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Abstract

Background: Laserscanning recently has become a powerful and common method for plant parameterization and
plant growth observation on nearly every scale range. However, 3D measurements with high accuracy, spatial
resolution and speed result in a multitude of points that require processing and analysis. The primary objective of this
research has been to establish a reliable and fast technique for high throughput phenotyping using differentiation,
segmentation and classification of single plants by a fully automated system. In this report, we introduce a technique
for automated classification of point clouds of plants and present the applicability for plant parameterization.

Results: A surface feature histogram based approach from the field of robotics was adapted to close-up laserscans of
plants. Local geometric point features describe class characteristics, which were used to distinguish among different
plant organs. This approach has been proven and tested on several plant species. Grapevine stems and leaves were
classified with an accuracy of up to 98%. The proposed method was successfully transferred to 3D-laserscans of wheat
plants for yield estimation. Wheat ears were separated with an accuracy of 96% from other plant organs.
Subsequently, the ear volume was calculated and correlated to the ear weight, the kernel weights and the number of
kernels. Furthermore the impact of the data resolution was evaluated considering point to point distances between
0.3 and 4.0mm with respect to the classification accuracy.

Conclusion: We introduced an approach using surface feature histograms for automated plant organ
parameterization. Highly reliable classification results of about 96% for the separation of grapevine and wheat organs
have been obtained. This approach was found to be independent of the point to point distance and applicable to
multiple plant species. Its reliability, flexibility and its high order of automation make this method well suited for the
demands of high throughput phenotyping.

Highlights:
• Automatic classification of plant organs using geometrical surface information
• Transfer of analysis methods for low resolution point clouds to close-up laser measurements of plants
• Analysis of 3D-data requirements for automated plant organ classification
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Background
Aiming at high throughput plant phenotyping, one of the
main challenges is the robust and automatic analysis of
plant data [1]. In this context phenotyping implies the
measurement of observable plant attributes, reflecting the
biological function of gene variants as affected by the envi-
ronment [2]. Whereby modern phenotyping techniques
are used to study growth and development of large sets of
plant genotypes under different stress situations [3,4]. In
this connection 3D laserscanning allows a non-destructive
assessment of various plant parameters under controlled
conditions. The plant architecture, the plant height and
size, specific plant organs or the organ volume can be
deduced from the 3D structure of plants. A detailed eval-
uation of these parameters through time will help to link
alteration in plant growth to stress tolerance, or to predict
the yield potential of different genotypes.
Structural geometrical analysis of plants is an impor-

tant technique to observe the development and growth
of plants or the reaction of plants to abiotic and biotic
stresses [5]. Highly resolved analysis enables the estab-
lishment of 3D organ based architectural models, like
functional structural plant models [6,7]. The observa-
tion of subtle changes can be used to link geometrical
deviation and deformation to environmental effects [8].
3D-measuring devices like 3D-cameras, photogrammet-
ric methods or laserscanners [6,8-10] provide non-contact
and non-destructive 3D-measurements. However, only
highly resolved and accurate 3D point clouds enable a
valid description of the geometry of plant organs. Laser-
scanning results in huge point clouds with more than
hundred thousand data points for a whole plant or
ten to thirty-thousand points per plant organ [9]. This
technique has been used in various studies for plant
analysis [8,11] and stands out due to its quick, direct
and automatic data collection [10]. Thus, the require-
ments for an implementation in phenotyping process are
fulfilled.
The automatic recognition of shapes from point clouds

is a prerequisite for plant phenotyping. The recognition
of geometrical standard shapes like cylinders, spheres,
planes or cones as well as combinations and variations is
well described in various fields of research [12,13]. For 3D
plant analysis the most common approaches use 3D mesh
processing [8,14]. Paproki A, 2012 [14] used a 3D point
cloud created out of 64 images of a cotton plant to detect
single plant organs. Aiming at a segmentation of leaves,
main stem and petioles, a region growing algorithm sen-
sitive for curvature, noise, sharp edges and smoothness
constraints was applied to a pre-calculated mesh. Further-
more primitive fitting algorithms were used to approxi-
mate organs like stems or petioles. The resulting regions
were used for organ specific parameterization. This
approach requires plant organs that can be abstracted by

