
Background: Gender differences in gene expression were estimated in liver samples from 9 males
and 9 females. The study tested 31,110 genes for a gender difference using a design that adjusted
for sources of variation associated with cDNA arrays, normalization, hybridizations and processing
conditions.

Results: The genes were split into 2,800 that were clearly expressed (expressed genes) and 28,310
that had expression levels in the background range (not expressed genes). The distribution of p-
values from the 'not expressed' group was consistent with no gender differences. The distribution
of p-values from the 'expressed' group suggested that 8 % of these genes differed by gender, but
the estimated fold-changes (expression in males / expression in females) were small. The largest
observed fold-change was 1.55. The 95 % confidence bounds on the estimated fold-changes were
less than 1.4 fold for 79.3 %, and few (1.1%) exceed 2-fold.

Conclusion: Observed gender differences in gene expression were small. When selecting genes
with gender differences based upon their p-values, false discovery rates exceed 80 % for any set of
genes, essentially making it impossible to identify any specific genes with a gender difference.

Background
Liver toxicity is the most common adverse event associ-
ated with the introduction of a new drug despite extensive
pre-clinical toxicity testing. The failure to predict this tox-
icity is attributed to differences among species in the
metabolism and disposition of certain chemicals and
drugs. This spawns an interest in in vitro tests that use
human hepatocytes. The scarcity of primary human hepa-
tocytes and the unsuitability of many human cell lines,
which were derived from liver cancer cells, are a serious

limitation for developing such tests. In addition, primary
hepatocytes differentiate quickly in culture, restricting
their use to short term studies [1]. The National Center for
Toxicological Research (NCTR) embarked upon a pro-
gram to develop conditionally immortalized cell lines as
potential in vitro models to evaluate the liver toxicity of
new drugs [2,3]. A further incentive for this approach is
the potential to study mechanisms of liver toxicity from
different genders and/or ethnic populations. As a start and
proof of principle, a study was proposed to develop and

from Second Annual MidSouth Computational Biology and Bioinformatics Society Conference. Bioinformatics: a systems approach
Little Rock, AR, USA, 7–9 October 2004

Published: 15 July 2005

BMC Bioinformatics 2005, 6(Suppl 2):S13 doi:10.1186/1471-2105-6-S2-S13
<supplement> <title> <p>Second Annual MidSouth Computational Biology and Bioinformatics Society Conference. Bioinformatics: a systems approach</p> </title> <editor>William Slikker, Jr and Jonathan D Wren</editor> <note>Proceedings</note> </supplement>
Page 1 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2005, 6(Suppl 2):S13
characterize conditionally immortalized human primary
hepatocyte cell lines from female and male donors.

It is desirable to quantify in some way that an immortal-
ized cell line retains functions characteristic of primary
hepatocytes. Since cDNA arrays can screen thousands of
genes for expression differences, they are attractive as an
evaluation tool. Once some immortalized cell lines are
characterized with respect to primary hepatocytes, cDNA
arrays could monitor the persistence of gender differences
in expression across these immortalized cell lines, thereby
showing retention of some functions without using pri-
mary hepatocytes. Toward these ends, this study scanned
the genome for expression differences in the livers
between 9 males and 9 females.

The use of cDNA arrays to assay for gender difference
encounters two statistical problems that are not simple to
deal with. First, gender comparisons relying upon array
technologies are subject to biological and technical
sources of variation [4]. The experimental design needs to
avoid confounding technical variation within treatments.
This study modified an experimental design, which was
previously employed for two-dye per array hybridizations
[5], to 33P-labeled filter arrays that are stripped and
reused. Second, there is a potential for excessive false pos-
itive rates because of the number of genes evaluated. For
our purposes, a set of genes is needed for which the false
positive rate is acceptably low. The false positive rates
associated with potential sets were evaluated using
recently developed post hoc methods based upon the
empirical distribution of the observed p-values [6,7].

