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Abstract

Neural tissue repair and regeneration strategies have received a great deal of attention because it
directly affects the quality of the patient's life. There are many scientific challenges to regenerate
nerve while using conventional autologous nerve grafts and from the newly developed therapeutic
strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration
have involved the application of tissue engineering principles and this has evolved a new perspective
to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell
behavior and tissue progression through the development of a synthetic scaffold that is analogous
to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural
extracellular matrix provides an ideal environment for topographical, electrical and chemical cues
to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold
that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-
resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective
neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for
fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form
nerves.

Introduction

The human brain is analogous to a black box of informa-
tion and unraveling its mysteries is essential to under-
stand its complex relationship with the various
components of the peripheral and central nervous sys-
tems. This information is vital to probe the causes for var-
ious neural disorders and arrive at a plausible therapy for
the treatment of ischemic, metabolic, congenital, or
degenerative disorders of the central or peripheral nervous
systems. Conventionally, autologous grafts are gold
standards and have been used to treat neural defects [1-3].
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However, autografts have limitations that include short-
age of nerves since it is taken from the patient. Moreover,
there is a mismatch of donor-site nerve size with the recip-
ient site, neuroma formation and lack of functional recov-
ery [4,5]. Allogenic grafts, which are isolated from
cadavers, are not limited by supply but suffer from host-
graft immune rejection [6]. To overcome immune rejec-
tion, several studies have been conducted to examine the
potency of acellular nerve grafts [7,8]. However, as acellu-
lar nerve graft lacks viable cells, nerve regeneration and
remodeling of extracellular matrix have been delayed [8].
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The use of pre-degenerated nerve grafts having high
matrix metalloproteinase (MMP) expression shows some
potential as it degrades the inhibitory chondroitin sul-
phate and proteoglycans thereby retaining the ability to
promote nerve regeneration even in the absence of cells
[8,9].

Recent advances in nanotechnology [10] and tissue engi-
neering [11,12] have been found to cover a broad range of
applications in regenerative medicine and offer the most
effective strategy to repair neural defects. The major deter-
minant in all tissue engineering research is to regulate the
cell behavior and tissue progression through the develop-
ment and design of synthetic extracellular matrix ana-
logues of novel biomaterials to support three-
dimensional cell culture and tissue regeneration. Ideal
properties of a scaffold for nerve regeneration are biocom-
patibility, less inflammatory, controlled biodegradability
with non-toxic degradative products, porosity for vascu-
larization and cell migration and three-dimensional
matrices with appropriate mechanical properties to mimic
the extracellular matrix [13-15]. Figure 1 shows the vari-
ous characteristics desired for an ideal scaffold for neural
regeneration.

Polymeric biomaterials are widely preferred as scaffolds
for peripheral and central nerve regeneration both in vitro
and in vivo [16-19]. There is a wide choice of polymers
available with programmable biodegradability, non-
toxic/non-inflammatory nature, mechanical properties
similar to the tissue to be replaced, high porosity that pro-
motes cell attachment and growth, economical and sim-
ple manufacturing processes along with a potential for
chemical modification leading to increased interaction
with normal tissue [20]. Several techniques such as
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nanofiber self-assembly, solvent casting and particulate
leaching, gas foaming, emulsification/freeze-drying, liq-
uid-liquid phase separation, electrospinning and compu-
ter aided design and manufacturing techniques have been
employed to fabricate tissue engineering scaffolds with
varying degrees of success [21-24]. Various attempts made
towards repairing neural defects have been discussed in
the following sections along with the rationale behind
selection of a suitable scaffold material for successful neu-
ral tissue engineering.

