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Abstract
Background: Despite the recent success of genome-wide association studies in identifying novel loci contributing 
effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in 
these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-
analysis of studies from the same population, increasing the sample size over any individual study. Although statistical 
software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the 
scale and complexity of data generated in genome-wide association studies.

Results: We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. 
The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. 
The software is distributed with scripts that allow simple formatting of files containing the results of each association 
study and generate graphical summaries of genome-wide meta-analysis results.

Conclusions: The GWAMA (Genome-Wide Association Meta-Analysis) software has been developed to perform meta-
analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or 
quantitative traits. Software with source files, documentation and example data files are freely available online at http:/
/www.well.ox.ac.uk/GWAMA.

Background
Genome-wide association (GWA) studies of hundreds of
thousands of single nucleotide polymorphisms (SNPs),
genotyped in samples of thousands of individuals, such as
those undertaken by the Wellcome Trust Case Control
Consortium [1], have proved successful in identifying
novel common variants contributing moderate effects to
a wide range of complex human traits (odds ratios greater
than 1.2 for dichotomous traits or heritability of at least
1% for quantitative phenotypes). However, much of the
genetic variation underpinning variation in these traits
remains, as yet, unexplained. One natural way to increase
power to detect rarer variants of more modest effect is to
increase sample size. This can most readily be achieved
through meta-analysis of multiple studies from the same
or closely related populations, increasing the sample size
to the order of tens of thousands. Such analyses have led
to the identification of multiple, now established associa-

tions that would not otherwise have been identified in
any individual study [2-4].

Meta-analysis of GWA studies has been greatly assisted
by the development of imputation techniques [5,6] which
predict genotypes not directly typed on available GWA
genotyping products, but which are present on a dense
reference panel of haplotypes, such as those available as
part of the International HapMap Project [7] or the 1,000
Genomes Project [8]. With this approach, the results of
GWA studies can be combined through meta-analysis of
millions of SNPs, even if samples are interrogated with
different GWA genotyping products.

The statistical methodology underlying meta-analysis is
already well established [9], and freely available software
packages provide routines for its implementation [10].
However, in the context of GWA studies, we face a num-
ber of unique challenges that make these existing tools
impractical: (i) results are often combined for many stud-
ies for millions of SNPs, thus requiring memory efficient
data manipulation; (ii) there may be over-dispersion of
GWA test-statistics due to population structure, and
between study variation, both of which must be
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accounted for in the meta-analysis; and (iii) computa-
tional difficulties in combining results obtained using dif-
ferent GWA genotyping products which may be aligned
to different strands.

To address these challenges, we have developed the
GWAMA (Genome-Wide Association Meta-Analysis)
software to perform meta-analysis of summary statistics
generated from GWA studies of dichotomous pheno-
types or quantitative traits. The software incorporates
tools to align studies to the same reference strand, irre-
spective of the GWA genotyping product, where possible,
and optionally performs genomic control [11] of sum-
mary statistics to correct for population structure within
each study, and potential variation between studies. The
software also incorporates scripts for the generation of
summaries of genome-wide meta-analyses including
Manhattan and quantile-quantile (QQ) plots. Here, we
demonstrate application of the GWAMA software to
meta-analysis of 5 GWA studies, typed using different
GWA genotyping products, but imputed at more than 2.3
million SNPs present on the International HapMap Proj-
ect reference panels [7]. There are already several soft-
ware packages available for meta-analysis and therefore
comparison with some of the most widely used programs
is part of current study.

Implementation
Consider a meta-analysis of N GWA studies, not neces-
sarily typed using the same genotyping product or
imputed to the same reference panel. We assume that
studies have been filtered for appropriate quality control
metrics to exclude poorly genotyped or imputed SNPs
[12]. For each study, the following information is required
for each good quality SNP: (i) the marker identifier; (ii)
the allelic effect estimate and corresponding standard
error (or an allelic odds ratio and 95% confidence interval
in the case of a dichotomous trait); and (iii) the allele for
which the effect has been estimated and the complimen-
tary non-reference allele. Optionally, users may provide:
(i) the frequency of the reference allele and the strand to
which it has been aligned, which may aid alignment of
AT/GC SNPs; (ii) the sample size contributing to the
effect estimate; and (iii) an indicator to identify if the SNP
has been directly genotyped in the study or imputed from
a reference panel.