primitives and certain smoothness constraints e.g. of the
leaf surface.
An entirely different approach that avoids mesh pro-

cessing and uses more explicit properties to describe
surfaces is the so called surface feature histogram [15,16].
Furthermore it overcomes the demands of smoothness
constraints and the abstraction of primitives. These his-
tograms enable a direct point classification by using
descriptors for surface curvature and pointnormal-
properties; moreover they provide an invariance to trans-
lation and 3D rotation. This technique has been optimized
for the recognition of geometrical standard shapes [15],
3D point cloud registration [16], pose recognition [17]
and for the recognition of kitchen objects like cup-
boards, tables and cups [18]. Points were linked to classes
with similar surface properties by using Support Vec-
tor Machines (SVM) or Conditional Random Field (CRF)
classification [19]. With this approach regions of sim-
ilar points can be determined and a following model
fitting can be applied to extract geometrical and func-
tional maps of the environment [18]. This technique can
be directly applied to a point cloud without calculating
an additional surface representation as it is necessary for
mesh-based approaches. However, it has to be demon-
strated whether the recognition of point classes due to
their surface properties and the extraction of geometri-
cal maps can be transferred to various situations in plant
research. This task is of high importance for plant pheno-
typing, where high throughput laserscans of plants can be
used to extract growth curves of specific plant organs [3].
Surface feature histograms have shown their applica-

bility for online procession in robotics. The transfer of
this method to plant phenotyping promises huge bene-
fits to speed up phenotyping processes with high accu-
racy. Especially the application to highly resolved close-up
laserscans from plants has never been realized before.
Until now a descriptive representation of the local geom-
etry of plant point clouds by surface feature histograms
has not been applied to complex structures like plant
organs (e.g. leaves stems or wheat ears). The establish-
ment of 3D measuring devices for plant imaging during
the past years and upcoming high precision laserscanning
methods particularly evoke the demand of specified and
adapted techniques and algorithms for point cloud pro-
cessing [8,14]. Certainly laserscanning provides Euclidian
XYZ-data with device specific differences in the point to
point distance (hereafter resolution), the amount of occlu-
sion and in the accuracy. Hence a fast and accurate data
processing method is required for the implementation in
an automatic measuring and classification workflow. Pre-
vious experiments show the demand for algorithms aim-
ing at an automated classification [7,14] without specific
requirements on the shape [20] or on additional sensor
data [21].
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In the present paper, we introduce an adapted surface
feature based technique for an automated pointwise clas-
sification of plant organs from 3D laserscans. We show
an automated separation of grapevine point clouds to the
plant organs leaf and stem, as well as a separation of wheat
ears and stems to extract yield parameters. Furthermore,
the impact of the point cloud resolution was evaluated
with respect to the classification accuracy.

Results
The main focus of this study is the processing of 3D point
clouds, which do not provide any additional information
for the classification like e.g. color. We aim at a geometry
based labeling of single points, which can be used to define
regions of similar geometry, describing underlying plant
organs as it is important for parameterization. The three
key outcomes of this methological study are i) the adap-
tion of a low resolution algorithm on the demands of
highly resolved point clouds for grapevine plant organ
classification, ii) an empirical evaluation of different point
resolutions to show the validity for different kinds of 3D-
measuring devices and iii) the integration of the proposed
method in a processing workflow for an automated yield
calculation of wheat plants.

