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Abstract
Background: Microarray technology is commonly used as a simple screening tool with a focus on
selecting genes that exhibit extremely large differential expressions between different phenotypes.
It lacks the ability to select genes that change their relationships with other genes in different
biological conditions (differentially correlated genes). We intend to enrich the above procedure by
proposing a nonparametric selection procedure that selects differentially correlated genes.

Results: Using both simulations and resampling techniques, we found that our procedure correctly
detected genes that were not differentially expressed but differentially correlated. We also applied
our procedure to a set of biological data and found some potentially important genes that were
not selected by the traditional method.

Discussion and Conclusion: Microarray technology yields multidimensional information on the
function of the whole genome. Rather than treating intergene correlation as a nuisance to the
traditional gene selection procedures which are essentially univariate, our method utilizes the rich
information contained in the correlation as a new selection criterion. It can provide additional
useful candidate genes for the biologists.

Background
It has become common practice to use microarray tech-
nology to find "interesting" genes by comparing two or
more different phenotypes. Modern methods of microar-
ray data analysis typically employ two-sample statistical
tests to test differential expression of genes, combined
with multiple testing procedures to guard against Type 1
errors (see [1,2] for reviews). Such methods are biased
towards selecting those genes that display the most pro-
nounced differential expression. Once the list of genes
showing statistically significant differential expression has
been generated, these genes are often ranked using purely

statistical criteria and this ranking is thought to reflect
their relative importance. Quite typically, a certain
number of genes with the smallest p-values are finally
selected from the list of all "significant" genes. While most
biologists recognize that the magnitude of differential
expression does not necessarily indicate biological signif-
icance, in the absence of better methods, this remains the
dominant means to initially prioritize candidate genes.
From a biological perspective, the above-described para-
digm is far from a perfectly valid approach, because genes
are not independent entities – they can interact with each
other in many ways. As an example, a "chain reaction"
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type of a dependence structure of gene expressions was
documented in the literature [3]. In such situation, even a
very small change in expression of a particular gene may
have dramatic physiological consequences if the protein
encoded by this gene plays a catalytic role in a specific cell
function. Many other downstream genes may amplify the
signal produced by this truly interesting gene, thereby
increasing their chance to be selected by formal statistical
methods. For an upstream regulatory gene, however, the
chance of being selected by such methods may diminish
as one keeps hunting for downstream genes that tend to
show bigger changes in their expression. As a result, the
initial list of candidates may be inflated with many effec-
tor genes that do little to elucidate the fundamental mech-
anisms of biological processes.

There are two natural ways to remedy this situation. One
way is to use bioinformatics tools that utilize prior biolog-
ical knowledge, such as partially known pathways, to pri-
oritize candidate genes. This approach is now routinely
used in biological studies and there are ongoing efforts to
enrich it with specially designed algorithms [4]. The main
weakness of the above approach is that the current biolog-
ical knowledge is still quite limited and sometimes inac-
curate. Another way is to extract additional information
on the changes of the relationships between different genes
from microarray data by using pertinent statistical meth-
ods.

For example, if an upstream gene ceases to be catalytic in
one phenotype, or this gene is active in two different bio-
logical pathways in two phenotypes, a carefully designed
statistical test based on the intergene dependence struc-
ture should be able to detect this change. In more general
situations, intergene dependence structure alone may be
insufficient to pick up those upstream genes directly, but
knowing the relationship changes across conditions
points out possible directions for searching the interesting
genes.

Notwithstanding the importance of testing for differential
expression of genes, we suggest approaching the problem
of microarray data analysis from a different angle. We
designed a new method to select those genes that are
likely to change their relationships with other genes. More
specifically, we suggest selecting candidate genes using a
statistical test that detects changes in the whole correla-
tion vector associated with each gene. This additional
information will be instrumental in making the final
selection of candidate genes more meaningful.

We propose to enrich the statistical inference from micro-
array gene expression data by testing the following
hypothesis: the ith gene does not change its relationships with
all other genes across the two phenotypes (conditions) under

study. This can be accomplished by comparing the joint
distribution of the correlation coefficients between this
gene and other genes in different conditions.

