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Abstract

Background: Illumina’s second-generation sequencing platform is playing an increasingly prominent role in
modern DNA and RNA sequencing efforts. However, rapid, simple, standardized and independent measures of run
quality are currently lacking, as are tools to process sequences for use in downstream applications based on read-
level quality data.

Results: We present SolexaQA, a user-friendly software package designed to generate detailed statistics and at-a-
glance graphics of sequence data quality both quickly and in an automated fashion. This package contains
associated software to trim sequences dynamically using the quality scores of bases within individual reads.

Conclusion: The SolexaQA package produces standardized outputs within minutes, thus facilitating ready
comparison between flow cell lanes and machine runs, as well as providing immediate diagnostic information to
guide the manipulation of sequence data for downstream analyses.

Background
Second-generation technologies are rapidly coming to
dominate modern DNA and RNA sequencing efforts
[1]. Among the available systems, Illumina sequencing
(known informally as Solexa) is playing an increasingly
prominent role. However, the error profiles of high-
throughput short read sequencing technologies differ
markedly from traditional Sanger sequencing [2]; they
tend to exhibit a steep, exponential increase in error
rates along the read length, and are susceptible to a
wider range of chemistry and machine failures (such as
air bubbles in system fluidics). Although the quality of
second-generation sequencing data affects downstream
applications, monitoring and diagnosis of data quality
has not kept pace with the rapid rate of improvement
seen in other aspects of the technology.
Owners of Illumina machines have access to on-board

diagnostic tools, which give detailed information about
data quality for each lane, tile and nucleotide position.
However, these tools are not available to most users, the
majority of whom now outsource data collection to
dedicated sequencing centers. In our experience, these

centers do not usually release data quality information,
although we advocate strongly that they should. Lacking
this information, users must turn to publicly available
software packages to quantify data quality. The R pack-
age TileQC [3], which offers similar functionality to Illu-
mina’s proprietary software, can help identify some
problems at the level of tiles (e.g., air bubbles), and in
many cases, can even track variation at individual read
positions. However, the underlying algorithm relies on
errors determined from read mapping, thus requiring a
reference genome sequence. TileQC is less useful for
the many sequencing projects now being performed on
non-model organisms. Several other software packages
offer similar functionality for assessing data quality [4,5],
but seldom in a quick, automated way that can easily be
run by users with limited bioinformatics skills and/or
computer resources.
In complementary fashion, software has been written

to help correct sequences containing some of these
errors, such as image boundary effects [6] - at least for
earlier versions of the Illumina technology. However,
the ever-increasing quantity of data produced by Illu-
mina sequencers seldom makes such detailed analysis of
individual tiles feasible, or indeed, a cost effective use of
expensive (and often limited) bioinformatics resources.
Nevertheless, major quality defects, particularly failures
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of entire tiles or individual nucleotide positions must
still be accommodated in downstream analyses (i.e., by
exclusion, or preferably, selective trimming of reads).
Simple tabular and graphical summaries of run quality
are therefore a necessary prerequisite for any down-
stream analysis.
Here, we present SolexaQA, a user-friendly software

package that provides rapid, at-a-glance assessment of
read quality for data generated using Illumina’s sequen-
cing technology.

Implementation
Programs, manuals and example datasets for the Solex-
aQA package can be downloaded from the project web-
site http://solexaqa.sourceforge.net/.
SolexaQA has minimal runtime requirements, but is

nevertheless designed primarily for use on the high-per-
formance UNIX machines that are necessary for analyz-
ing Illumina sequence data. SolexaQA is primarily
written in Perl, but integrates graphical capability from
the statistics package R [7] and the heatmap visualizer
matrix2png [8]. By default, the program produces tables
summarizing data quality, but R and matrix2png must
be installed for proper functioning of the package’s gra-
phical features. Note that matrix2png also requires a
working installation of the GD graphics library http://
www.libgd.org/.
SolexaQA inputs one (or multiple) sequence read files

in Solexa- or Illumina-style FASTQ format, which con-
tains information about base calls as well as associated
quality scores [9]. We checked whether these quality
scores match actual error rates by mapping reads back
to a haploid reference sequence that was de novo
assembled from the same read dataset. We found that
the quality scores returned by the Illumina pipeline (ver-
sion 1.4) are quite accurate, and if anything, slightly
conservative.
SolexaQA reads in FASTQ sequence files containing

any number of cycles (i.e., nucleotide positions) or tiles
(i.e., subunits of a flow cell lane), including those pro-
duced by early versions of the Illumina pipeline, right
up to current pipeline version 1.6. The package also
accommodates the virtual tiles employed by the latest
revisions to Illumina’s sequencing technology (e.g., the
HiSeq 2000).
SolexaQA calculates a range of summary statistics for

a subset of reads drawn randomly from each tile at each
nucleotide position; by default, 10,000 reads (typically
about 3% of reads at time of writing) are sampled per
cycle and tile, but users can tune this parameter via a
command line flag. From our observations, we suggest
that summary statistics should be calculated from no
fewer than 5,000 reads per cycle and tile; the accuracy
of statistical calculations begins to erode quickly when