Methods
Human Liver
Segments of human liver were obtained from Dr. Fred
Kadlubar, Division of Molecular Epidemiology, NCTR
(Jefferson, AR) and Dr. Steven Strom, the University of
Pittsburgh (Pittsburgh, PA). This project was approved by
the Research Involving Human Subjects Committee of the
Food and Drug Administration (FDA). Nine pairs, a male
paired with a female, were formed from available subjects.
Pairs were processed concurrently to control variation
from technical sources associated with sample prepara-
tion and measurement, and this was the major reason for
pairing subjects. In forming pairs, we also attempted to
match the age, race, and smoking/drinking habits of sub-
jects as much as possible. However, this matching was not
rigorous. The age of each subject was known (range: 25–
58). For some subjects, information concerning their race
(Caucasian and Hispanic) and their smoking and/or
drinking habits was available although this information
was not complete. In addition, several of these subjects are
known to have died in a hospital where they were admin-

istered drugs in a failed attempt to stabilize their condi-
tion.

RNA Isolation
Total RNA was isolated from each liver sample using TRI-
zol (Life Technologies, Rockville, MD) according to the
manufacturer's recommendations. Purified RNA was then
treated with DNAse to remove residual DNA contamina-
tion. One tenth volume of 10X DNAse buffer (0.4 M Tris-
HCl, pH 7.9; 0.1 M NaCl, 60 mM MgCl2, 1.0 mM CaCl2)
was added to a reaction containing 50 to 100 µg of puri-
fied RNA and one unit RQ1 RNAse-free DNAse (Promega,
Madison, WI). The reaction was then incubated for 15
min at 37°C, extracted once with an equal volume of phe-
nol/chloroform, precipitated with ethanol and finally
resuspended in RNAse-free dH2O. RNA yields were deter-
mined by spectrophotometric analysis. RNA integrity was
confirmed by gel electrophoresis.

Filter Information
The filters used in this experiment were GF200, GF201,
GF203, GF204, GF205 and GF206 (Invitrogen, Carlsbad,
CA). Each filter was spotted with 5,184 expressed
sequence tags (ESTs) representing human genes.

Filter Array Analysis
Pre-wetted filters were prehybridized at 42°C for 2 hr in
0.75 M NaCl, 0.17 M NaPO4 buffer (pH 7.0), 0.15 M
Na4P2O7 • 10 H2O, 5X Denhardt's solution, 2.0% SDS,
100 µg/ml denatured salmon sperm DNA, 50% forma-
mide and 5.0 µg human Cot-1 DNA. Five micrograms of
total RNA were combined with 2.0 µl of 1.0 µg/ml oligo
dT primer (LifeTechnologies) in a total volume of 10.0 µl
and then incubated for 10 min at 70°C. The reaction was
quick-chilled on ice for 2 min. The following components
were added to the oligo dT-primed RNA; 6.0 µl of 5X first
strand buffer (Clontech, Palo Alto, CA), 1.5 µl of 20 mM
dNTPs (dGTP, dTTP, dCTP) (Invitrogen), 1.0 µl of 0.1 M
DTT, 1.5 µl of PowerScript reverse transcriptase (RT)
(Clontech) and 10 µl of α-33P dATP (>3000 Ci/mmol)
(ICN, Irvine, CA). The reaction was incubated for 90 min
at 42°C. Unincorporated nucleotides were removed by
column purification using Bio-spin 6 columns (Biorad,
Hercules, CA). Incorporation of label for all targets ranged
± 20% from the mean. The radiolabeled target was dena-
tured by boiling for 3 min and added to 5 ml of prehy-
bridization solution. The filters were hybridized with the
denatured target for 18–20 hr at 42°C. After hybridiza-
tion, the filters were washed twice in 2X SSC, 1% SDS at
68°C for 30 min and twice in 0.5X SSC, 0.5% SDS at 68°C
for 30 min

