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Abstract

Background: Aminopeptidase N (APN) type proteins isolated from several species of
lepidopteran insects have been implicated as Bacillus thuringiensis (Bt) toxin-binding proteins
(receptors) for Cry toxins. We examined brush border membrane vesicle (BBMV) proteins from
the mosquito Anopheles quadrimaculatus to determine if APNs from this organism would bind

mosquitocidal Cry toxins that are active to it.

Results: A 100-kDa protein with APN activity (APN,, 100) was isolated from the brush border
membrane of Anopheles quadrimaculatus. Native state binding analysis by surface plasmon resonance
shows that APN,,, 100 forms tight binding to a mosquitocidal Bt toxin, CrylBa, but not to

Cry2Aa, Cry4Ba or Cryl | Aa.

Conclusion: An aminopeptidase from Anopheles quadrimaculatus mosquitoes is a specific binding

protein for Bacillus thuringiensis Cry| 1Ba.

Background

The main African vectors of malaria are in the Anopheles
gambiae complex mosquitoes [1]. In general, all species of
Anopheles have been found to be susceptible to a certain
extent to infection by some strain of human plasmodia
[2]. Studies on lepidopteran insects revealed several types
of Bt toxin-binding proteins (receptors): aminopeptidase
N (APN) -like proteins [3,4]; cadherin-like proteins [5,6];
a glycoconjugate [7] and glycolipids [8]. In mosquitoes,
two types of receptors were discovered: a protein with
maltase activity from Culex. pipiens that binds the Bin
toxin of Bacillus sphaericus [9], and a 65 kDa protein of
unknown function (lacking aminopeptidase activity)
from Aedes aegypti that binds Cry4Ba and Cryl1Aa [10].

Two APNs have been identified in Ae. aegypti but not asso-
ciated with binding Cry proteins [11]

APNs (EC 3.4.11.2) are exopeptidases that cleave single
amino acids from the N-terminus of a polypeptide. APNs
are expressed in many tissues including the brain, the
lung, blood vessels, primary cultures of fibroblasts [12],
and have the highest levels in intestinal and kidney brush-
border membranes [13]. APNs belong to the M, family of
zinc metallopeptidases [14], which includes related
enzymes like aminopeptidase A [15], aminopeptidase B
[16,17], and leukotriene A4 hydrolase [18]. APNs have
also been implicated as cellular receptors for human,
canine, and feline coronaviruses [19].
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In this study, intestinal APN from An. quadrimaculatus lar-
vae was isolated and tested for binding ability to different
mosquitocidal Cry toxins (Cry2Aa, Cry4Ba, Cry11Aa, and
Cryl11Ba). Membrane proteins were extracted from An.
quadrimaculatus brush border membrane vesicles (BBMV)
and separated by anion-exchange chromatography. Frac-
tions containing APN activity were pooled and purified by
size-exclusion chromatography. A 100-kDa protein with
APN activity was isolated from the BBMV and its N-termi-
nal sequence was determined to be AQLEDYRLND-
DVRPTAYRIE. This protein was used to screen different
mosquitocidal Cry toxins binding via Biacore analysis.
From the screening, it was discovered that only Cry11Ba
was able to bind the APN. A protein BLAST search limited
to the arthropod database revealed three highly homolo-
gous An. gambiae APNs based on the N-terminal sequence.

Results

Purification of An. quadrimaculatus aminopeptidase N
SPR analysis requires purified ligands and analytes to be
used. Solubilized An. quadrimaculatus BBMV proteins were
separated by anion-exchange chromatography and all elu-
tion fractions were tested for APN activity. Fractions 19-
21 and 24-34 showed APN activity. Fractions 19-21 were
made up of a single peak, and fractions 24-34 were made
up of at least two peaks (Fig. 1). Fractions 19-21 were
pooled, concentrated, and purified further by size-exclu-
sion chromatography. A single peak was eluted at around
75 ml of run volume that correspond to a protein size of
about 100 kDa (Fig. 2A). This peak was collected and was
determined to hold APN activity. SDS-PAGE analysis of
the protein also indicated a size of 100 kDa (Fig. 2B) and
the 100 kDa protein was highly purified. The 100 kDa
protein was named APN,,, 100.