Plant organ classification by feature based histograms
Surface feature histograms show unique characteristics
for point clouds that differ in the euclidean properties of
their surface. Figure 1 introduces the geometrical descrip-
tions of the surface properties of two point clouds of a
grapevine leaf (A) and a grapevine stem (B), visualized as
surface feature histogram. The algorithm of [16] calcu-
lates surface feature histograms using pointwise neighbor

features. To increase the descriptive properties of surface
feature histograms even with large histogram radii, we
introduced a distance weight for the calculation. Subse-
quently, these histograms were used as features for SVM
classification.
The classification results of a grapevine scan for differ-

ent point cloud resolutions, from 0.33 mm to 4.0 mm, is
shown in Table 1. The mean results of a repeated random
sub-sample cross-validation using ten iterations are pre-
sented. 4% of the points were randomly chosen training
data for each class. This approach provides a reasonable
prediction as it is necessary for real applications. A reso-
lution of e.g. 1.0 mm implies that the point cloud shows
minimal point to point distances of not less than 1.0 mm.
The normal for every point has to be calculated due to the
output of laserscanners pure 3D point clouds. Therefore
the neighbors of a source point within the radius rNormal =
rN were used. Comparable to this, the calculation of the
surface feature histogram only considered points within
radius rHistogram = rH . Each column of Table 1 describes
the results for the combination of different rN and rH
varying from 1

3 mm to 5 mm in steps of 1
3 mm for both

variables. Best performing combinations of rN and rH , for
each resolution, were evaluated. As initial values for rN ,
the value slightly bigger than the point cloud resolution
was used and as maximum value the radius of the small-
est object - here the stem diameter (5.0 mm) was chosen.
The histogram algorithm requires a rN that is smaller
than rH , but bigger than the point cloud resolution. Due
to this restriction the amount of combinations decreases
with increasing point resolution. Thus resolutions above
4.0mm result only in one specific value or were not calcu-
lable. The best classification results were shown together

Figure 1 Histogram for the the laserscanned point cloud of a grapevine leaf (A) and of a grapevine stem point cloud (B). Histogram
calculation was applied using rN = 2.5mm and rH = 3.5mm and a point cloud with a resolution of 0.3mm.
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Table 1 Impact of point cloud resolutions (0.33mm to 4.0mm) to the classification result and the calculation time

Point cloud resolution [mm] 0.33 0.66 1.0 1.33 1.66 2.0 2.33 2.66 3.0 3.33 3.66 4.0

classification result (SVM) [%] 97.9 98.3 98.1 98.0 97.8 97.2 96.6 96.1 95.8 95.3 94.7 93.2

best rN [mm] 1.33 1.6 1.6 2.0 2.3 3.0 4.0 4.0 4.3 4.3 4.6 4.6

best rH [mm] 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

misclassified points (in thsnd.) 10.6 2.3 1.05 0.7 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3

points (in thsnd.) 527.0 134.3 55.6 35.4 24.4 16.3 12.5 10.0 7.7 6.4 5.4 4.4

points of leaves (in thsnd.) 407.8 108.0 45.3 29.1 20.1 13.5 10.5 8.4 6.5 5.5 4.6 3.8

points of stem (in thsnd.) 119.2 26.3 10.3 6.3 4.3 2.8 2.0 1.6 1.2 0.9 0.8 0.6

mean calculation time [sec] 1160 155 52.2 31.1 19.8 12.3 9.5 7.4 5.6 4.7 4.07 3.3

min calculation time [sec] 465 105 40.6 26.1 17.9 11.7 9.1 7.2 5.6 4.7 4.0 3.2

max calculation time [sec] 1788 184 58.3 34.6 22.5 12.8 9.7 7.4 5.7 4.7 4.1 3.4

with related rN and rH values. The classification results
were validated using manually distinguished data, labeled
by Geomagic Studio 12 64Bit (Raindrop Geomagic Inc,
Morrisville, NC, USA).
Satisfying classification accuracies of ≥ 90% were

achieved for point cloud resolutions between 0.33mm and
4.0 mm. The best classification results above 96% were
constantly reached for resolutions smaller than 2.66 mm.
Indeed the best classification accuracy of 98.3% was found
at a point cloud resolution of 0.66mm using rN = 1.6mm
and rH = 5.0 mm. Furthermore, the classification results
for different point cloud resolutions depends on the com-
bination of rN and rH . For each point cloud resolution
the best classification results can be reached by using
a large radius rH . While this tendency is valid through-
out all different resolutions, this can not be generalized
for rN .
Furthermore, we perceive a slow decrease in the clas-