Data Imaging
The washed, hybridized filters were sealed in plastic sheet
protectors and exposed on a Molecular Dynamics phos-
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phor-screen (Amersham, Piscataway, NJ) for 72 hr. The
screens were imaged with a Storm Phosphorimager
(Amersham) at a resolution of 50 microns. The median
pixel intensity for each spot was determined using Array-
Vision software (Research Imagine, Ontario, Canada).
Each filter was stripped after imaging as recommended by
the manufacturer. Briefly, boiling 0.5% SDS was poured
into a large glass dish. Hybridized filters were placed in
the hot solution and agitated for one hour without addi-
tional heating. The filters were then imaged for four hr on
a phosphor screen (Amersham Biosciences) at a resolu-
tion of 200 microns. Each filter was stripped five times.

Statistical Design
This study examined gene expression in liver tissue from 9
male subjects and 9 female subjects. Each male was paired
with a female during the assay of gene expression in an
effort to control technical variation associated with arrays,
hybridizations and processing conditions. Each liver sam-
ple was hybridized to two arrays. First, one of the pair was
assigned to an array, and the other sample was assigned to
the other array. After the initial hybridization, both arrays
were stripped and the array assignments of the samples
were swapped for the second hybridization. These four
expression measurements form a 'block'. Intensities were
recorded at development times of 16 and 72 hours yield-
ing 8 observed intensities for a block. The 9 blocks yielded
72 intensities per interrogated spot. With this design, we
estimate the effects of blocks, effects of arrays within
blocks, effects of hybridization (first or second) within
blocks, and effects of subjects within blocks (Table 1). The
pair of samples, which form a block, was processed con-
currently. Thereby, variation associated with conditions
and reagents involved in mRNA extraction, reverse tran-
scription, hybridization, and washing steps are presumed

to be smaller within blocks. This design mimics the simul-
taneous hybridization of two-dye platforms by taking
advantage of the capability for membrane arrays to be
reused. This allows the estimation of an array effect for
each spot, which has been recognized as one of the largest
contributors to intensity variability in the radio-labeled
platform [8].

Analysis of Covariance
An analysis of covariance was fit to the log-intensity data
for each spot. No background correction was applied. This
model estimated the difference between the male subject's
log-intensities and the female subject's log-intensities, i.e.,
this analysis produced an estimate of the sex difference in
every block. These 9 estimates are adjusted for the factors
in the experimental design and they are normalized by the
median. In addition, a similarly adjusted and normalized
average magnitude of the log-intensities was estimated.

Table 1 is a typical analysis of variance table for the statis-
tical model that was fit to each spot. The median of all the
spot intensities that were observed at each array-hybridi-
zation-time was first computed. These medians were
entered as covariates to normalize the log-intensities [9]
and their effect in the model is similar to a global normal-
ization. The least squares estimate of the difference in log-
intensities between the male sample and female sample
was computed for each block. These estimates are normal-
ized by the median and they are also adjusted for the main
effects of time, block, array, and hybridization. An 'aver-
age adjusted log-intensity' was also computed for each
spot. These estimates are the least squares means evalu-
ated at 'median = 10' and the average levels of the categor-
ical factors. This analysis was implemented using 'PROC
GLM' [10].

Table 1: Analysis of covariance model that was applied to the data for an interrogated spot. This table gives the typical degrees of 
freedom and the approximate expected mean squared errors for the sources of variation estimated under the experimental design. 
The reported F-ratios are the median of the 32,112 analyses. This median is the vertical red line in the box of Figure 1. The p-value is 
for the tabled F-ratio with numerator degrees of freedom as tabled and 34 denominator degrees of freedom.

Source df Expected Mean Squared Error F ratio* P value

Median 1 σ2 + Q (Time, Median) 1715.4 <.0001
Time 1 σ2 + Q (Time) 2.62 0.1145

Block 8 4.80 0.0005

Array (Block) 9 4.10 0.0012

Hyb (Block) 9 2.24 0.0437

Subject (Block) 9 1.75 0.1143

Residual 34 σ2

* median value of the ratios, mean squared error / residual MSE, for the 32,110 spots.