Response to Injury & Repair

Regeneration strategies for peripheral and central nervous
system damage have not been very successful due to lack
of knowledge about the mechanisms of nerve injury and
repair [25]. Nerve cells have been found capable of easily
bridging gaps of less than 6 mm [26]. Thus, regenerating
nerves across larger gaps are medically challenging phe-
nomenon since, injuries of less impact in peripheral nerv-
ous system (PNS) heal by formation of fibrin cable across
the gap [4]. This eventually allows the Schwann cells to
migrate from both the nerve ends, thereby orienting the
bungner bands to promote neurite outgrowth [27]. Pres-
ently, researchers have investigated a suitable strategy to
enhance the formation of Bungner bands and have iden-
tified microstructured biomaterial filaments provide a
better topography, promoting bungner band formation
even in the absence of biological factors [28]. Addition-
ally, after injury, the protein synthesis and degradation
machinery in axons play a major role in the initiation of
growth cone formation [29]. However, the myelination of
central nervous system (CNS) is distinct from that of
peripheral nervous system (PNS). Astrocytes and oli-
godendrocytes are found in the CNS which also marks a
key difference between CNS and PNS in their response to
injury [16]. In the case of CNS, spontaneous regeneration
is impossible due to its own inhibitory environment
[16,25]. This includes glial scar formation and accumula-
tion of myelin-associated inhibitors such as chondroitin
sulphate proteoglycans [30,31]. Moreover, the primary
injury in CNS expands further by damaging the nerve cells
due to secretion of free radicals from the blood via the
blood-brain barrier resulting in secondary injury which
impedes the regeneration potency of these cells [32].
Many strategies have been attempted to improve the
regenerative potency of neurons such as cell therapy,
exogenous delivery of growth factors and tissue engineer-
ing approaches; each in turn restores the function with
varying degrees of success.

Regeneration Potential of Neural Cells

Guenard et al. have observed that the potential use of
autologous Schwann cells that aid in CNS regeneration
[33]. This novel approach modifies the environment of
the CNS by transplanting Schwann cells which enhances
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axonal regeneration. This may be due to the fact that
Schwann cells are the myelinating glial cells in the PNS
and are known to play a key role in Wallerian degenera-
tion and subsequent CNS regeneration [4,20,34,35].
Schwann cells promote neural regeneration and remyeli-
nation by secreting adhesion molecules L1 and neural cell
adhesion molecule (N-CAM), extracellular molecules
(collagen and laminin) and a number of tropic factors
such as nerve growth factor (NGF), brain-derived neuro-
trophic factor (BDNF) and neurotrophin-3 (NT-3) [36].
Though the Schwann cells have regenerative potential,
studies have shown the undesirable effects such as inhibi-
tion of Schwann cell migration into the CNS, delayed
functional recovery and in certain cases, the Schwann cells
may follow its original white matter pathway instead of
the intended grey matter pathway [36].

The nearly impossible task of rebuilding the nervous sys-
tem has since undergone a dramatic transformation with
the discovery of stem cells [30,37]. The differentiation of
neural stem cells to specific cell lineages has been control-
led by constructing scaffolds of composite biomaterials
that consist of extracellular matrix (ECM) components
and growth factors [38]. The embryonic stem cell-derived
oligodendrocytes have been recognized to myelinate
axons in culture and to replace lost myelin in the injured
adult CNS [39]. Human embryonic stem cell-derived oli-
godendrocyte progenitors when transplanted into injured
spinal cords of rat proved to be a safe procedure, resulting
in improved locomotor function [40]. The ideal cell cul-
ture conditions for embryonic stem cell proliferation and
differentiation in fibrin-based scaffolds has been identi-
fied for neural tissue engineering applications [41].

Investigations on astrocytes have supported its role in the
induction of neurogenesis from adult neural stem cells
[42]. The directed growth of astrocytes on polymer sub-
strates provides an innovative approach to promote con-
trolled outgrowth and differentiation of neural stem cells
[43]. Though the astrocytes contribute the cytotrophic
effects in neural repair, at certain stages in response to
injury it inhibits neurite outgrowth by releasing signals
inhibiting neurite extension [44]. Researchers have tried
to improve the cytotropic effects of astrocytes in regenera-
tion by harnessing its cytotoxic effects [44].