We conducted a series of simulations with different con-
figurations. The results obtained by our method were
compared with those of a similarly designed univariate
selection procedure. We observed that our method cor-
rectly selected those genes which change correlations with
other genes but retained the same marginal distributions.

We also conducted various experiments with biological
data. A large set of childhood leukemia data available
from St. Jude Children's Research Hospital [5] were used.
Our method selected some genes which were not selected
by a comparable univariate approach.

Biological data
The biological dataset used in this study was from the St.
Jude Children's Research Hospital (SJCRH) Database on
childhood leukemia [5]. Two groups of data were
employed: patients (n = 88) with hyperdiploid acute lym-
phoblastic leukemia (HYPERDIP) and patients (n = 79)
with a special translocation type of acute lymphoblastic
leukemia(TEL). To make two data groups more compara-
ble, only the first 79 patients in HYPERDIP were used.

Since the original probe set definitions in Affymetrix
GeneChip data were known to be inaccurate [6], we
updated them by using a custom CDF file to produce val-
ues of gene expressions. The CDF file was obtained from
http://brainarray.mbni.med.umich.edu. After that, each
patient was represented by an array reporting the loga-
rithm (base 2) of expression level on the set of 7084
genes. For both datatsets, each gene was standardized so
that it had zero mean and unit standard deviation. This
was to avoid introducing false correlation coefficients
when doing permutations.

Methods
Correlation vectors

Let us denote m as the number of genes. For the ith gene,
we computed the (m - 1)-dimensional random vector ri =

(ri1, <, ri, i-1, ri, i+1, <, rim). Here rij is the sample correlation

coefficient between the ith and the jth gene. This vector
represents the relationships between the ith gene and all
other genes. Denote the (m - 1)-dimensional joint distri-
bution functions of ri in two different conditions by

(x) and (x). A pertinent statistical test can be

designed to test the basic null hypothesis

F
i Ar ( ) F

i Br ( )

H r ri A BF x F x
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To increase the sensitivity of our test to departures from
Hi, especially when the correlation coefficients are very
high, we applied the Fisher transformation to the sample
correlation coefficients:

where k = 1, <, i - 1, i + 1, <, m. The power improvement
was confirmed by our simulation (see Table 1). We
denote the correlation vectors in two conditions by wi(A)
and wi(B), respectively.

Instead of testing Hi, we tested

where (x) and (x) are the joint distribution

functions of wi(A) and wi(B), respectively. If  was

rejected, we declared the ith gene to be a differentially cor-
related gene.

In order to test the hypotheses based on the joint distribu-
tion functions of correlation vectors, we needed to create
samples of correlation vectors. The following two meth-
ods were employed for this purpose:

• Group method: Divide each dataset into 8 subgroups,
each containing 10 slides (9 slides for the last subgroup of
the biological data). By computing correlation vectors
from each subgroup, we obtained a sample of size 8.

• Resampling method: Randomly select 60 slides to calcu-
late the correlation vector. Repeat 20 times to get 20 cor-
relation vectors in each group, respectively.

Through the simulations, we found that these two meth-
ods were comparable, with the resampling method being
slightly better in terms of testing power (see Table 1, 2, 3
and 4). However, the resampling method was much more
computationally demanding. As an example, it took
approximately 30 hours to analyze the biological data
(7084 genes and 79 slides in both conditions, 10,000 per-
mutations) with the group method.

For the resampling method, the computation time was
216 hours instead. All computations were done in a Sat-
urn cluster computer which includes 2 nodes each with 8×
AMD Opteron dual-core processors 2 GHz (16 processor
cores), 16×2GB SDRAM.

Throughout this paper, we use the group method unless
otherwise noted.

N-statistic

We chose a multivariate nonparametric test based on N-
statistic with Euclidean kernel for testing the hypothesis

. This statistic has been successfully used to select dif-

ferentially expressed genes and gene combinations in
microarray data analysis [7-10]. The N-statistic is defined
as follows:

where ns is the number of correlation vector samples in

each group, wi(·, k) indicates the kth replication of the

correlation vector (using the group or the resampling

method), and  is the

kernel defined by Euclidean distance.
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Table 1: SIMU2, true positives (TP) and false positives (FP) in simulations with dependent base.