GWAMA begins by aligning all studies to the same ref-
erence allele at each SNP. If strand information is pro-
vided, a log file records potential misalignments and any
corrections made based on the provision of reference
alleles. Fixed effects meta-analysis is then performed for
each SNP by combining allelic effects weighted by the
inverse of their variance. The software performs tests of
heterogeneity of effects across studies, and reports simple
summaries of the direction of their effect in each to high-

light potential inconsistencies in results. In the presence
of heterogeneity of effects between studies, GWAMA can
perform random-effects meta-analysis for each SNP by
calculating the random-effects variance component.
Graphical summaries of the results of the meta-analysis
can be generated using the output of GWAMA, in con-
junction with accompanying R scripts [10], provided that
a map file containing SNP identifiers, chromosome and
location are specified. A dense map file is provided with
the GWAMA software which includes SNPs incorpo-
rated on a wide range of GWA genotyping products and
variants present on the Phase 2 HapMap reference panel
[7].

File formatting prior to meta-analysis
GWAMA is distributed with PERL scripts to format out-
put from GWA association tools including PLINK [13]
and SNPTEST [14]. The scripts extract the appropriate
summary statistics from the output of these analysis
packages, and allow subsequent filtering of results to
exclude SNPs on the basis of minor allele frequency and/
or number of called genotypes. However, we assume that
studies have been otherwise filtered for appropriate qual-
ity control metrics to exclude poorly genotyped or
imputed SNPs [12].

Study alignment and error trapping
GWAMA initially checks input data files for errors, such
as negative values for odds ratios, and reports any issues
to the log file. The study is then excluded from the meta-
analysis for that SNP. The reference allele reported in the
first study for each SNP is taken as reference, to which all
allelic effects are then aligned (Table 1). If studies include
estimates of the reference allele frequency, large discrep-
ancies (more than 30%) are reported to the log file for
manual checking. If strand information is not provided
for studies, GWAMA assumes that alleles are aligned to
the forward (+) strand of the NCBI dbSNP database.
Strand misspecification is reported to the log file for all
non- A/T or G/C SNPs, and are corrected before inclu-
sion in the meta-analysis (Table 1). For A/T and G/C
SNPs, strand errors cannot be detected, and all studies
are assumed to have provided the correct alignment.
However, to overcome potential strand issues for these
SNPs, it is recommended that users provide reference
allele frequency estimates, so that any large discrepancies
between studies can be reported for manual checking.

Fixed-effects meta-analysis
Let βij denote the strand-aligned effect (log-odds ratio for
a dichotomous phenotype) of the reference allele at the
jth SNP in the ith study. The combined allelic effect
across all studies at the jth SNP is then given by
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where wij = [Var(βij)]-1 is the inverse of the variance of

the estimated allelic effect in the ith study, obtained from

the standard error (or 95% confidence interval of the odds

ratio for a dichotomous phenotype). Note that if the jth
SNP has not been directly genotyped or imputed as part

of the ith study, wij = 0. The variance of the combined

allelic effect across studies is 

given by . Furthermore, the statistic

 has an approximate χ2 distribution with one
degree of freedom, and this provides the basis of a test of
association of the trait with the jth SNP over all studies.

Correcting for population structure

The presence of population structure in a GWA study,

not taken account of in the analysis, can lead to over-dis-

persion of the corresponding association test statistics.