In addition to these cells, olfactory ensheathing cells
(OEQ) [45] and trans-differentiated mesenchymal stem
cells [46] have also been identified to promote axonal
regeneration and functional recovery at the site of a spinal
cord injury. The olfactory system promotes the axonal
outgrowth into the CNS from the PNS due to the presence
of both peripheral and central tissues [47]. Thus the phe-
notype of OEC is closer to the Schwann cells and has the
properties of both Schwann cells and Astrocytes [36]. The
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transplantation of OEC enhances its migration [48] and
secretion of extracellular molecules type IV collagen,
tropic factors such as vascular endothelial growth factor
(VEGF), NGF and BDNF [36]. The OEC are found to
reduce the secondary neuron apoptosis and the degree of
functional recovery after implantation of OEC is rapid as
compared to Schwann cells [36,49].

Although the stem cell therapy seems to be promising, it
is very hard to control the cell proliferation and differen-
tiation into three-dimensional architectures of tissues
[50]. Moreover, the use of stem cells to repair spinal cord
has been reported to cause adverse side effects such as
allodynia in unaffected forepaws of the rats [51]. Hence, it
is a challenge to provide optimized conditions for con-
trolled and adequate differentiation of transplanted stem
cells in order to develop a safe stem cell-based therapy.
Certain factors in stem cell-based therapy such as carcino-
genicity and ethical concerns in the use of embryonic stem
cells remain unanswered thereby limiting their use.

Delivery of growth factors to promote regeneration

Growth factor signaling play a major role in tissue repair
process. In addition to maximizing the intrinsic regenera-
tive potency of endogenous progenitor cells, bioactive fac-
tors are also used to manipulate the differentiation and
growth of exogenous stem cells [52]. The discovery of
Nerve Growth Factor (NGF) has been more helpful to
support ailing neurons by promoting nerve regeneration
[53,54]. However, targeting and retaining the required
concentration of these factors at the site of injury is quite
complicated phenomenon. The nerve guidance channels
provide a conduit for the diffusion of these growth factors
and reduce the glial scar formation [16]. The sustained
release of lipoplexes (complexes of liposomes and oligo-
nucleotides) has shown promise to repair nerve injury by
expressing neurotrophic factor [55,56]. Moreover, restor-
ing the activity of such proteins is pretty challenging.
Although Poly (D,L-lactic-co-glycolic acid) (PLGA) micro-
spheres has been demonstrated as a potential carrier of
growth factors, the main concern is the inactivation of
proteins due to the release of acidic products. This prob-
lem can be overcome by using polyphosphoesters as a
delivery vehicle [57]. Recently, Sun et al. targeted a colla-
gen binding domain-nerve growth factor 3 (CBD-NGF B)
to nerve extracellular matrix collagen to restore the
peripheral nerve function in rat sciatic nerves [58]. They
have confirmed the functional recovery by performing
walking track, histological and electrophysiological anal-
ysis. These discoveries of regenerative capacity in adult
central nervous system hold promise to neural victims for
complete recovery [58]. Currently electrospun nanofi-
brous scaffold become a successful and safe delivery vehi-
cle since it can simultaneously act as a scaffold and
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improve contact guidance while delivering the bioactive
factors in controlled and sustained way [59].

Biomaterials in Nerve Regeneration

Natural polymers (chitosan, chitin, collagen, gelatin, algi-
nate), synthetic non-degradable polymers (silicone), syn-
thetic biodegradable polymers such as PLGA, poly (e-
caprolactone (PCL), poly L-lactic acid (PLLA) and con-
ducting polymers (polypyrrole, polyaniline) have been
used in various nerve regeneration approaches. An ideal
nerve conduit should be thin, flexible, porous, biocom-
patible, biodegradable, compliant, neuroinductive, neu-
roconductive and with appropriate surface and
mechanical properties [14]. Although these biomaterials
promise to fulfill some of the above stated criteria, they
have some demerits which have to be overcome to meet
the specific tissue engineering applications. For example,
a scaffold made from non-degradable materials should be
avoided to prevent the chronic inflammation and com-
pression of nerve over time and therefore it is preferable
to use biodegradable materials [26]. Even in biodegrada-
ble materials, surface erosion is desired over bulk erosion,
since it permits the scaffolds to retain their structural sta-
bility for a longer time after implantation. Therefore, a
surface eroding polymeric scaffold is expected to provide
better contact guidance cues continuously for nerve regen-
eration. This fact is reinforced by a recent report on the use
of poly (glycerol sebacate) (PGS) as a nerve guide material
due to its surface erodible and elastomeric properties [60].
In general, researchers have attempted to improve the
neural scaffold properties by several novel fabricating
techniques such as polymer blending and electrospin-
ning, incorporating nerve growth factors in the scaffold
[61], and improving the wettability of the scaffold surface
by surface modifications. Table 1[62-78] summarizes a
list of biomaterials and techniques that have been used to
promote nerve regeneration.