Effect Size CV Method WRS Method

FP mean(STD) TP mean(STD) FP mean(STD) TP mean(STD)

0.1 0.25(0.7) 0.1(0.3) 0.05(0.22) 0.0(0.0)

0.2 0.9(2.39) 1.2(4.79) 0.15(0.48) 0.05(0.22)

0.3 1.1(3.51) 4.9(10.77) 0.15(0.48) 0.2(0.87)

0.4 0.9(3.48) 80.5(25.79) 0.65(1.35) 0.0(0.0)

In CV method with effect size 0.4, the TP drops to 2.9(6.82) without Fisher transformation.
Total number of genes: 708. Number of differentially correlated genes: 100. Method: group method. Extended Bonferroni threshold: 1.0.
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After this step, the ith gene was assigned a non-negative
number Ni, a measurement of how much intergene corre-
lation structure had changed from condition A to condi-
tion B.

0.1 Resampling based p-values
We used the following algorithm to obtain resampling
based p-values for each gene:

1. Randomly shuffle the slides in two different conditions,
then split them into two groups.

2. Compute correlation vectors for each gene by using the
group method or the resampling method.

3. Compute N-statistic for each gene based on the correla-
tion vectors.

4. Repeat the above steps for K = 10, 000 times, record the
resampling based N-statistics as Nik, i = 1, ..., m, k = 1, ...,
K. They can be used to construct the (resampling based)
null distribution for each index i.

5. Compute Ni, the N-statistic for each gene (without ran-
dom shuffles).

6. Obtain the resampling based p-value, pi, by comparing

Ni with the null distribution constructed from Nik. Specif-

ically, pi is defined to be , the proportion of Nik

which is greater than or equal to Ni.

Finally, we applied the extended Bonferroni adjustment
[11] with threshold 1.0 to control PFER (per-family error
rate). Extended Bonferroni adjustment is less conservative
than the FWER (familywise error rate) controlling proce-
dures and more stable than FDR (false discovery rate) con-
trolling procedures in the context of microarray analysis.
More details about this multiple testing adjustment proce-
dure can be found in [11].

From the computational perspective, it was very tempting
to reduce the number of permutations by pooling all Nik
to construct one grand null distribution. However, we
noticed that the null distributions for different genes can
be very different. Based on our biological data, the density
functions for the significant genes tended to shift to the
left compared to those associated with the non-significant
genes (see Figure 1).

#( )Nik Ni
K
r

Table 2: SIMU1, true positives (TP) and false positives (FP) in simulations with independent base.

Effect Size CV Method WRS Method

FP mean(STD) TP mean(STD) FP mean(STD) TP mean(STD)

0.1 1.0(1.0) 4.1(4.15) 0.65(0.85) 0.25(0.54)

0.2 0.6(0.73) 37.4(14.47) 0.75(0.83) 0.1(0.3)

0.3 1.1(1.04) 85.45(11.1) 0.9(1.09) 0.1(0.3)

0.4 0.9(0.77) 97.95(3.25) 0.85(0.91) 0.05(0.22)

Total number of genes: 708. Number of differentially correlated genes: 100. Method: group method. Extended Bonferroni threshold: 1.0.

Table 3: SIMU1, true positives (TP) and false positives (FP) in simulations with independent base. 

Effect Size CV Method WRS Method

FP mean(STD) TP mean(STD) FP mean(STD) TP mean(STD)

0.1 0.95(0.92) 4.1(2.68) 0.65(0.85) 0.25(0.54)

0.2 0.65(0.85) 42.9(13.86) 0.75(0.83) 0.1(0.3)

0.3 0.65(0.73) 92.1(8.28) 0.9(1.09) 0.1(0.3)

0.4 1.45(1.07) 99.3(1.82) 0.85(0.91) 0.05(0.22)

Total number of genes: 708. Number of differentially correlated genes: 100. Method: resampling method. Extended Bonferroni threshold: 1.0.
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Univariate gene selection method
We would like to emphasize that our method (hencefor-
ward denoted as the CV method) is nonparametric.
Because of this, we decided to compare the CV method to
a nonparametrc univariate gene selection method: Wil-
coxon rank-sum test with the same extended Bonferroni
adjustment (henceforward denoted as the WRS method).