σ σ σ σ σ2 2 2 2 24 4 4 8+ + + +Array Hyb Subject Block

σ σ2 24+ Array

σ σ2 24+ Hyb

σ σ2 24+ + ( )Subject Q Sex
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Loess Regression
Within each array type (5352 spots) and block, the esti-
mates of the gender difference were plotted against their
estimate of the average magnitude, e.g., Figure 2.
Observed trends were removed by Loess regression using
'PROC LOESS' [10]. This program allows one to specify
several parameters that govern the degree of smoothing.
Herein, we selected a quadratic equation, a bandwidth of
10% of the data (about 500 observations), and applied
the smoothing algorithm three times to mitigate the influ-
ence of 'outliers'. Other combinations of these smoothing
parameters were also tried, and they did yield differences
in details, which we elaborated in the Discussion.

Selecting Expressed Genes
The adjusted average log-intensity for many of the interro-
gated genes evidenced little if any expression. Genes that
are not expressed cannot be differentially expressed. So, it
is useful to separate "expressed" genes from "not
expressed" genes in analyses. Genes were partitioned into
"expressed" and "not expressed" groups based on their
adjusted average log-intensity. Essentially, high intensities
are unlikely to have resulted from cross hybridization or
other background sources, while low intensities are likely
to represent a substantial amount of cross hybridization.
The empirical distribution of the adjusted average log-
intensity estimates was examined in a normal probability
plot to determine a reasonable cut point. In liver samples
that do not contain any mRNA matching a spotted cDNA
sequence, i.e., a gene that is not expressed, the observed
hybridization log-intensity is a background level arising
from cross hybridization plus measurement error. When a
large number of genes are not expressed in all of the liver
samples, their intensities being of similar magnitude pro-
duce an obvious mode at the low end of the empirical dis-
tribution. Values less than this mode are assumed to arise
entirely from "not expressed" genes. We also assumed that
the distribution is symmetric about this mode and
approximated this component of the empirical distribu-
tion by a normal distribution [11], which can be esti-
mated directly from the normal probability plot. The
genes were partitioned into "expressed" genes and "not
expressed" genes based on a cutoff, which gives a low
probability that larger values arise from the normal distri-
bution. Genes with values greater than the cutoff were
classified as "expressed" and the rest were classified as
"not expressed".

Selecting Genes with Gender Differences in Expression
A few genes were spotted more than once. The study
examined 32,112 spots representing 31,110 genes (dis-
tinct Gene Bank accession numbers). The analysis of cov-
ariance/Loess regression generated 9 smoothed estimates
of log-fold changes for each spot. Estimates from repli-
cated spots were averaged so that there was one estimate

per block and gene. Likewise, replicated estimates of the
adjusted average log-intensities were averaged. This
resulted in 9 estimates of the gender difference and an
estimate of the average magnitude for each interrogated
gene.

The smoothed estimated log-fold changes were averaged

 and their standard error  was computed. Two-

sided p-values and 95 % confidence bounds were calcu-

lated on the assumption that  has a t-distribution

with 8 degrees of freedom. We also computed bootstrap
samples under the assumption of symmetry under the
null hypothesis. Essentially, the bootstrap p-values dupli-
cated those from the t-distribution and they were not
reported.

There were 31,110 tests of the hypothesis that there was
no gender effect. Simply selecting genes where the p-val-
ues are less that 0.05 would lead to an excessive number
of false positives. Our strategy for dealing with the false-
positive problem is elaborated elsewhere [7]. P-values
order genes according to the evidence for the null hypo-
thesis. Genes having gender differences in expression are
more likely to have small p-values and this is seen in a
departure of their empirical distribution from its uniform
expectation under the null [7,12]. Herein, the observed
distribution was assumed to be a mixture distribution
with a proportion of the values having a uniform distribu-
tion, i.e., no gender difference in the expression, and the
remainder having a Beta distribution, i.e., sexes differed.
The mixing proportion and Beta parameters were esti-
mated by maximizing the likelihood of this mixture distri-
bution [6]. The estimated mixture components were used
to estimate false discovery rates for subsets of genes classi-
fied as 'having a gender difference' because their p-value is
less than a specified value [7].