One of the most important properties needed for success-
ful graft uptake by host tissues is mechanical stability and
compatibility of the scaffolds. For nerve tissue engineer-
ing, the scaffold should be pliable, harmless to the sur-
rounding tissues, resist structural collapse during
implantation [79] which may lead to necrosis and inflam-
mation. Many approaches have been attempted to
improve the properties of common biomaterials to make
them suitable for neural tissue engineering. A highly flex-
ible PLGA scaffold was developed by microbraiding
method to improve its flexibility and porosity [75]. Suita-
bility of PLLA porous conduits fabricated by extrusion
technique has been evaluated in vivo for scaffold applica-
tions [80-82]. Biomechanical properties of electrospun
PCL scaffolds were improved by thermal treatment while
retaining the structural stability, gross appearance, poros-
ity and fiber diameter [66].
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Polymer blending offers one of the most successful meth-
ods to develop a suitable scaffold with all preferred prop-
erties for specific tissue engineering applications [83,84].
For example, a polymer blend of the brittle-natured PLGA
and a soft, elastic polymer such as polyurethane or poly
(ethyleneglycol) (PEG) have been found to exhibit much
greater elasticity than PLGA itself [85]. Chitosan-gelatin
composite films show improved mechanical property and
nerve cell affinity due to its softness and elastic properties
[84]. Fabrication of biodegradable nerve guidance chan-
nels based on chitin/chitosan has been carried out for
improvements in nerve tissue engineering [86]. An artifi-
cial nerve graft of chitosan/polyglycolic acid (PGA) blend
has been used to bridge a 30 mm sciatic nerve defect in a
large animal model [87]. Repairing long-term delayed
peripheral nerve defects is clinically very challenging
which includes number of various factors such as availa-
bility of surviving Schwann cells, worsening of growth
permissive environment by disintegration of Schwann cell
basement membrane [88]. Jiao et al. attempted to bridge
the long term delayed defects of rat sciatic nerves using
biodegradable chitosan-PGA graft and measured the func-
tional recovery using histological and electrophysiologi-
cal assays [88]. They have observed very few functional
(regenerated) nerve fibers and poor growth support in
delayed repair groups can improve the potency of chi-
tosan/PGA grafts in delayed repair [88].

Cell adhesion property of a scaffold mainly depends on its
surface characteristics such as charge density and wettabil-
ity [66,89]. Most of the synthetic biodegradable materials
are hydrophobic (PLGA, PCL, PHB etc.,) which limits
their use as tissue engineering scaffolds. Thus surface
modification either by coating of the surface with ECM
proteins such as laminin, fibronectin, collagen or by
incorporating specific adhesion peptide sequences like
RGD and IKVAYV, YIGSR can induce hydrophilicity which
in turn improves the cell adhesion property of the scaf-
fold. Currently the cell adhesion property of the materials
such as methyl cellulose [90], alginate [91], poly (hydrox-
yethyl methacrylate) (PHEMA) [92], poly (hydroxybu-
tyrate) (PHB) [65] has been improved by modifying their
surface with specific peptide sequences.

Different approaches have been used to improve the bio-
compatibility. The performance of neural implants has
been improved by using the layer-by-layer (LbL) tech-
nique [93]. A photochemical method has been employed
to make PHEMA bound neural growth factor (NGF) more
bioactive [94].

Polymeric Scaffolds as Extracellular Matrix Analogues

Scaffolding is a temporary framework used to support
cells in the construction or repair of tissue. Surface chem-
istry of scaffold materials is considered to be the most
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Table I: Modified biomaterials attempted to promote nerve regeneration.