Results
Simulations
To gain better insight into the performance of the CV
method, we simulated several sets of data. All sets had two
groups of 80 arrays representing two different biological
conditions (condition A and condition B). Each array had
m = 708 genes. Denote the genes in the first condition by
xi, 1 ≤ i ≤ m and genes in the second condition by yi, 1 ≤ i
≤ m. For both groups, all genes were identically distributed
with marginal distribution N(0, 1). With different base-
line correlation structure, we had the following two
classes of simulated datasets:

• SIMU1: Any two distinct genes that were both in the set
of the first 100 genes were correlated with coefficient d in
condition A, 0.0 in condition B. Otherwise the correlation
coefficient was 0.0. Here d was a constant taking value in
{0.1, 0.2, 0.3, 0.4}. Condition B can be thought of as the
control condition where genes were independent of each
other. We called this dataset the independent base data.

• SIMU2: Any two distinct genes that were both in the set
of the first 100 genes were correlated with coefficient 0.5
+ d in condition A, 0.5 in condition B. Otherwise, the cor-
relation coefficient was 0.5. Again, d was a constant taking
value in {0.1, 0.2, 0.3, 0.4}. Unlike SIMU1, the baseline
intergene correlation was 0.5. We called this dataset the
dependent base data.

By this design, the differentially correlated genes were the
first 100 genes for both SIMU1 and SIMU2. d can be seen

as a parameter indicating how much correlation structure
had changed across two conditions.

For SIMU1 and SIMU2 and every d, we applied both the
CV method and WRS method, and recorded the true/false
positives. We also repeated this process 20 times with dif-
ferent random seeds to get the mean and standard devia-
tion of the true/false positives. The results are shown in
Table 1 and Table 2. As expected, the CV method detected
differentially correlated genes while the WRS method did
not. The power of the CV method clearly increased as the
effect size gets larger. Also, it was easier to detect differen-
tially correlated genes in the independent base data than
in the dependent base data. This means that high baseline
correlation structure deteriorated the power of the CV
method.

Simulations with biological data
The difference between SIMU1 and SIMU2 was that the
baseline intergene correlation was much higher in SIMU2.
This was an attempt to model the intergene dependence
structure in biological data. In some sense, a better way of
modeling the actual dependence structure is through resa-
mpling from the biological data.

First, we combined HYPERDIP and TEL data and ran-
domly permuted the slides. We then divided them into
two groups of an equal number of slides, mimicking two
biological conditions without differentially correlated
genes. For both conditions, genes were standardized so
that the sample means equaled zero and the sample
standard deviations were one. We denoted the entries in
two groups by xij and yij, 1 ≤ i ≤ 7084 and 1 ≤ j ≤ 79, and
the correlation matrix of these two groups by { ik}, 1 ≤ i, k
≤ 7084.

Next, we generated a 79-dimensional random vector with
i.i.d. standard normal components. Denote this vector by

a = {aj}, 1 ≤ j ≤ 79. We added a to the first 300 row vectors

in the first condition with a tuning parameter  as follows:

Table 4: SIMU2, true positives (TP) and false positives (FP) in simulations with dependent base. 

Effect Size CV Method WRS Method

FP mean(STD) TP mean(STD) FP mean(STD) TP mean(STD)

0.1 1.05(2.77) 0.25(0.7) 0.05(0.22) 0.0(0.0)

0.2 0.85(2.87) 1.35(4.99) 0.15(0.48) 0.05(0.22)

0.3 0.55(1.56) 6.25(12.32) 0.15(0.48) 0.2(0.87)

0.4 1.1(4.57) 86.7(21.86) 0.65(1.35) 0.0(0.0)

Total number of genes: 708. Number of differentially correlated genes: 100. Method: resampling method. Extended Bonferroni threshold: 1.0.
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. These transformed entries are denoted

as xij again, and we name this dataset SIMU3.