Determination of binding affinity by SPR analysis
Initially, APN,,, 100 was evaluated for binding by SPR
analysis to four Cry toxins (Cry2Aa, Cry4Ba, Cry11Aa and
Cry11Ba), which were previously determined in this labo-
ratory to have mosquitocidal activity towards An. quad-
rimaculatus (data not shown). Only CryllBa bound
significantly to APN,,, 100. Further analysis of real-time
binding kinetic of Cry11Ba to APN,,, 100 was performed
at different analyte concentrations (Fig. 3), followed by
global fitting of all the response curves. A 1:1 binding sto-
ichiometry, including a drifting-baseline correction, pro-
duced the following apparent rate constants of the
bimolecular interaction: k, = 184.0 M-!s'! (+ 1.0) and k; =
1.03 x 10751 (+ 4.01 x 10-¢), K, = 0.56 nM. More complex
binding models, such as 2-site independent binding (A +
B1 <> AB1; A + B2 <> AB2), and 2-site sequential binding
(A + B <> AB <> AB*) also gave as good fitting as the sim-
ple 1:1 binding (A + B <> AB) with 2= 0.112 (data not
shown).

http://www.biomedcentral.com/1471-2091/7/16

mAU

50 1

10.0

1{; 14i15i26l27!28 29120122 22123124l 260261 271201 20 30/ 22132033
50. 60.0 70.0 ml

Figure |

Separation of An. quadrimaculatus aminopeptidase N from
solubilized BBMV proteins by anion-exchange chromatogra-
phy. The UV absorbance at 280 nm (mAU) is indicated at the
top left corner, and the percent conductivity of buffer B (%)
is indicated at the top right corner. Collected fractions are
shown at the bottom in 2-ml intervals. Run volume is indi-
cated at the bottom (ml). Fractions 19-21 and 24-34 contain
APN activity.

N-terminal sequence of APNAnq100

A twenty amino acid residue sequence (AQLEDYRLND-
DVRPTAYRIE) was obtained from N-terminal sequencing
of purified APN,,, 100. Data mining for similar
sequences in the arthropod databases revealed high
homology (80-85% identities) with 3 conceptual trans-
lated proteins from An. gambiae (Table 1). A BLAST search
using the first protein's full amino acid sequence from An.
gambiae (accession no. EAA08760.1) revealed homology
with many aminopeptidases from organisms of other gen-
era (data not shown). This would suggest that the three
proteins from An. gambiae have aminopeptidase activity.

Analysis of the N-terminal region with the program Sig-
nalP (http://www.cbs.dtu.dk/) predicted that the most
probable cleavage site for the signal peptide sequence was
between position 25 and 26 for EAA08760.1; between
position 27 and 28 for EAA08763.1; and between posi-
tion 28 and 29 for EAA08929.1. However, the sequences
of the proteins shown in Table 2 start at positions further
downstream from the predicted cleavage sites, which sug-
gested that there might have been further processing of
the N-terminal region of the An. quadrimaculatus APN.
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(A) Further purification of APN fractions (fractions 19-21)
from anion-exchange chromatography of An. quadrimaculatus
BBMV by size-exclusion chromatography. A single peak was
eluted at 75 ml elution volume, corresponding to 100 kDa.
(B) SDS-PAGE of purified APN (APN,,, 100) obtained in (A)
above. The estimated sizes of the protein bands are indicated
on both sides of the gel in kDa.

Analysis of the C-terminal region for possible glycosyl-
phosphatidylinositol (GPI) anchor sites using the pro-
gram Big-PI Predictor (http://mendel.imp.univie.ac.at/
gpi/gpi_server.html) found no potential GPI-modifica-
tion site for EAA08760.1. Potential GPI-modification sites
were found at position 930 and 920 for EAA08763.1 and
EAA08929.1, respectively. Analysis of the sequences using
the program NetOGlyc 2.0 (http://www.cbs.dtu.dk/serv
ices/NetOGlyc/) [20] to reveal potential GalNAc O-glyco-
sylation sites found 5 sites in EAA08760.1, 7 sites in
EAA08763.1, and 6 sites in EAA08929.1. Analysis of the
sequences using NetNGlyc 1.0 (http://www.cbs.dtu.dk/
services/NetNGlyc/) [21] to reveal potential N-glycosyla-
tion sites found 2 sites in EAA08760.1, 8 sites in
EAA08763.1, and 3 sites in EAA08929.1.

Another protein BLAST search was performed using the
sequence of a known conserved region for aminopepti-
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Real-time binding of Cry| 1Ba to An. quadrimaculatus APN 5,
100. Experimental curves (jagged line) are shown overlaid
with fitted curves (smooth line) obtained with the I:I Lang-
muir binding with drifting baseline model. The overlaid
BlAcore response curves are shown for Cry| | Ba toxin injec-
tions at 4, 8, 16, 32 UM as indicated.

dases (MAAVPDFSAGAMENWGLL) [22], which yielded
16 homologous proteins from the An. gambiae genomic
database (Table 2). This indicated that there are a large
number of aminopeptidase isomers in these mosquitoes.