sification accuracy with a decreasing resolution. This is
strongly connected with a decreasing number of points
providing the point cloud. At a resolution of e.g. 0.33 mm
527092 points were considered, 12500 for a resolution
of 2.33 mm and 4000 points at the lowest resolution of
4.0mm. Considering the ground truth data, approximately
80% of all points belong to the grapevine leaves and 20% to
grapevine stems for throughout the used point cloud res-
olutions. At the highest resolution of 0.33 mm more than
10 thousand points were mislabeled. This amounts to only
2.1% of the respective 527092 considered points. A similar
percentage of misclassified points were obtained at higher
resolutions.
Further analysis showed an influence of the parameters

rN and rH to the classification accuracy. The variation in
classification accuracy for rN , rH ≤ 12mm and a fix point
cloud resolution of 1.0mm is shown in Figure 2. A resolu-
tion of 1.0mm was chosen exemplary for the visualization
in Figure 2, due to its satisfying results regarding calcula-
tion time and classification accuracy. Our aim is a deeper

understanding of the impact of the used radii rN and rH to
the classification result. The best classification accuracy of
more than 99% can be found within a small radius of rN
between 1.5mm and 3.0mm and a rH of 9.5mm to 12mm.
In Figure 3 (A) a detailed view on a classified grapevine

point cloud with a point resolution of 1 mm is shown.
Using rN = 2.5 mm and rH = 12 mm an accuracy of
about 99% has been reached. Unfortunately, this means
that 417 of 55635 points have a wrong classification label
(Table 1). Figure 3 (B) and (C) show typical misclassifica-
tion of the plant organ. Points that belong to a grapevine
stem (red) are misclassified in regions where we locate
a surface geometry very similar to a leaf surface (green)
geometry (Figure 3B). Vice versa parts of the leaf surface
are classified as stem, especially at the transition between
leaf and stem and in the border area of the leaf (C).
We have introduced surface feature histograms together

with SVM classification as a method for a highly accurate
separation of plant organs of a grapevine plant. We deter-
mined r < rN << rH with r represents the point clouds
resolution. Using histogram radii of 9.5 − 12 mm leads
to a satisfying covering of the points neighborhood. This
results in a high classification accuracy of about 99%. The
resolution should be choosen with respec to the expansion
of the smallest object which has to be classified. Thus, the
resolution of the grapevine point cloud shouldn’t be bigger
than the minimal diameter of the stems.

Wheat yield estimation by online processing
Previous results have shown histogram based classifica-
tion for 3D point clouds of grapevine for an automated
extraction of plant organs such as leaf and stem. In
the following subsection we transfer previous findings
to the classification of 3D point clouds of wheat plants,
to determine stem and ear points automatically. This
method was integrated in a workflow for an automated
volume calculation of wheat ears, which is of impor-
tance for wheat yield estimation and prediction. It shows
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Figure 2 Heatmap for the classification results according to different histogram and normal-radii of grapevine point data with a
resolution of 1mm.

Figure 3 Classification of grapevine leaves (green) and stems (red) (A).Misclassification appears in regions of plain stem surfaces (B) as well as
at leaf borders (C), shown by red arrows. The classification was done using a normal radius of 2.5mm and a histogram radius of 12mm with a point
cloud with 1mm point resolution.



Paulus et al. BMC Bioinformatics 2013, 14:238 Page 6 of 12
http://www.biomedcentral.com/1471-2105/14/238

the applicability of 3D laserscanning in high throughput
phenotyping.
A wheat point cloud with a resolution of 1.0 mm