The first condition had the correlation coefficients as fol-
lows: Noticeably, the correlation coefficients between any two

of the first 300 genes of the first group differed substan-
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tially from those of the second group, and these were con-
sidered as differentially correlated genes. The correlation
coefficients between any two of the remaining 6784 genes
of the first group were the same as the corresponding cor-
relation coefficients between those of the second group,
so they were not considered as differentially correlated
genes.

There was one caveat in this approach. Even if xi was one
of the 6784 genes that were not differentially correlated,
corr(xi, xk) was still different in two conditions if xk hap-
pened to be a gene from the first 300 genes. In other
words, the first 300 differentially correlated genes induced
some small changes for those genes that were not differen-
tially correlated. In practice however, when summarized
through the N-statistic, these differences for the latter
6784 genes were negligible and it was reasonable to view
them as random fluctuations.

We set  = 0.5 in SIMU3. As before, we applied both the
CV method and the WRS method. The above procedure
was repeated 10 times, the results were summarized in
Table 5.

The CV method selected most of differentially correlated
genes while WRS method did not. The CV method also
produced fewer false positives than the WRS method.

Data analysis based on biological data
Using the WRS method, we found 102 differentially
expressed genes. Using the CV method (resampling
method was used here to gain more power), we detected
16 differentially correlated genes. Out of these, 11 were
differentially expressed and 5 were not. These 5 genes
were: CD1C (antigen precursor), HDHD1A (haloacid
dehalogenase-like hydrolase domain containing 1A,
enzyme involved in many catalytic activities), BASP1
(brain acid-soluble protein 1), CYB5A (cytochrome b5
type A, microsomal) and TFPI (tissue factor pathway
inhibitor, which helps to regulate the extrinsic blood
coagulation cascade). In the original study, two of these
genes were found as differentiating among two leukemia
subtypes (BASP1 and CYB5A) and the other three were
never mentioned. Differential correlation of these genes

in two leukemia subtypes might provide some valuable
information for better understanding the underlying sub-
types' differences; however, these genes could not be cap-
tured by conventional tests. The results of this study (with
multiple thresholds before and after the Bonferroni
adjustments) can be found in Table 6.

Discussion and Conclusion
Our method represents a radical conceptual change from
current approaches focused solely on differentially
expressed genes. However, this method is not intended to
replace the existing methodology but rather to provide
biologists with an additional source of information for deci-
sion making. As an example, the univariate method failed
to detect Gene CYB5A, which had a modest unadjusted p-
value 0.168 based on Wilcoxon ranksum statistic. Yet
CYB5A was detected as a differentially correlated gene
with an unadjusted p-value 0.0 (its observed N-statistic
was larger than all permutation N-statistics). To get a
rough idea of how many genes had different correlation
coefficients with CYB5A across two conditions, we looked
at the marignal distributions of CYB5A' correlation vector.
252 genes were detected to have changed correlations
with CYB5A dramatically across conditions. The selection
procedure of these 252 genes can be summarized as fol-
lows: First, we splitted the slides in two conditions into 8
subgroups, respectively, as in the Group method. Second,
we calculated 8 correlation vector samples of gene CYB5A
in each condition. Finally, for all 7083 correlations (with
8 samples in each condition), we applied Wilcoxon rank-
sum test to each of them to obtain an unadjusted p-value.
After extended Bonferroni adjustment, 252 genes were
selected at significant level 2.0. According to BioCarta,
about one third of all pathways associated with these 252
genes are related to cell cycle progression, cell division
and control of centrosome duplication. HYPERDIP phe-
notype is characterized by the presence of more than 50
chromosomes. As a consequence, all pathways working
for cellular maintenance and proliferation should be higly
activated in HYPERDIP phenotype. The differential corre-
lation of genes involved in pathways, related to cell prolif-
eration between HYPERDIP and TEL seemed reasonable
and might deserve future studies.

The microarray technology yields unique multidimen-
sional information on the functioning of the whole
genome machinery at the level of transcription so that
much can be learned about relationships between genes
and mechanisms by which the cell assigns tasks to differ-
ent genes to maintain a specific function. It is unfortunate
that such an advanced technology continues to be used as
a simplistic screening tool with a focus on big differences
between mean values of expression measurements. The
true potential of microarray technology has yet to be
unveiled. It is noteworthy that recent years have seen a

Table 5: SIMU3, true positives (TP) and false positives (FP) in 
simulations of biological data with tuning parameter  = 0.5. 