Results
Data Completeness
This study interrogated 32,112 cDNA spots using six types
of arrays, each having 5352 spots. For each spot, the data
are typically 72 observations, i.e. log-intensities from 9
blocks × 2 arrays × 2 hybridizations (hyb) × 2 develop-
ment times. With no missing values, there would be
32,112 × 72 (2,312,064) observations. About 2 % of the
data was discarded because the quality of the image from
the phosphorimager was judged to be unsatisfactory,
48,168 observations: data from 6 of the 16 hr develop-
ment times and 3 of the 72 hr development times. All
block-array-hybridization combinations have data from
at least one development time and all blocks have at least
7 observations out of the 8 that were planned for. Thus,
gender differences were estimable for all blocks and genes.

y( ) Sy( )

y Sy
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Scatter plots of the accepted data suggest that there may be
a few outlier values on some arrays. We did not attempt to
remove 'outliers'. Most occurred in spots with background
levels of expression and any apparent gender differences
in these genes were classified as false positives because the
gene was essentially 'not expressed' in this study. The few
wider confidence bounds seen in Figure 6 may represent a
contribution from an outlier.

Analyses of Covariance
The data for a spot were partitioned into six sources of var-
iation as outlined in Table 1. The residual variation is the
sum of squared differences between the 16 hour and 72
hour intensities after adjusting for 'median' and 'time'.
This source largely measures variation associated with
aligning the data-capture template with the actual cDNA
spots and the process of counting radioactive decays. In
particular, it does not have any variation due to subject
differences, array differences, sample preparation differ-
ences or hybridization differences (Expected mean
squared errors, Table 1). Conceptually, the residual is a
lower bound on measurement errors. The ratio of the
respective mean squared errors with the residual mean
squared error (F-ratio, Table 1) give the relative magni-
tudes of variation as partitioned in this study. Table 1
reports the median of the 32,112 F-ratios for each source
along with the p-value for an F-ratio with the table's
degrees of freedom. Figure 1 summarizes these ratios from
all spots as box plots. The dominant source of variation is
associated with the regression using the median as a cov-
ariate. This is the median of the log-intensities of the
5,352 spots that were interrogated on an array. The log10(F
ratio) is essentially greater than 2 for all spots with a
median value of 3.23. The remaining sources generally
have log10(F ratio)s that exceed 0 but usually do not
exceed 1. Because the EMS for the source, 'Blocks',
includes variance components from arrays, hybridiza-
tions, and subjects, the F-ratios for 'Blocks' should be
larger than those for 'Array(Block)', 'Hyb(Block)', or
'Sex(Block)', and this is the case in Figure 1. The smallest
source of variation is 'Sex(Block)', median log10(F ratio):
0.24. Since the box plot for 'Sex(Block)' is not centered
over 0, this source usually exceeds the residual variance

implying that . However, this

source is not statistically significant for most spots imply-
ing that the variation among subjects and any sex effects
are small for most of the spots. The median F ratio of
100.24 = 1.74 with 9 and 34 degrees of freedom has a p-
value of 0.12.

In the analysis of covariance, least squares estimates of the
logarithm (base 2) of the fold-change in gene expression,
males/females, were computed for each block and spot.
These are hereafter referred to as "estimated log-fold

changes". Likewise, the least squares estimates of the
expected log-intensity evaluated at median = 10 and the
mean levels of the other factors, i.e., block, time, hyb, and
array, were computed for each spot. We refer to these esti-
mates as "adjusted average log-intensities".