was used for further processing, in accordance to our
experience from grapevine plant organ classification. For
normal- and histogram calculation rN = 2.5 mm and
rH = 12 mm were used. The processing pipeline is as
follows 1) laserscanning, 2) pre-processing including cut-
ting of pot points and leaf points, 3) normal calculation,
4) histogram calculation, 5) classification using SVM, 6)
region growing and 7) parameter extraction. A visualiza-
tion of the dataflow is shown in Figure 4. Steps 1 to 5 have
been outlined before and were described in the subsection
above, therefore we focus on the last two steps to detect
the different regions of the labeled point cloud. It was
assumed that regions of interest have a significantly big-
ger size thanmislabeled regions. Thus, smaller regions are
mislabeled and can be connected to bigger regions next
to them. This was done using a region growing algorithm.
The results can be seen in Figure 5. The left side shows
a characteristic histogram for wheat ears (A) and wheat
stems (B) that were calculated out of the training data
and used for subsequent SVM classification. Figure 5 (C)
shows the results of the classification process of one plant
after the region growing step. Separated by colors, the
regions are visible. Originally the classification resulted in
39 regions. These were reduced to 8 regions by region
growing, clearly dividing 4 ear and 4 stem regions. Over-
all we reached a mean classification accuracy of 96.56%

Figure 4 Dataflow diagram showing the single steps for
automated online measurements of wheat yield parameters 1)
Laserscanning, 2) Preprocessing, 3) Normal calculation 4)
Histogram calculation, 5) Data classification, 6) Region growing
and the final 7) Parameter extraction. Arrows indicate the data,
while boxes describe the processing steps.

at a calculation time of 5.40 minutes and 65 thousand
points to classify eleven of twelve wheat ears using a leave-
one-out cross-classification method. A clear separation of
a wheat laserscan was shown using surface feature his-
tograms. The points were allocated to the classes ear and
stem and aggregated to a relevant region size. This was
done fully automated and enabled the application of a
volume estimation algorithms.
After the classification of different plant organs quanti-

tative plant parameters were deduced from 3D laserscans.
An alpha shape volume estimation was applied to the
organ regions. This method enabled an easy and fast way
for volume estimation and an accurate description of the
concave wheat ears. These parameters were related to
manually assessed yield parameters. Significant correla-
tions were found between the measured ear volume and
de facto yield parameters. The parameters total ear weight,
total kernel weight and number of kernels showed high
correlations of R2=0.71, R2=0.66, and R2=0.81, respec-
tively (see Figure 6).

Discussion
The main goal of the current research was to find a fast
and accurate technique for the classification of different
plant organs out of laserscanned plant point clouds. A
method from robotics [15,16] was modified and extended
to the demands of plant organ classification from high
precision laserscans for plant phenotyping. It was applied
to the classification of grapevine point clouds to deter-
mine leaf and stem points,and to separate wheat point
clouds into stem and ear points. Both point cloud classifi-
cation problems were solved with a high accuracy of more
than 96% within a relatively short calculation time of a few
minutes.
Separation of plant organs was reached by a new surface

description method. Our method trains the local geome-
try of the organs and can e.g. be used for classification of
various plants by using only one single manually labeled
plant. Previous research used a pre-calculated mesh [3,6]
with special surface assumptions like smoothness con-
straints or approximation by primitives to separate single
plant organs. We were able to reduce the amount of exter-
nal knowledge required for classification and to avoid
mesh calculation by adapting a method based on the
points itself. However, difficulties arise when the transi-
tion is not clearly defined between different plant organs.
This is the case between a leaf and a stem or for plain stem
regions which are similar to a plain leaf surface. Here the
results are small regions with a wrong label. To overcome
this effect, we implemented a region growing algorithm
following the assumption that smaller regions received an
incorrect classification label. This was successfully imple-
mented for the classification of large connected regions
as shown for wheat ears and grapevine leaves, but fails
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Figure 5 Histograms of wheat ear (A) and stem (B) and the classified point cloud of a wheat plant using rN = 2.5mm, rH = 12mm.
A region growing algorithm was applied for automatic elimination of wrong classified small regions (C). Colors indicate regions which are
belonging together.