Discussion and conclusion

An aminopeptidase N (APN) type protein has been impli-
cated as a Cry toxin-binding protein in several lepidop-
teran species: Manduca sexta [4], Bombyx mori [23,24],
Lymantria dispar [25,26], Heliothis virescens [27], Plutella
xylostella [28], Trichoplusia ni [29], Helicoverpa armigera
[30] and Spodoptera litura [31]. Recently the binding
epitopes of CrylAa to an APN from B. mori have been
mapped by monoclonal antibody inhibition [32]. Thus,
targeting APN for analysis as a possible toxin-binding pro-
tein is a reasonable approach.

The surface plasmon resonance (SPR) method allows
analysis of bimolecular interaction in the native state,
without a potentially interfering label [33]. Thus, since the
Cryl1Ba and APN,,, 100 interaction detected in this
study represents tight (ca. 1 nM K ) native-state binding,
we propose that APN,,, 100 is a putative receptor for
Cryl1Ba. APN,,, 100 did not bind to Cry2Aa, Cry4Ba or
Cryl1Aa even though the toxins have insecticidal activity
against An. quadrimaculatus. The specific binding of
Cryl1Ba to APN,,, 100 suggests that its mode of action
would be different from Cry2Aa, Cry4Ba, or CryllAa.
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Table I: Amino acid sequence similarities of the N-terminal sequence of APN,,,, 100 from An. quadrimaculatus with three protein

sequences from An. gambiae obtained through a BLAST search.

Source identity Acc. No.b Amino acid sequence? % identity
An. quadrimaculatus |-AQLEDYRLNDDVRPTAYRIE-20 NAc¢

An. gambiae EAA08760. | 42-AQLEDYRLNDDVWPTHYDIE-61 85

An. gambiae EAA08929.1 53-AQLEEYRLNDDVWPTHYDIE-72 85

An. gambiae EAA08763.1 45-AQPEDYRLNDDVWPTHYDIE-64 80

2 The numbers flanking the sequences represent residue position in the protein.

b The accession no. in protein database.
¢NA- Not applicable.

The N-terminal sequence of APN,,, 100 showed high
homology with three putative APNs from An. gambiae.
One or more of these APNs could act as a binding protein
for Cryl1Ba.

Recently the binding epitopes of CrylAa to an APN from
B. mori have been mapped by monoclonal antibody inhi-
bition [32].

Methods

Preparation of mosquito brush border membrane vesicles
(BBMV)

Fourth instars An. quadrimaculatus larvae were filtered
with a nylon mesh, washed in distilled water, separated
from large residual food particles, and dried briefly on a
filter paper (Fisher) under vacuum suction. Harvested lar-
vae were frozen at -70°C until needed. About 4-6 g of fro-
zen larvae were homogenized in 8-12 ml of cold buffer A
(300 mM mannitol, 5 mM EGTA, 17 mM Tris-HCI, pH
7.5). Larvae were homogenized by 40 strokes of Potter-
Elvehjem PTFE pestle in glass tube at speed number 5

(~6000 rpm). BBMV were enriched through differential
centrifugation by selective divalent-cation precipitations
as described by Silva-Filha, et al [34]. The BBMV pellet was
resuspended in 1 ml of ice-cold binding buffer (8 mM
NaHPO,, 2 mM KH, PO, , 150 mM NaCl, pH 7.4) sup-
plemented with COMPLETE™ (Roche) protease inhibitor
and homogenized by10 extrusions using a small Teflon
pestle.The protein concentration of the BBMV was meas-
ured with the Coomassie protein assay reagent (Pierce),
using BSA as the standard. The BBMV was kept at -70°C
until needed.

Purification of An. quadrimaculatus aminopeptidase N
(APN) from BBMV

Approximately 20 mg of BBMV was solubilized overnight
at 4°C in the binding buffer supplemented with 10 mg/
ml of CHAPS (Roche). Later, the solution was vortexed
briefly and centrifuged at 15,000 rpm in a JA-17 rotor at
4°C for 10 min. The supernatant was treated with PIPLC
for 1 hr at 37°C. The supernatant was separated by anion-
exchange chromatography (HiTrap 5 ml column, Phar-

Table 2: Putative aminopeptidases in An. gambiae that contain a conserved MAAVPDFSAGAMENWGLL sequence.