Biomaterials

Modification/Method of fabrication

Improved Properties Ref

Star-Poly(ethylene glycol)

Incorporation of polysaccharide (Heparin)

Tunable physical and mechanical properties to adopt  [62]
specific tissue requirements

Chitosan
(GPTMS)

Modified with (y-glycidoxypropyltrimethoxysilane

Mechanical strength [63]

Poly(sialic acid)

Hydrogel modified with adsorbed poly-L-lysine or

Mechano compatibility; Cell adhesive property [64]

poly-L-ornithine or laminin or collagen

Poly(f3-hydroxybutyrate) Sheets impregnated with extracellular matrix Cell adhesion and proliferation [65]
molecules

Poly(e-caprolactone) Electrospinning and Thermal fiber bonding Mechanical strength [66]

Poly(e-caprolactone) Aligned fibers by Electrospinning Contact guidance [67]

Poly(lactic-co-glycolic acid) Modified immersion precipitation method Selective permeability; Hydrophilicity [68]

Poly(D, L-lactide-co-¢- PPy coating substrate and PPy nanoparticle/PDLLA/ Electrical cue for multitude of cell functions [69]

caprolactone) [PDLLA/CL] CL composite

Chitosan
chitosan hydrogel

Polylysine-functionalised thermoresponsive

Injectable scaffold; Mechano compatibility; Surface  [70]
property (wettability, charge density)

Poly(e-caprolactone)

Collagen
dendrimers

Electrospinning (Polymer blending with collagen)

Hydrogel crosslinked with YIGSR peptide modified

Biological property [71]
(schwann cell adhesion, migration and differentiation)

Biological function [72]
(promote the growth of corneal epithelial cells and
neurite outgrowth)

Poly(glycerol-sebacate) Replica molding

Micropatterned substrates; Flexibility; Surface [73]
degradable; Strong contact guidance response

Poly(lactic-co-glycolic acid) Microbraiding method

Flexibility; Porosity [75]

Poly(D,L-lactide-co-glycolide)

Low pressure injection molding

Porosity; Longitudinally aligned channels; Mimics the  [76]
geometry of native nerves

Poly Fiber templating technique Oriented scaffold; Physical characteristics similar to  [77]
(2-hydroxyethyl methacrylate) soft tissue.
Poly Liquid-liquid centrifugal casting Mechanical property similar to spinal cord [78]

(2-hydroxyethyl methacrylate)

important parameter in tissue engineering [95]. The extra-
cellular matrix (ECM) in biological systems holds the cells
together and provides a medium for the cells to interact
and migrate [96]. Thus it is desirable that the synthetic
scaffold mimics the ECM in promoting cell adhesion, pro-
liferation, and differentiation in vitro and in vivo [66,97].
Two dimensional tissue cultures as the name suggests
offer only a monolayer of cells as opposed to the three-
dimensional nature of tissue in organisms [98]. Hence it

is an inadequate model for complex cellular interactions
and is prone to hydrodynamic damage in bioreactors
[98]. Three-dimensional tissue cultures have received
much consideration than two dimensional cultures
because of their superior hydrodynamic protection,
higher surface area per unit volume, better cell-cell inter-
action and improved regeneration of the injured tissue
[99]. Improved functional recovery and formation of neu-
ral networks to bridge the gap following spinal cord injury
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has been reported in the transplantation of stem cells on
polymeric scaffolds than the transplantation of stem cell
alone [30,100].

Geometric Cues - Structure of Scaffolds

Well defined nanostructured topographical cues such as
grooves, ridges, pores, nodes can influence cell-substrate
interaction by promoting cell adhesion, migration, prolif-
eration and differentiation to new tissue [101]. For exam-
ple nanopatterned gratings on poly(methyl methacrylate)
(PMMA) and poly(dimethylsiloxane) (PDMS) were used
to induce alignment and elongation of smooth muscle
cells [101]. There are different scaffold fabrication tech-
niques such as solvent casting, particulate leaching, melt
molding etc., to fabricate scaffolds of various geometries
with the desired porosity and surface area for cell scaffold-
ing [102]. Among the different forms of scaffold (nanofib-
ers, sintered matrix, nanofoams, hydrogels, nanotubes,
etc.,) hydrogels and nanofibers have been extensively
investigated for use as a scaffold in neural regeneration.