for the classification of smaller regions like e.g. leaf veins.
The classification workflow results in regions describing
the single plant organs that can be used for a direct
parameter extraction, such as e.g. ear volume. An accu-
rate and early estimation of grain yield is desirable for
plant breeding or agrobusiness. In plant breeding, geno-
types with high potential yield have to be selected in high
throughput. Yield estimation in the field is required e.g.
for planning harvest and storing requirements, for cash
flow budgeting or for crop insurance purposes. Until now
extensive personal experience is essential for visually esti-
mating yield of cereal crops, alternately destructive assess-
ment is the method of choice [22]. Our laserscanning
approach can substitute traditional yield estimation tech-
niques. Principal benefits are the objectiveness, the high
accuracy and reproducibility. Separation of single organs
is the key to enable plant parameterization on the organ
level.
The proposed method can be applied to different plant

types and different organ geometries. Previous research
with stereo camera systems [6,23] or Time of Flight cam-
eras [24,25] is supported as well as laserscanning devices

with various point resolutions [8,10]. This has been
proven by the reduction of the point cloud resolution, still
resulting in satisfying results (Table 1). Seitz S, 2006 [26]
showed that algorithms for multi-view stereo reconstruc-
tion improve rapidly and provide a point accuracy that
is only slightly lower than the accuracy provided by
the laserscanning. Furthermore [15,27] had shown its
applicability for the use of noisy point clouds with a very
low accuracy. Hence, the method is independent of the
used 3D imaging sensor.
Aiming at an integration in existing high throughput

phenotyping environments a deeper look into the
calculation time is necessary. The computational effort is
closely linked to the number of points (n) and the num-
ber of points in the neighborhood (k). The bigger the
used histogram radius and the higher the point cloud
resolution, the more points influence the histogram cal-
culation. This leads to a computational complexity of
O(n ∗ k) as it was shown by [16]. We can confirm
this assumption by our results. E.g. reducing the reso-
lution from 0.33 mm to 0.66 mm results in 25% of the
original number (n) of points and calculate histograms
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Figure 6 Correlation of the volume of the single ears in relation
to the total ear weight (A), the total kernel weight (B) and the
number of kernels (C).

with the same radius of e.g. 5.0 mm, the calculation time
is reduced to about 10% compared to 25% of the orig-
inal time. This can be explained by a decrease in the
number of points that have to be considered in every
calculation step (k0.33 ≤ k0.66). The calculation time for
the histogram based approach is comparable to the pro-
cessing time and thus it is well suited for online process-
ing. Compared to [28] who used 2-D images to assess the
leaf area of different arabidopsis genotypes, our approach
enables an automated labeling of wheat and grapevine

plants in less than two minutes for a resolution of 1 mm
in 3D.
With respect to a fast and optimized calculation time -

which can still be improved by e.g. faster implementa-
tion using the computers graphical unit - the method is
well suited for the demands of automated high through-
put phenotyping. These platforms collect an increasing
amount of data, temporarily and spatially highly resolved
[29]. An automated data processing method for high
resolution point clouds is needed for classifying and
characterizing various plant organs. Beyond this scope
our method can be seen as a generalized approach for
high throughput plant parameterization. Current meth-
ods [23,24] can be improved by adding surface prop-
erties to the organ separation step without calculating
a triangle mesh or special requirements regarding e.g.
smoothness.
Our method enables an automated classification of

plant organs for plant parameterization. This can be
implemented as an autonomous work package in a phe-
notyping process. Based on the presented approach, a
database with class-specific training data can be intro-
duced, where expressive histograms are used for the clas-
sification of unknown point clouds. This will improve the
modeling of plants [7,30] which in turn can be used to
improve the classification due to knowledge of the struc-
ture rules of a plant and its organs. The proposed method
provides outstanding potential to be implemented in
a sensor fusion approach for plant phenotyping or
screening processes with optical devices [4,31]. Future
research will concentrate on linking 3D-laserscans with
imaging sensor data such as hyperspectral imaging or
thermography to improve the accuracy in observing the
impact of abiotic or biotic factors on plant physiology and
on the plant phenotype.