No. Accession no. Protein length (residues)
| EAA05382.1 649
2 EAA01063.1 1800
3 EAA13235.1 1691
4 EAA09719.1 734
5 EAA08912.1 8l
6 EAA0298I.1 641
7 EAA08915.1 870
8 EAA08931.1 997
9 EAA12046.1 955
10 EAAI10722.1* 809
Il EAA08434.1 990
12 EAA08760.1 791
13 EAA08910.1 614
14 EAA08929.1 940
15 EAA03210.1 639
16 EAA08763.1 952

* HEXXH motif for the APN zinc-iron-binding site does not exist in this sequence, which would exclude this protein from the metallopeptidase

family.
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macia) by continuous salt gradient using two buffers: A,
20 mM Tris-Cl, pH 7.4, 0.4 mg/ml CHAPS; B, buffer A
with 1 M NaCl. Two milliliters elution fractions were col-
lected at a flow rate of 1 ml/min. A small fraction of each
elution fraction was tested for the presence of APN activity
using L-leucine p-nitroanilide (Sigma) as substrate. Neigh-
boring fractions containing APN activities were pooled
and concentrated using centricon (YM30, Millipore)
according to the manufacturer. The pooled fractions were
further purified by size exclusion chromatography (Super-
dex 200, Pharmacia) in 20 mM Tris, pH 7.4, 0.4 mg/ml
CHAPS and concentrated as before. The quality of the
sample was checked by sodium dodecyl sulfate-polyacry-
lamide gel electrophoresis (SDS-PAGE) as described by
Laemmli [35].

Purification of Cry toxins

An E. coli clone of Cry2Aa (a grateful gift from Takashi
Yamamoto) was used as a source of this gene. The cry2Aa
gene was extracted by PCR and cloned into plasmid
pHT600 and transformed into B. thuringiensis 4Q7, a plas-
midless Cry- derivitive. The genes cry4Aa, cry4Ba, cryl1Aa
and cryl1Ba were received in the same plasmid vector and
host B. thuringiensis strain (gratefully donated by Armelle
Delécluse). Single Bt colonies were inoculated into a 5 ml
LB medium supplemented with 10 pug/ml erythromycin
and grown overnight at 30°C in an incubator-shaker at
250 rpm. These cultures were inoculated into a 500 ml
SSM medium [36] also supplemented with erythromycin
and incubated a further 4 days until sporulation and
autolysis. Bt crystals in the autolysed-cells suspension
were purified as described previously [37] for purification
of Cry toxins expressed in E. coli, except that the sonica-
tion steps were omitted. The crystals were solubilized in
carbonate buffer (30 mM Na, CO;, 20 mM NaHCO;, pH
10.0) supplemented with 10 mM dithiothreitol (Roche)
at 37°C for 3 hours. Next, the solubilized toxin was incu-
bated with 1/20 (v/v) 10 mg/ml trypsin (Sigma) at 37°C
for 3 hours. The activated toxin was purified by FPLC
using a Superdex 200 (Pharmacia) column in the carbon-
ate buffer. Protein concentration was measured using the
Coomassie protein assay reagent (Pierce) with bovine
serum albumin as standard.

Biosensor analysis of toxin-APN affinities

All surface plasmon resonance (SPR) experiments were
performed on a BIAcore 3000 machine (Biacore AB). An.
quadrimaculatus APN in 20 mM ammonium acetate, pH
4.2, was immobilized on a CM5 sensor chip by amine-
coupling method (Biacore AB). The flow buffer HBS-EP
(10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.005%
polysorbate 20 (v/v), pH 7.4) (Biacore AB) was used at a
flow rate of 30 pl/min. Multiple concentrations (4, 8, 16,
and 32 uM) of Cry11Ba was injected across the flow cell
containing the APN and one blank flow cell containing
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ethanolamine as a blocking agent. Surfaces were regener-
ated with 2 pulses of 10 pul of 10 mM NaOH, pH 11, at 100
pl/min or until the signal return to baseline. Signal
responses from the blank flow cells were subtracted from
all response curves and data were globally fitted using
BlAevaluation Ver. 3.1 (Biacore AB). The curves were fit-
ted to a simple 1:1 Langmuir binding model (A+B <> AB)
to obtain apparent rate constants.

N-terminal sequencing and sequence similarity search

For N-terminal sequencing, proteins separated in SDS-
PAGE were transferred onto PYDF membrane (Roche) by
electro-transfer (Mini-PROTEAN™ II, Bio Rad) according
to the manufacturer. The membrane was stained briefly
with Coomassie Blue R-250 and destained in 50% meth-
anol. Bands representing 100-kDa proteins were excised
and sequencing was performed on an automated
sequencer (Model 477A, Applied Biosystems) at USDA
Forest Service Laboratory, Delaware, OH. Data mining
was performed on the N-terminal sequence using the
basic local alignment search tool (BLAST), an on-line tool,
at the National Center for Biotechnology Information
(NCBI) website. The search parameter was limited to
arthropods. CLUSTAL W (http://npsa-pbil.ibcp.fr/cgi-
bin/npsa_automat.pl?page=npsa_clustalw.html) was
used to align the amino acid sequences.
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