In recent years, hydrogels have received considerable
attention as a suitable scaffold material in neural tissue
engineering [103,104]. Hydrogels provide appropriate
chemical, mechanical and spatial microenvironment akin
to the natural ECM to support the neurite extension for
cell proliferation, differentiation and axon extension
[95,105]. Moreover they are biocompatible and possess
similar mechanical properties to soft tissue, low interfacial
tension, and are good injectable scaffolds. A biocompati-
ble polymeric hydrogel has been shown to induce recon-
struction of the rat spinal cord after chronic compression-
produced injury [55,106]. Neuroinductive and neurocon-
ductive properties of a biocompatible heterogeneous poly
[N-(2-hydroxypropyl) methacrylamide] (PHPMA) hydro-
gel have been used extensively to repair tissue defects in
the central nervous system by promoting the formation of
a tissue matrix and axonal growth [107]. Poly (2-hydrox-
yethyl methacrylate) (PHEMA) hydrogels have also
proved to be useful in neural tissue engineering applica-
tions [77]. Cells get introduced easily into the liquid pre-
cursors of the gel due to its smaller mesh size. Production
of cell-based hydrogel polymer constructs has been envi-
sioned for tissue replacement in the central nervous sys-
tem with combined physico-chemical properties such as
biocompatibility, stability, porosity and hydrophilicity
along with biological recognition such as expression of
biospecific surface receptors and synthesis of bioactive
molecules [108]. It has been reported that the use of pol-
yethylene glycol (PEG) hydrogel as a cell carrier supported
the neural precursor cell survival, expansion and differen-
tiation in culture [109]. The evaluation of growth proper-
ties of Schwann cells on chitosan proved its
biocompatibility [110]. Implantation of three-dimen-
sional polymeric hydrogel into the site of injury has been
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attempted to enhance the axonal recovery [111]. Three-
dimensional polylysine-functionalized polysaccharide
hydrogel system promises to be a good scaffolding mate-
rial for neural tissue engineering [70,112]. Three-dimen-
sional peptide channels within hyaluronan (HA)
hydrogel matrix modified with S-2-nitribenzyl cysteine
(HA-SNBC) is expected to serve as a temporary scaffold
for guided axonal regeneration in vivo [113]. Among the
various polymeric hydrogel tubes that have been designed
and studied for their suitability as neural scaffolds, rein-
forced coil tube expressed excellent mechanical properties
equivalent to soft tissues and they supported neural out-
growth. Also it was observed that the conducting velocity
of the construct exactly matched that of native axons
[114].

Nanofiber Properties & Electrospinning Technology

Nanofiber seems to be most promising substrate in tissue
engineering applications due to its resemblance to native
extracellular matrix [67,115,116]. Nanofiber is a broad
phrase generally referring to fibrous structures with a
diameter less than 1 micron. Figure 2 shows the scanning
electron micrograph of electrospun PLGA-Polyaniline
nanofibers with smooth defect-free morphology for neu-
ral tissue engineering. Extraordinary mechanical strength
and high surface area to volume ratio makes the nanofiber
more suitable for neural tissue engineering [10,117].
Porous polymeric nanofibrous scaffold using biodegrada-
ble poly (L-lactic acid) (PLLA) fabricated by liquid-liquid
phase separation method resembles ECM of natural colla-
gen to support neuron differentiation and neurite out-
growth [22]. However, it is very difficult to maintain the
fiber diameter and alignment using this technique. Like-
wise, various techniques have been reported to develop

NN
=2

Figure 2
Electrospun PLGA-PANIi nanofibers.
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nanofibers namely, template synthesis, phase separation,
self-assembly, drawing and electrospinning [115]. Among
these techniques, electrospinning offers more advantages
due to its ease of fabrication. Nanofibrous conduit com-
prising poly (D,L-lactide-co-glycolide) and poly(g-caprol-
actone) (PCL/PLGA) were found to promote nerve
regeneration across 10 mm nerve gap in rat sciatic nerve
[118]. PLGA random nano and microfibers, aligned
microfibers and films were investigated for C17.2 neural
stem cell culture and recognized the differentiation of
neurons along the fiber direction [119].