Conclusions
Automated organ parameterization is of high importance
for plant phenotyping. We demonstrated that this can
be realized using 3D point clouds without applying any
mesh processing algorithm. Only little apriori knowl-
edge of the plant organ surface is required, which can
be trained independent of the data. We obtained highly
accurate results for organ classification of a grapevine
plant by using surface feature histograms. Furthermore,
our approach was applied to wheat ear parameteriza-
tion, which was compared to manually measured yield
parameters.
The strength of our approach is the flexibility for an

application to various 3D measuring devices and it can
be generalized for the classification of different plants and
plant organs. Automated and reproducible characteriza-
tion of various plant 3D point clouds with high accu-
racy and its integration in high throughput phenotyping
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procedures was realized. Future research will concen-
trate on enhancing the geometrical sensitivity. Further-
more we will improve the direct parameterization of
various organs like stem, ears and leaves at the same
time and in one processing step by using multi-class
classification.

Methods
Data Acquisition
3D point clouds were acquired by a high resolution laser-
scanner (Perceptron Scan Works V5, Perceptron Inc.,
Plymouth MI, USA) using an active laser triangula-
tion method. The system was mounted on an articu-
lated measuring arm (Romer Infinite 2.0 (2.8m Version),
Hexagon Metrology Services Ltd., London UK) to
enable an automated fusion of single scan-lines, coming
from different points of view (Figure 7A). Thus, point
clouds could be acquired with a minimum of occlusion
(Figure 7B). The 3D laserscanner has a measuring field
of 110mm × 105mm, providing a point reproducibility
of 0.088 mm. It was chosen due to its high point resolu-
tion, leading to highly reliable point measurements. The
high resolution and accuracy is fundamental for organ
specific classification and precise measurement of plant
deformation as it is focused in phenotyping.
To prepare the raw data for classification, we used

the commercial software Geomagic Studio 12 (Raindrop
Geomagic Inc, Morrisville, NC, USA). This preprocessing
included: i) cutting off parts that were scanned but do not
belong to the plant, ii) rasterization of the point cloud to
avoid a heterogeneous point distribution due to the scan-
ners manual affected motion during scanning, and iii) the
manual assigning of ground truth data. For the processing
of the grapevine we used the complete point cloud begin-
ning at the top of the pot and for the analysis of the wheat
we focussed on the points above the highest leaf. This
reduced the complexity of the classification by only using
wheat ears and stems instead of ear, stem and leaves.

Surface feature histograms
3D laserscanned point clouds were analysed by surface
feature histograms. They were developed by [15,16] for
the demands of robotics and adjusted for classification
of geometrical primitives in low resolved point clouds.
The surface feature histograms are well suited for real
time processing of laser data. Furthermore they provide
a density and pose invariant description of the surface
using properties of differential geometry. They can be
used for point cloud segmentation and separation of dif-
ferent surface areas showing different surface properties.
Histograms descriptions for primitives like plane, cube,
sphere, cylinder and cone are shown in Figure 8. The
characteristic of a histogram to a single point depends,
beside the properties of the surface, on the radius for
normal calculation rN and the radius for the histogram
calculation rH . Both parameters represent the number
of neighbor points that were used for calculation. The
histogram implementation follows an adapted approach
using a special distance weight explained below.
As described by [16,19] and to find in Figure 9 line 20,

a histogram to a source point consists of the weighted
sum of the histograms to the neighbor points. The use of
the original weight results in non-normalized histograms
which complicate the use of support vector machines
(SVM) for classification. Therefore a more detailed weight
is needed for the classification of complex structures like
stems, leaves, or ears instead of geometrically simple
shapes like primitives.

wb = 1 − (0.5 + d
rH

· 0.5) (1)

We introduced a distance depending weight, see
Equation 1, to take these disadvantages into account.
The parameter d denotes the distance between the target
point and the source point. Histograms of points, with a
distance near the limit of the radius for histogram calcu-
lation (rH ), have a very low impact for the final feature

Figure 7 Laserscanner-measuring arm combination (A) and 3D data of grapevine (B).
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Figure 8 Point clouds of geometrical standard shapes like plane (A), cone (B), sphere (C) and cylinder (D) show unique histograms due to
their differing surface properties.