One approach to combat this problem is to correct test

statistics by the genomic control inflation factor. This fac-

tor is given by the median of the test statistics, divided by

its expectation under the null hypothesis of no associa-

tion, which is 0.456 in the context of an allelic-effect

based analysis [11]. Users have the option to correct each

study for potential population structure, hence the

genomic control inflation factor is calculated separately

for directly genotyped and imputed SNPs, denoted λDi

and λD*i, respectively, for the ith study [4,15]. The vari-

ance of each SNP in the study is then inflated by the rele-

vant genomic control inflation factor so that

, where K is replaced by D or D*,

as appropriate. Furthermore, users have the option of

correcting for between-study variation across the meta-

analysis so that . In this expression, λ is the

genomic control inflation factor over all meta-analysed

association test statistics, genome-wide.
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Table 1: Example of alignment of allelic effects and error trapping for a single SNP in a meta-analysis of five studies of a 
dichotomous phenotype.

Study Reported 
strand

Effect allele1 Other allele RAF Odds ratio
(95% confidence interval)

Aligned allelic effect
(standard error)

Comment

1 + A G 0.12 1.12 (1.07-1.16) 0.11 (0.02) Allele A taken as 
reference effect 
allele.

2 + G A 0.85 0.92 (0.87-0.98) 0.08 (0.03) Effect aligned to 
allele A.

3 - T C 0.12 1.06 (1.02-1.10) 0.06 (0.02) Effect aligned to 
allele A on + 
strand.

4 + T C 0.13 1.07 (0.99-1.16) 0.07 (0.04) Effect aligned to 
allele A on + 
strand. Strand 
error reported to 
log file.

5 + A G 0.87 0.95 (0.90-1.01) -0.05 (0.03) Large 
discrepancy in 
EAF reported to 
log file.

1 Effects are aligned to the reference allele in the first study. Errors in the reported strand are recorded in the log file together with warnings 
regarding potential discrepancies in reported data between studies, for example the aligned reference allele frequency (RAF).
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Testing for heterogeneity between studies

To test for consistency of allelic effects across studies at

the same SNP, GWAMA calculates two summary statis-

tics of heterogeneity [16]. Cochran's statistic

 provides a test of heterogene-

ity of allelic effects at the jth SNP, and has an approximate

χ2 distribution with Nj-1 degrees of freedom under the

null hypothesis of consistency where Nj denotes the num-

ber of studies for which an allelic effect is reported. An

alternative statistic, , quanti-

fies the extent of heterogeneity in allelic effects across

studies, over and over that expected by chance, and is

more robust than Qj to variability in the number of stud-

ies included in the meta-analysis [17,18].

Random effects meta-analysis
In the presence of heterogeneity of allelic effects between
studies, it is common to perform random-effects meta-
analysis in order to correct the deflation in the variance of
the fixed-effects estimate [19]. The random-effects vari-
ance component at the jth SNP is given by

and is used to inflate the variance of the estimated
allelic effect in each study. The combined allelic effect
across all studies at the SNP is then given by

where . The variance of the

combined allelic effect across studies is given by

. As in the fixed-effects meta-analysis,

the statistic  has an approximate χ2 distri-

bution with one degree of freedom, and this provides the

basis of a test of association of the trait with the jth SNP,

allowing for heterogeneity of allelic effects between stud-

ies.

Output and analysis summaries
For each SNP, GWAMA will output a variety of summary
information and statistics: (i) reference allele to which
effects have been aligned and the corresponding non-ref-
erence allele; (ii) meta-analysis allelic effect estimate and
standard error (or odds ratio and 95% confidence interval
for a dichotomous phenotype); (iii) meta-analysis associ-
ation test statistic, and corresponding p-value; (iv) het-
erogeneity test statistics Q (with p-value) and I2; (v)
heterogeneity summary, where each study is coded as '+'
for increased effect of the reference allele, '-' for
decreased effect of the reference allele, '0' for no effect of
the reference allele, at a pre-specified significance thresh-
old, and '?' if the study did not report an effect for the
SNP. The output from GWAMA can be used with R
scripts, supplied with the software, to generate QQ and
Manhattan plots to summarise the genome-wide meta-
analysis.