Adjustment by Loess regression
The upper panel of Figure 2 plots estimated log-fold
changes from block 5 and array type GF201 (5352 spots)
against the adjusted average log-intensities. This figure is
representative of trends observed over blocks and array
types in the sense that the estimates exhibit systematic
deviations from a horizontal line at 0 and these deviations
tend to affect all spots within a neighborhood. The mag-
nitude and direction of these deviations differ by block
and array type. So, it is unlikely that these deviations rep-
resent gender differences. Such trends were removed by
Loess regression computed within each block and array
type, e.g., lower panel of Figure 2, yielding smoothed esti-
mated log-fold changes.

Selecting expressed genes
The 32,112 spots represent 31,110 unique Genebank
accession numbers (genes). Replicate estimates of
adjusted average log-intensities were averaged to yield a
single estimate for a gene. Figure 3 is a normal probability
plot of the 31,110 adjusted average log-intensities. The
dashed line indicates that the lower values can be approx-
imated by a normal distribution. We assume that this dis-
tribution models the hybridization that occurs when the

σSubject Q Sex2 0+ ( ) >

Box plots summarizing the logarithm of F-ratios computed in the 32,112 analyses of covarianceFigure 1
Box plots summarizing the logarithm of F-ratios 
computed in the 32,112 analyses of covariance. The F-
ratios for six sources of variation are each represented by a 
box plot. The box encloses the range between the first and 
third quartile. The interior line is the median (Table 1). The 
dashed blue line encloses the interior 95% of the observa-
tions. More extreme values are plotted with a plus (+) sym-
bol; a few values for 'Time' less than -4 and values for 
'Median' greater than 4 are not shown.
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samples do not contain any mRNA matching the spotted
cDNA sequence, i.e., genes that are not expressed in the
sample. Under this normal model for 'not expressed'
genes, values exceeding 12 are unlikely, Pr [z > 2.1] =
0.018, to arise when a gene is not expressed in at least
some of the samples. This cut point partitioned the inter-
rogated genes into 2,800 'expressed' genes and 28,310
'not expressed' genes. Most of the genes for cytochrome
P450 enzymes were classified as 'not expressed'. This
probably reflects a limited ability to discern low average
levels of expression from background.

Selecting genes with gender differences in expression
A p-value assessing the evidence of 'no gender effect' was
computed for each gene. Figure 4 plots these p-values (1 -
p) against their expectation under a uniform distribution.
In this plot, departures from the diagonal indicate that the
p-values are not uniformly distributed. The p-values from
the 'not expressed' genes are close to the diagonal, which
corroborates our assumption that these genes cannot dif-
fer because they are not expressed. The expressed genes
depart from the diagonal. The observed distribution of p-
values for the expressed genes was fit with a mixture
model, which estimates that 92% (2,576 genes) of the
expressed genes arise from a uniform distribution, i.e., no
gender difference, and 8% (224 genes) of the expressed
genes have a beta (1.82, 5.89) distribution, i.e., gender
difference.

Figure 5 plots expected error rates for gene selections
based upon their p-values. For example, 134 genes have p-
values less than 0.05. The estimated false discovery rate for

these 134 genes is 0.905, which implies that the expres-
sion for 121 of these selected genes does not actually differ
by gender. The estimated false non-discovery rate is 0.079.
That is, 211 genes having a sex difference are expected
among 2,576 genes that are not selected. The fraction not
selected is 0.94, 211 out of the 224 genes that are pre-
dicted to differ between the sexes. Figure 5 indicates that
the false discovery rate (solid blue line) would exceed
80% for any set of genes selected because their p-values
are smaller than a specified value.