histogram calculation. This impact is raised as the dis-
tance to the source point becomes smaller. For points
with a distance d → 0 the weight raises up to an equal
weight as the source point (50 : 50). For online pro-
cessing of wheat plants for yield estimation a dataflow

was designed and successfully adapted; the single pro-
cessing steps are shown in Figure 4. It shows the steps
1) laserscanning of the plants, 2) preprocessing of the
point cloud, 3) calculation of the point normals, 4) cal-
culation of the histogram 5) classification of stems and

Figure 9 Pseudocode for the calculation of surface feature histograms for pointwise surface description, modified from [16]. Black letters
denote commands, comments are indicated by blue letters.
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ears using SVM with histograms of the training data 6)
using a region growing algorithm to extract regions and
to connect smaller regions to the next bigger ones and 7)
calculation of the alpha shape volume as a measure for the
parameter for yield estimation.
Since its introduction by [32] SVM were used for vari-

ous aspects of classification in agricultural context [33]. It
turned out to be a powerful machine learning technique
that can be used for general-purpose supervised pre-
diction [34]. Reliable results have already been achieved
with the combination of surface feature histograms and
this classification technique. About 4% of the points of
every class were used as training data for grapevine
classification. The amount of points was equivalent to
the number of points of one complete leaf and a sig-
nificant part of the stem in average. For the study of
the resolution behaviour of the histograms a repeated
random sub-sampling validation was calculated using ten
iterations. For the classification of the twelve wheat plants
a leave-one-out cross validation was used. One stalk was
labeled and used for classification of the eleven remain-
ing stalks. The mean results for twelve repetitions using
each stalk for training were presented. While the results
show the impact of a varying rN and rH for the clas-
sification of a grapevine point cloud, the classification
of the wheat plants followed the parameters gained in
this first part. A normal radius rN of 2.5 mm and a his-
togram radius rH of 12 mm were used for classification.
They were chosen due to accuracy and calculation time
(Table 1).
The postprocessing after classifying the 3D point clouds

(Figure 4, step 5) included a region growing algorithm
(Figure 4, step 6) that merged the points of a smaller
region to a bigger region in the direct neighborhoods. We
used the regions next to the centroid of the smaller region.
Small regions were defined as regions that have less than
the mean of the region sizes resulting from the region
growing step after classification (see the explaining movie
in the Additional file 1).
Calculating the alpha shapes of the ear regions (Figure 4,

step 7) enabled a volume parameterization of the ears. An
implementation, which is available for free at the Mat-
lab exchange software website by Jonas Lundgren (2010)
was used. It enabled a much more precise volume estima-
tion than e.g. the convex hull and led to the extraction of
wheat yield parameters almost automatically out of a clas-
sified point cloud. The histogram classification and region
growing was programmed using Matlab 2011b, while the
classification was performed using the LIBSVM, a SVM
package developed by [35]. It was chosen due to its free
access, easy use in Matlab and its availability on different
platforms. We used Geomagic Studio only for preprocess-
ing, labeling ground truth data and visualization purpose.
The calculation was done on a computer including an Intel

Core i7 processor (950 3.06 GHz) using 8 Gigabyte of
RAM andWindows 7 64 Bit.

Plant material
Grapevine plants (Vitis vinifera ssp. vinifera, variety
Mueller Thurgau) and wheat plants (Triticum aestivum,
variety Taifun) were grown in commercial substrate in
plastic pots (∅ grapevine: 170mm, wheat: 200mm) under
greenhouse conditions. Environmental parameters were
kept constant at 23/20◦C (day/night), 60% relative humid-
ity and a photoperiod of 16 h. The plants were watered
and fertilized on demand. Grapevine plants were used for
laserscanning measurements at growth stage 19 (Laurenz
et al. 1994), wheat plants were measured at the grain fill-
ing stage (Growth stage 85). The ears were harvested and
the yield parameters ear weight, thousand kernel weight
and the number of kernels were assessed. The chosen
parameters are closely related to each other; the ear weight
is influenced by the kernel weight and the number of
kernels.

Additional file

Additional file 1: Wheat classification. Avi video file using standart
FFmpeg lossless video codec.
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