fewer reads are sampled. SolexaQA only calculates mean
quality scores by default, but users may also request var-
iances, as well as the minimum and maximum quality
scores observed. For convenience, the software returns
these summary statistics in tabular form. However,
SolexaQA also produces graphical displays of mean
quality per tile and cycle. This information is presented
both as a heat map (Figure 1) and a line graph (Figure 2);
the latter also indicates global mean quality for the entire
dataset.
SolexaQA also produces a histogram of maximized

read lengths (i.e., the distribution of longest contiguous
read segments for which base quality scores exceed a
user-defined threshold) (Figure 3). Users can select a
quality threshold (i.e., a Phred quality score, or its asso-
ciated probability value); otherwise, the software defaults
to P = 0.05 (or equivalently, Q ≈ 13, or 1 base call error
every 20 nucleotides). This histogram (and associated
tabular file) can be considered one representation of the
‘usable’ information content of a given dataset. For con-
venience, an additional program, DynamicTrim, has
been released as part of the SolexaQA package. This
software trims each read to its longest contiguous read
segment (from either or both ends) where quality scores
exceed a user-defined threshold, and writes this infor-
mation to a standard Solexa- or Illumina-style FASTQ
file [9]. A more detailed discussion of the trimming
algorithm is provided online at the project website.
Finally, we note that sequence quality is often

described in terms of log probabilities. For instance, Q =
30 is the equivalent of P = 0.001 (i.e., a 1-in-1000 prob-
ability of observing an incorrectly called base). This
notation is convenient for computational reasons; ASCII
characters can readily encode log probabilities rounded
to integer values (e.g., the character “^” in this particular
example). However, although this shortcut is convenient
for reducing file sizes, log probabilities are not particu-
larly intuitive. Indeed, some summaries of data quality
can even be misleading when calculated as log values
(e.g., consider the difficulty of interpreting variances or
summations of log probabilities). For this reason, the
tables and graphs produced by SolexaQA report actual
probabilities of error, not log-based quality scores.

Results and Discussion
Example dataset
Using default settings (recommended for most users),
SolexaQA can process a single FASTQ input file (~4
gigabytes) in under 5 minutes with negligible memory
demands on a computer with a fairly standard 2.93 GHz
Xeon processor. To illustrate the package’s capabilities,
we consider the first read of a 75-bp paired-end run
generated on the Genome Analyzer II (i.e., with 75
cycles and 100 tiles). This example dataset can be
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Figure 1 Example heat map showing several commonly observed quality defects. Nucleotide positions 1-75 are plotted from left-to-right
along the x-axis; tiles 1-100 are ranked from top-to-bottom along the y-axis. (These numbers may vary for other datasets). The scale depicts the
mean probability of observing a base call error for each tile at each nucleotide position. The defects evident in this dataset (see text for details)
are atypical of Illumina sequencing; this dataset was chosen specifically to illustrate the capabilities of SolexaQA.
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Figure 2 Distribution of mean quality (probability of error, y-axis) at each nucleotide position (x-axis) for each tile individually (dotted
black lines) and the entire dataset combined (red circles). Note the considerable variance in data quality between tiles. The defects evident in
this dataset (see text for details) are atypical of Illumina sequencing; this dataset was chosen specifically to illustrate the capabilities of SolexaQA.

Figure 3 Distribution of longest read segments passing a user-defined quality threshold (here, P = 0.05, or equivalently, Phred quality
score Q ≈ 13, or a base call error rate of 1-in-20). Note that reads in this dataset would be trimmed on average to ~25 nucleotides (i.e., only
approximately one-third of the initial 75 nucleotide read length). The defects evident in this dataset (see text for details) are atypical of Illumina
sequencing; this dataset was chosen specifically to illustrate the capabilities of SolexaQA.
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represented by a heat map (Figure 1), and illustrates sev-
eral different types of errors. Firstly, the heat map shows
the failure of an entire tile; no reads in tile 75 (Figure 1,
grey horizontal bar) passed the quality threshold
required by Illumina’s pipeline software. Secondly, indi-
vidual tiles suffered cycle specific failures, as indicated
by dark squares in cycles 9, 26 and 27 (Figure 1, lower
left). These drops in data quality are often due to tile-
specific air bubbles, although they can be caused by
other factors as well (e.g., oil loss or spills on the Gen-
ome Analyzer II series of machines). Finally, tiles on this
version of the Illumina platform are arranged in a
U-shape: spatially, tiles 1 and 100 are located together at
one end of the flow cell, tiles 50 and 51 lie together at
the other end, and tiles 25 and 75 fall together in the
middle. The clustered association of darkened horizontal
lines around tiles 25 and 75 indicates that data quality
in this particular run eroded near the middle of the flow
cell, but improved towards either end. For some applica-
tions (e.g., de novo read assembly), one or more of these
defects may require manipulation of sequence reads. In
some instances, these issues may be sufficiently disrup-
tive to require data collection to be repeated. Here,
these various data defects are readily apparent after very
simple quality analysis using the SolexaQA package. The
generally poor quality of this particular dataset, which
was chosen solely for didactic purposes, is also captured
in graphs that show mean data quality per nucleotide
position (Figure 2), as well as the distribution of longest
contiguous read segments for which base quality scores
have an error rate less than 1-in-20 (Figure 3). Never-
theless, we emphasize that some proportion of good
quality data can usually be obtained even from very
poor quality runs. Dynamic trimming (described in the
following section) is one way to extract these high qual-
ity reads. Finally, we note that we have observed no
association between cluster density and read quality
within the current standard working range of cluster
density.
Examples of good and bad datasets can be down-