PLLA nanofibrous scaffolds were developed via electros-
pinning and found to support neural stem cell (NSC)
adhesion, outgrowth and differentiation [21]. Suitability
of aligned electrospun PLLA nanofibers compared with
random nanofibers was evaluated for neural tissue engi-
neering in terms of their fiber alignment and dimension
[21]. The aligned nanofibers were found to support the
orientation of cells and improve the neurite outgrowth
and contact guidance [21,67]. Based on the experimental
results, this study recommended the aligned PLLA nanofi-
brous scaffold as a potential cell carrier in neural tissue
engineering [21,119]. The parameters such as viscosity,
conductivity, surface tension of polymer solution, applied
electric potential, flow rate, and distance between the elec-
trodes are to be optimized while carrying on the electros-
pinning process [120]. It is also observed that the
orientation of fiber became disordered at the top layer of
the electrospun mesh when the collecting time was longer
than thirty minutes due to the residual charges on the col-
lecting fibers [21]. The desirable properties of electrospun
nanofiber scaffolds seem to offer a promising alternative
towards the treatment of neural defects. Aligned electro-
spun collagen/PCL fibers supports cell proliferation, glial
migration, orientation of neurite outgrowth, suggested its
suitability as nerve implants [71]. Aligned electrospun
PCL fibers have been found to up regulate specific genes
such as PO and down regulate NCAM - 1 on cultured
Schwann cells thereby promoting the Schwann cell matu-
ration [67]. Significantly higher Schwann cell migration
and neurite outgrowth was observed on uniaxially aligned
fibers of poly (acrylonitrile-co-methylacrylate) (PAN-MA)
developed by electrospinning than on random fibers
[121].

Other Approaches

Fabrication of a multi-channel scaffold using injection
molding with solvent evaporation technique has been
demonstrated to promote spinal cord axon regeneration
[122]. A new facile method named 'fiber stimulating tech-
nique' used to fabricate oriented PHEMA scaffolds suc-
cessfully for neural tissue engineering, promises to be
more effective and reproducible [77]. Melt compression
and melt extrusion are also considered to be viable tech-
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niques to prepare nerve guides [14]. Innovative fabrica-
tion techniques such as wire mesh method and mandrel
adhesion method are used to prepare multi-channel bio-
degradable nerve guides without the requirement of com-
plex instrumentation, acidic conditions or exposure to
extreme temperatures [123]. Designing of biodegradable
PLGA hollow fiber by wet phase inversion technique has
been attempted for the development of nerve tract guid-
ance conduit [13]. Micropatterning is a novel patterning
technique for biodegradable polymers and is reported to
enhance peripheral nerve regeneration by controlling the
alignment of Schwann cells [124-126]. Fabrication tech-
niques continue to evolve novel routes to provide the
most suitable nanostructure topography for adequate
neural growth.

Electrical Cues

Human body responds to electrical fields and the key
component of neural communication in the body is the
action potential generated at the synapse. This implies
that an ideal neural scaffold should also possess electrical
conductivity to promote neurite outgrowth and thereby
enhance nerve regeneration in culture. The use of electri-
cally conducting polymers in biomedical applications has
become more attractive due to its tailor-made specificities
[127]. Polypyrrole (Ppy), a well-known conducting poly-
mer used in biomedical applications has been found to
enhance the nerve regeneration by electrical stimulation
[128,129]. Moreover, the antioxidant property of polypyr-
role and polyaniline makes them more attractive sub-
strates for tissue engineering applications [130,131] as
they could scavenge any free radicals at the site of injury
minimizing scar formation which is a bane of neural
regeneration. The structures of polythiophene, poly-
aniline and polypyrrole are shown in figure 3.