The average of the Loess-smoothed estimates (black) and
their 95% confidence bounds (blue) are plotted for the
'expressed' genes in Figure 6. The horizontal axis in this
plot is the rank of the average among the 2800 'expressed'
genes. All of the observed gender differences in gene
expression are small. Essentially all of the point estimates
(99.7 %) are within the interval, [-0.5, 0.5]. That is,

observed fold changes were less than . Further-
more, 79.3 % of the 95 % confidence intervals are within
the interval, [-0.5, 0.5] and most (98.9 %) are within the
interval, [-1,1]. Only 27 genes have confidence intervals
that are not within the interval, [-1,1]. In concept, these 27
genes could have gender differences larger than 2 fold.
However, wide bounds usually reflect an outlier observa-
tion, which inflates the standard deviation.

Discussion
This study aimed to identify genes in human livers for
which expression differed between the sexes. Expression

2 1 4.

Scatter plot of estimated fold-changes before (a) and after (b) Loess smoothingFigure 2
Scatter plot of estimated fold-changes before (a) and 
after (b) Loess smoothing. Figure 2a plots 5,352 esti-
mates of the gender difference in expression from the analy-
ses of covariance. These estimates are for 'Block 5' and the 
genes interrogated on array type, GF201. The red line is the 
trend estimated by Loess regression. Figure 2b plots these 
data after removing the trend.

Normal probability plot of the estimates of the adjusted average log-intensitiesFigure 3
Normal probability plot of the estimates of the 
adjusted average log-intensities. The red line, actually 
31,110 points, is a normal probability plot of the adjusted 
average log-intensities. The dashed line indicates a normal 
distribution that roughly approximates the lower values, and 
it was used to model the background distribution of log-
intensities. Our interpretation was that adjusted average log-
intensities exceeding 12 represent expressed genes.
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was assayed for 31,110 genes of which 2,800 were classi-
fied as "expressed". The remainder of the interrogated
genes had observed expression intensities that were indis-
tinct from background, and they are classified as "not
expressed". However, most of the genes for the cyto-
chrome P450 enzymes were in this "not expressed" sub-
set, which suggests that detection was limited by
background and/or the sensitivity of the labeled target.
Evidence of a gender difference was evaluated by a t-test,
and a mixture model was fit to the observed p-values from
these tests (Figure 4). This model estimated that expres-
sion in 8 % [95 % CI: 7 % to 9 %] of the 2,800 "expressed"
genes differed by gender. However, the ability of this
study to identify specific genes is poor with estimated false
discovery rates exceeding 80 % for every partition of the
2,800 genes (Figure 5).

The study estimated the relative difference in expression
for all interrogated genes. These estimates were plotted for
the "expressed" genes (Figure 6). All estimates are less
than 1.55 fold and they generally have narrow confidence
intervals. Any gender differences that might be detectable
through these arrays would be small, which excludes their
anticipated use to monitor the persistence of gender dif-
ferences across immortalized cell lines.

The experiment was designed to adjust estimated gender
differences for several sources of variation (Table 1). Since
this design made twice as many measurements – two
arrays per sample, this yielded more precise estimates of

gender differences than would have been possible with
one array per liver sample. This design was proposed
because we had access to a limited number of liver sam-
ples, and arrays were relatively inexpensive. Conceptually,
one could have used the same number or arrays with twice
as many samples. Figure 1 showed that components of
variation associated with arrays and hybridizations are
somewhat larger than the variation associated with sub-
jects. These components do not impact the variation in
the estimated gender difference under the implemented
design. However, they would under a one array per sam-
ple design, and any precision gained in estimating the
subject component would be offset by the addition of
array and hybridization components. Because these two
designs would estimate the respective variances of the
gender difference with different degrees of freedom, the
better of the two designs would depend on the number of
blocks. In all but cases with a few blocks, the imple-
mented design would be better.