Results
To demonstrate the utility of GWAMA, we present the
results of an example meta-analysis of 5 GWA studies of a
simulated quantitative trait with directly typed and
imputed genotypes at almost 2.4 million SNPs. Associa-
tion summary statistics for each individual had previously
been corrected for population structure, prior to meta-
analysis. Statistical tests of association from the fixed-
effects meta-analysis at each SNP were corrected for
potential between-study variation on output using
genomic control. The analysis was completed in just 3.5
minutes using a dedicated processor with 2.4 Gb mem-
ory. The data set used in this example is made available
with GWAMA to test individual processor capabilities
and potential limitations. To evaluate the memory capac-
ity and program running time, we made additional testing
with 20, 50, 100 and 200 genome wide datasets (each con-
taining 2.4 million markers). The GWAMA program
peaked with memory usage 4.8 GB, 8.2 GB, 14.6 GB, and
26.2 GB accordingly taking 10 min, 24 min, 53 min, and 1
hour 52 min to run.

Figure 1 presents QQ and Manhattan plots generated
from GWAMA output using the summary R scripts
released with the software. The QQ plot indicates that
there is no evidence of population structure or between-
study variation that has not been accounted in the analy-
sis through genomic control. The Manhattan plot high-
lights two regions of association, on chromosomes 13 and
17, meeting genome-wide significance (SNPs in green
have meta-analysis p-value less than 10-8).

Discussion
There are currently several software packages designed
for genome-wide meta-analysis of association test statis-
tics including METAL [20], MetABEL [21] and META
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[22]. Table 2 presents a comparison of the key features of
these software packages and GWAMA. The most impor-
tant advantages of GWAMA over the existing packages
are: (i) the distribution of supplementary scripts with the
software to allow pre-processing of study summary statis-
tic files generated by widely-used GWA analysis tools and
production of graphical summaries to visualise the
results of the meta-analysis; (ii) the calculation of two
measures of heterogeneity of allelic effects between stud-
ies; (iii) the option to perform random-effects meta-anal-
ysis is the presence of heterogeneity; and (iv) genomic
control correction of the association results of each study,
and the meta-analysis overall, to allow for population
structure.

Conclusions
In the coming months, we expect many more meta-analy-
ses to be undertaken of increasing numbers of GWA
studies of a wide range of phenotypes. With the imminent
release of data from the 1000 Genomes project [8], we
expect imputation to be performed at many millions of
SNPs, generating ever larger sets of association summary
statistics for analysis. GWAMA is designed to efficiently

address the computational challenges of working with
such large data-sets by filtering the necessary summary
statistics from standard output files from GWA analysis
software, as described above. Therefore, we expect that
GWAMA will contribute to the identification of novel
loci contributing effects to complex human traits in this
exciting period of genetic research.

Availability and requirements
Project name: GWAMA

Project home page: http://www.well.ox.ac.uk/GWAMA
Operating system: UNIX (source code can be compiled

with other platforms), Windows XP and newer
Programming language: C++, R, PERL
Other requirements: C++ compiler, optionally R version

2.9.0 or later with PNG support to generate graphics and
PERL to run file formatting scripts

Licence: BSD
Any restrictions to use by non-academics: none

Authors' contributions
RM scripted and tested the software. APM provided statistical support and par-
ticipated in error checking. Both authors wrote and approved the final manu-
script.
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Figure 1 QQ and Manhattan plots generated from GWAMA out-
put using the summary R scripts released with the software.

Table 2: Comparison of software packages for genome-wide meta-analysis of association summary statistics.

Software package METAL MetABEL META GWAMA

Pre-processing of GWA analysis files No *ABEL SNPTEST SNPTEST, PLINK

Strand flipping for aligning effect directions Yes Yes Yes Yes

Fixed effect analysis Yes Yes Yes Yes

Random effect analysis No No Yes Yes

Heterogeneity statistics (Cochran's Q statistic, I2) Q No Q, I2 Q, I2

Automated genomic control for population structure Yes Yes Yes Yes

Graphical visualisation of meta-analysis results No Forest plot No Separate scripts for Manhattan 
and QQ plots
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