loaded from the project website http://solexaqa.source-
forge.net/.

Effects of dynamic read trimming
To determine the benefits of dynamic trimming on
downstream applications, we briefly explored one such
application: the effects of read trimming on de novo
assembly. Here, miscalled bases will produce k-mers
(i.e., sequences with a word length of k) that do not
reflect the true genome sequence. These false k-mers
unnecessarily complicate the de Bruijn graph, and might
be expected to produce poorer assemblies. To test this,
we examined a dataset containing the genomes of 20
bacterial isolates from two closely related species,

Campylobacter coli and C. jejuni, which were sequenced
as indexed (i.e., individually bar-coded) samples using
50-bp single-end sequencing on an Illumina Genome
Analyzer II. These data were pre-processed with Illumi-
na’s proprietary pipeline software (version 1.4), which
yielded ~3 million reads per genome (~90-fold average
nucleotide coverage). Individual reads were either
trimmed dynamically using DynamicTrim or submitted
unaltered to Velvet (version 0.7.60) [10] for de novo
assembly. In both cases, we explored a k-mer parameter
sweep of 17 to 49, with a fixed coverage cutoff of 5, and
expected k-mer coverage inferred from the number of
reads used and the expected genome size. De novo
assemblies were summarized using N50 and the maxi-
mum contig size.
Mean values of these summary statistics, normalized

by the number of reads used in each assembly, are
plotted in Figure 4. On average, dynamic read trimming
produced larger N50 and maximum contig sizes. Impor-
tantly, fewer trimmed reads were used to produce these
assemblies, and the genome sequences therefore
assembled much more quickly and required fewer com-
putational resources. As expected, the benefits of
dynamic trimming are reduced for extremely good data-
sets - if data quality is high, there is little difference
between trimmed and untrimmed datasets.
We have also encountered instances of run- and spe-

cies-specific assembly effects. In our experience, the
same library preparation sequenced on the same
machine on different occasions can produce data of
quite different quality. We have also noticed that read

Figure 4 Effect of dynamically trimmed versus untrimmed
reads on de novo assembly with the Velvet assembler.
Dynamically trimmed reads (solid symbols) relative to untrimmed
reads (open symbols) yield improved N50 values (red squares) and
maximum contig sizes (blue triangles). Summary statistics were
averaged across de novo assemblies for 20 isolates of Campylobacter
coli and C. jejuni, and normalized by the total number of reads
employed in each assembly.
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quality often differs between species, even where sample
quality is similar and samples are run - as indexed reads
- in exactly the same flow cell lane. We suspect that the
specific characteristics of individual genomes, such as G
+C content and repeat prevalence, have important
effects on sequence data quality. These anecdotes illus-
trate the idiosyncratic nature of individual datasets and
emphasize the need to test a range of assembly algo-
rithms and data manipulations (including no read trim-
ming) before settling on a final assembly. Generally
speaking, however, we found that dynamic trimming of
reads produced better de novo assemblies of several
Campylobacter genomes using the Velvet assembler,
and we have noted similar improvements in other
downstream applications for a range of prokaryotic and
eukaryotic datasets. For instance, dynamically trimmed
reads appear to improve the signal-to-noise ratio sub-
stantially when calling single nucleotide polymorphisms
(SNPs).

Conclusions
The SolexaQA package produces tabular and graphical
summaries of data quality for sequence datasets gener-
ated with Illumina’s second-generation sequencing
machines. This package aims, firstly, to create standar-
dized diagnostic information to help identify low-quality
data rapidly and easily, and secondly, to provide a
dynamic trimming function to manipulate sequence
data at the level of individual reads. The SolexaQA
package processes even large files within minutes, and
produces trimmed datasets that yield significant
improvements in downstream analyses, including SNP
calling and de novo sequence assembly.

Availability and Requirements
Project name: SolexaQA
Project home page: http://solexaqa.sourceforge.net/
Operating system(s): Platform independent with pri-

mary UNIX support
Other requirements: Requires Perl http://www.perl.

org/, R http://www.r-project.org/, matrix2png http://
www.bioinformatics.ubc.ca/matrix2png/, and the GD
graphics library http://www.libgd.org/.
Programming languages: Perl and R
License: GNU GPL version 3 or later
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