CV Method WRS Method

FP mean(STD) TP mean(STD) FP mean(STD) TP mean(STD)

0.0(0.0) 270.6(11.09) 0.2(0.6) 0.0(0.0)

Total number of genes: 7084. Number of differentially correlated 
genes: 300. Method: group method. Extended Bonferroni threshold: 
1.0.
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growing interest in correlations between gene expression
levels in statistical methodologies for microarray analysis
[9,12-25]. The correlation coefficient has been used exten-
sively as a measure of similarity in gene clustering since a
seminal paper by Eisen et al. [26]

However, very few studies have examined the possibility
of using the intergene correlation structure to find impor-
tant genes that are linked to disease. One obstacle lies in
the fact that there are m different sample means but

 different sample correlation coefficients. It is

much harder to catch the differences hidden in the corre-
lation matrix that has much higher degrees of freedom
(25, 087, 986 in our study). Furthermore, it is much more
computationally intensive to compute the sample correla-
tion coefficients than the sample means. Consequently,
we could not afford to use more than 10, 000 permuta-
tions to get finer p-value estimation, and we are thus reluc-
tant to recommend the slower permutation based
resampling method to the biologists, despite the fact that
we know this method is more powerful than the group
method.

As illustrated by our study on biological data (with 79
slides in each condition) we were able to identify 102
genes, which changes the medians of their (univariate)
distributions, yet only 16 genes were reported as differen-
tially correlated (see Table 6). This seeming inadequacy of
power was also shown in the simulation studies (Table 1,
Table 2). This phenomenon might be subject to a number
of explanations. It might be caused by the small sample
size. Due to the nature of the CV method, its statistical
perspective is to compare the distribution of sample corre-
lation coefficients instead of expression levels in different
biological conditions. With the group method, we splitted
79 slides into subgroups and computed the sample corre-

lation vectors from each group. As a result, we only had
eight sample correlation vectors for each condition. We
could divide the data into more subgroups, and then there
would be fewer slides per subgroup so that the sample
correlation coefficient computed from each subgroup
would be less accurate. This was a trade-off. With the resa-
mpling method, we had 20 correlation vectors. Having
more than 20 resamplings would enhance the accuracy of
the estimated N-statistics and improve the power; mean-
while, it would demand more computing time, making
this another trade-off.

The choice of the Euclidean distance as the kernel for the
N-statistics might be another culprit. The Euclidean dis-
tance kernel is a generic kernel that is invariant under any
orthogonal transformation. In other words, it is symmet-
ric and indifferent to all departure from the null distribu-
tion. A specifically designed kernel that is sensitive to the
likely departure from the null distribution caused by the
changes of correlation might significantly increase the
selection power of the CV method. Last, it may have been
that indeed fewer genes were differentially correlated than
were differentially expressed in the biological data. The
hypotheses that the CV method was testing were entirely
different from those tested by the univariate selection
methods, such as the WRS method. It is absolutely possi-
ble that one gene is differentially expressed but not differ-
entially correlated, or vice versa. The very fact that 11 out
of 16 differentially correlated genes were differentially
expressed in our study is an interesting phenomenon that
is worth further investigation.

We believe many improvements can be made to enhance
the selecting power of the CV method. We also firmly
believe, as larger sets of microarray gene expression data
become readily available, quantitative insights into
dependencies between gene expression levels will gain
increasing importance.

m m( )−1
2

Table 6: Numbers of differentially expressed (DE) and differentially correlated (DC) genes from biological data before and after 
Bonferroni adjustment with variant significant levels.

Before Adjustment After Adjustment

level = 0.05 level = 0.05 level = 0.5 level = 1.0

DC Genes 275 10 10 16

DE Genes 421 68 93 102

Both DC and DE Genes 140 8 8 11

DC But Not DE Genes 135 2 2 5

DE But Not DC Genes 281 60 85 91

Total number of genes: 7084. Method: resampling method.
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