Figure 2 illustrates a case where there was a systematic
trend in the least squares estimates. There were substantial
trends in about half of the block – array type combina-
tions. However, the needed correction was not similar
either within an array type or within a sample block. Con-
sequently, estimated gender differences would be much
more variable without the Loess smoothing. We suspect

Cumulative frequency distribution of 1-p (p-value plot) for expressed genes and 'not expressed' genesFigure 4
Cumulative frequency distribution of 1-p (p-value 
plot) for expressed genes and 'not expressed' genes. 
The distribution for expressed genes is green and the distri-
bution for 'not expressed' genes is black. The p-values are 
from the t-tests of a gender difference. The dashed lines indi-
cate a theoretical uniform distribution for p-values under the 
null hypothesis; the black line assumes that all of the 'not 
expressed' genes fit the null hypothesis and the green line 
assumes that 92% of expressed genes fit the null hypothesis.

Expected classification errors for genes that are selected based upon their p-value from the t-test for a gender differ-enceFigure 5
Expected classification errors for genes that are 
selected based upon their p-value from the t-test for 
a gender difference. When the genes are ordered by their 
p-values from the t-test of a gender difference, the horizontal 
axis indicates the set of genes selected as having a gender dif-
ference. The vertical axis plots associated estimates of the 
false discovery rate (solid blue line), false non-discovery rate 
(dash-dotted green line), and proportion of affected genes 
not selected (dashed red line). These estimates assume that 
8% of the 2800 expressed genes, 224 genes, have a gender 
difference where the 8% was estimated by fitting a mixture of 
distributions model to the observed p-values.
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that these trends are caused by spatial variation in binding
due to intrinsic properties of membranes and/or irregular
distribution of labeled solution, besides it seems unlikely
that real gender differences would exhibit this behavior.
Smoothing eliminates much of this variation, but it also
reduces the estimated difference. We tried several smooth-
ing levels ranging from no smoothing to very local
smoothing. Figure 2 represents an intermediate level of
smoothing, which was adopted for this report as a repre-
sentative example. The smoothing levels that we tried gave
similar distributions for the p-values, and the same gen-
eral conclusions would be reached. Namely, there is evi-
dence of a few small changes but the specific genes cannot
be identified. However, the rank of a specific gene in Fig-
ure 6 or the genes included in a 'significant' set (Figure 5)
depends far too much on decisions about the smoothing
parameters.

The estimate that 8 % of the "expressed" genes have gen-
der differences relies on the assumption that the p-values
from genes with no gender difference in expression have a
uniform distribution. Since these p-values are based on a
t-test, this assumption requires that the mean gender dif-
ference for each gene have a normal distribution. This is
not unreasonable on theoretical grounds. Further, boot-
strap estimates are largely within the expected range if
they are considered as estimates of the t-test's p-values
(data not shown). That is, the assumption of a symmetric
distribution under the null hypothesis gives a distribution
for the mean that is well approximated by the t-distribu-
tion.

More problematic is the assumption that the 2,800 tests
are independent. Correlations are induced through shared
conditions by all genes on an array, the normalization
step, and the Loess regression step. Further, expression
levels among some genes are expected to be correlated
because they work in concert to achieve a specific cellular
structure or function. Simulation studies have shown that
the estimated number of affected genes is not biased by
correlations among tests, but correlations increase the var-
iance of this estimate substantially [13,14]. The reported
confidence bounds on the proportion of affected genes
assume independence and likely underestimate the actual
variation, possibly by a substantial amount. Conse-
quently, the statistical significance of the 8 % estimate is
not clear.

P-values were computed for all interrogated genes. Genes
that are not expressed should not have intensities that
depend on sex. The p-values for the "not expressed" subset
show little departure from the diagonal (Figure 4), which
is "as expected" if they arise under the null distribution.
These genes also have correlations induced by shared con-
ditions, normalization and Loess regression. Apparently,
these correlations were insufficient to disrupt the uniform
distribution for these p-values.

Conclusion
We estimated that the gene expression of 224 genes dif-
fered between sexes. The observed gender differences in
expression were small. False discovery rates exceed 80 %
for every set of genes selected by their p-values, essentially
making it impossible to identify any specific genes with a
gender difference.
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