A comparative study was made on the efficacy of two dif-
ferent laminin fragments p20 and p31 as dopants in con-
ducting polypyrrole surfaces for in wvitro growth of
neurons. The results indicated that p20 as dopant sup-
ported the highest neuronal density than p31 dopant
[132]. Conducting Ppy/PDLLA/PCL composites have
been implanted to bridge the gap of 8 mm in rat sciatic
nerves and shown to promote the nerve cell proliferation
and axon regeneration using electrical cues [69]. The rats
were gradually recovered the mobility in operated limb
over the period of 2 months [69]. Moreover, the immuno-
histological analysis and transmission electron micros-
copy of harvested implants demonstrated the presence of
newly formed myelinated axons and Schwann cells simi-
lar to that of native nerve [69]. Recently the cell adhesion
property of polypyrrole has been improved by chemical
conjugation of a functionalized carboxylic acid group
with RGD peptide [133]. The suitability of poly ethylene
dioxythiophene (PEDOT) as a biomaterial was evaluated
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Figure 3
Chemical structure of conducting polymers.
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by studying the adhesion and proliferation of epithelial
cells and was demonstrated that the electroactive substrate
favors cell adhesion [134]. Though the mechanism in
which electrical stimulation promotes nerve regeneration
is not clearly understood, several possible hypothesis have
been postulated to elucidate their role in nerve regenera-
tion. Some of the plausible reasons include electro-
phoretic redistribution of cell surface receptors, activate
growth controlling transport process and altered adsorp-
tion of adhesive proteins [135]. The later hypothesis has
been proved by stimulating the adsorption of fibronectin
(ECM adhesive glycoprotein) from serum to polypyrrole
surface via electrical stimulation, which subsequently
facilitate the neuronal attachment and neurite outgrowth
[128].

However, these conducting polymers are non-biodegrad-
able and questions on their safety in biological systems
have delayed their wide-spread use in neural conduits.

Future Prospective

Many Challenges still remain unwrapped. Though the
researchers have found different strategies to achieve the
functional recovery to some extent, regaining the maximal
or full function remains unexplored. There are some
issues listed below have to be addressed in future; (1) the
first inescapable conclusion arising over various reports
on nerve tissue engineering by super positioning of all
these approaches is crucial for promoting the neural
regeneration on multiple levels (2) the probable hazards
of long term usage of such novel biomaterials on human
health yet to be revealed (3) the need for novel Biomate-
rials and approaches has to be established in order to treat
the delayed nerve injuries in patients who have neurolog-
ical disorders.

Conclusion

An ideal nerve conduit requires a suitable porous, bio-
compatible, biodegradable, neuroconductive, neuroin-
ductive, infection resistant, compliant three-dimensional

biomaterial scaffolds. The engineered construct should
also mimic the ECM architecture and porosity, desirable
for cell attachment and other vital functions. Biomedical
nanotechnology, electrospinning techniques and tissue
engineering methods give us exciting insights to the
design of a scaffold with good electrical, mechanical, bio-
logical properties and compliance match closely resem-
bling the native ECM. Such scaffolds can also avoid
infections, multiple surgeries and additional cost to the
patient. An array of methods has been used for polymer
scaffold preparation but electrospinning scores high due
to its ease of operation, better control of fiber properties
and desirable results. Lot of synthetic biodegradable poly-
mers has been used till date but at the same time suffer
from the demerits of release of acidic degradation prod-
ucts, hydrophobicity, poor processability and loss of
mechanical properties. Also they support elongation and
partial collapse of nerves. Hydrogels mimic soft tissue
properties but are very difficult to sterilize and handle due
to their fragile nature. A new strategy using polymers like
polypyrrole, polyaniline etc., having conducting proper-
ties are being investigated for neural tissue engineering to
stimulate neurite extension. However, the biocompatibil-
ity of these polymers has not been conclusively proved till
now. It is seen that though different classes of biomateri-
als are available, no single material is enough to improve
the scaffold properties for nerve regeneration. Hence, the
major challenge in developing a scaffold lies primarily in
the choice of a blend of biomaterials with the correct com-
bination of properties. The field is still wide open to
design the most appropriate polymer scaffold with all the
vital conditions and properties for effective neural appli-
cations in vivo.
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