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Abstract

implementation.

from ridge regression or a Bayesian analysis.

higher than in unweighted GS.

implementation is important.

Background: Simulation and empirical studies of genomic selection (GS) show accuracies sufficient to generate
rapid gains in early selection cycles. Beyond those cycles, allele frequency changes, recombination, and inbreeding
make analytical prediction of gain impossible. The impacts of GS on long-term gain should be studied prior to its

Methods: A simulation case-study of this issue was done for barley, an inbred crop. On the basis of marker data
on 192 breeding lines from an elite six-row spring barley program, stochastic simulation was used to explore the
effects of large or small initial training populations with heritabilities of 0.2 or 0.5, applying GS before or after
phenotyping, and applying additional weight on low-frequency favorable marker alleles. Genomic predictions were

Results: Assuming that applying GS prior to phenotyping shortened breeding cycle time by 50%, this practice
strongly increased early selection gains but also caused the loss of many favorable QTL alleles, leading to loss of
genetic variance, loss of GS accuracy, and a low selection plateau. Placing additional weight on low-frequency
favorable marker alleles, however, allowed GS to increase their frequency earlier on, causing an initial increase in
genetic variance. This dynamic led to higher long-term gain while mitigating losses in short-term gain. Weighted
GS also increased the maintenance of marker polymorphism, ensuring that QTL-marker linkage disequilibrium was

Conclusions: Losing favorable alleles that are in weak linkage disequilibrium with markers is perhaps inevitable
when using GS. Placing additional weight on low-frequency favorable alleles, however, may reduce the rate of loss
of such alleles to below that of phenotypic selection. Applying such weights at the beginning of GS

Background

Simulation studies and some empirical studies of “geno-
mic selection” (GS) [1] or “genome-wide selection” [2]
show that prediction accuracies from GS are high
enough to enable rapid gains from selection [3-6]. These
studies focus, however, on what would be the first one
or two cycles of selection. Thus, while we may have
confidence that GS can accelerate short-term gain, no
such confidence is justified for long-term gain. Ideally,
experimental tests of long-term gain should be per-
formed empirically in model systems but the necessary
replicated tests would be expensive and, even in rapid-
cycling organisms, would not be completed in a near
future. Stochastic simulation remains perhaps the only
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viable option to test hypotheses concerning the impact
of selection methods on long-term gain [7].

Beyond the first cycles of selection, mechanisms the
effects of which are difficult to predict analytically begin
to operate. Among others, marker and QTL alleles will
recombine, and their frequencies will shift, changing
linkage disequilibrium (LD) between them and therefore
the predictive ability of the markers. Inbreeding and loss
of polymorphism will also occur. In a simulation looking
at several generations, Muir [8] has shown that the
accuracy of genomic prediction declines much more
rapidly if used for selection than if followed by random
mating. This result and the putative mechanisms out-
lined suggest that a careful look at long-term selection
using GS is needed to identify mechanisms having an
important impact on its performance and to give
research directions to improve GS. There is also a prac-
tical need since both crop and animal breeding
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programs are now initiating GS. Therefore, insight into
the long-term consequences of GS deployment would
be beneficial.

Considering the constraints of breeding cycles over
several generations also brings into focus practical
aspects of GS that have a bearing on its potential for
success. In particular, Heffner et al. [9] have proposed
that GS separates the breeding process into two cycles:
the selection cycle and a model training cycle. They
have proposed that these two cycles operate synchro-
nously, although this is not necessarily the case. The
model training cycle is much more constrained than the
selection cycle because it requires adequate phenotyping.
Thus, regardless of the species, it appears likely that the
frequency of model updating will be lower than that of
selection cycles. This limitation raises the questions of
how accurate GS can be in selection cycles when it has
not been updated, and to what extent long-term selec-
tion will be adversely affected.

Another constraint for GS is the necessity of assem-
bling the initial training population (TP) for the model.
In simulations using population-wide LD, rather large
TP have been used i.e. 500 to 2000 individuals [1,10,11].
In GS on bi-parental cross populations, much smaller
populations have been effective [4,12], though these
populations have never been proposed for long-term
selection. Therefore the question arises of the effective-
ness of GS if cost prohibits assembling a large TP and
GS is initiated on the basis of a small TP.

Finally, different GS prediction models have been pro-
posed the impacts of which may differ on the short and
long terms. In simulations of generations immediately
after the TP, models that assume all marker effects are
distributed with equal variance (i.e. ridge regression),
have been found to be as or more accurate than models
that assume some markers do not explain any variance
(e.g. BayesB) [1]. However, the accuracy of the former
decays more rapidly over generations than that of the
latter [10]. How this dynamic may affect the perfor-
mance of these models over long-term selection is
unknown.

To explore the questions of long-term success of GS,
impact of initial training population size, timing of addi-
tions of new phenotypes to the training population, and
on GS analysis method, long-term selection for a quan-
titative trait using GS was simulated. Gains from GS
were compared to those of phenotypic selection (PS).
Genomic selection was performed on lines with or with-
out phenotypes, and assuming cases where phenotyping
(and therefore model updating) could occur every or
only every other selection cycle. Gains using an initial
TP of 1000 vs. 200 individuals were compared. Ridge
regression was contrasted to a Bayesian model for GS
prediction, and marker effects weighted by a function of
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favorable allele frequencies were compared to
unweighted effects. Finally, to understand the mechan-
isms leading to GS success or failure, population vari-
ables were analyzed including the maintained genetic
variance, realized accuracies, LD and distance between
QTL and markers remaining polymorphic, inbreeding
over generations and the fixation of QTL and marker
alleles.

Methods

Barley data set

To perform selection simulations on marker data that
incorporate the real short- and long-range LD structure
existing in a barley breeding program, empirical geno-
types from 192 inbred lines from the University of Min-
nesota six-row spring barley breeding program
(genotyped in the first two years of the Barley Coordi-
nated Agricultural Project) were used. These marker
data may be obtained at http://www.hordeumtoolbox.
org. Missing marker data were imputed using methods
described by Jannink et al. [13] on the basis of the SNP
genetic map given by Close et al. [14]. Markers were
considered redundant if they had the same map position
and identical alleles across all lines. Only one of a set of
redundant markers was retained. This procedure left
983 polymorphic markers among the Minnesota lines.
Some sets of markers mapped to the same position,
most likely because of insufficient resolution of bi-par-
ental maps rather than because of actual identical posi-
tions [14]. Markers in such sets were distributed at 0.1
cM intervals and in arbitrary order. The resulting map
spanned 1,092 cM.

Genetic model

An additive genetic model was imposed on these marker
data by randomly picking 100 markers to become causal
QTL. These markers were removed from the dataset for
GS analyses. The genetic variance generated by each
QTL was made equal by scaling the QTL substitution
effect to the inverse of the standard deviation of the
QTL allelic state (+1 for one and -1 for the other allele).
Thus, QTL with low minor allele frequencies (MAF)
had larger substitution effects than QTL with high
MAF. This constraint of equal variance across QTL was
chosen to maximize the effective QTL number [15]
while minimizing the number of markers that had be
dropped from the analysis. Empirical genomic selection
results suggest that many traits are more polygenic than
what was simulated previously [3]. One QTL allele was
arbitrarily chosen to have a positive, and the other a
negative effect. The genotypic value of an individual was
calculated by summing effects of the QTL alleles it car-
ried. The phenotype of an individual was determined by
adding its genotypic value to a normally distributed
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error, with variance calculated as follows. The genotypic
variance of the base population was calculated and an
error variance determined so that the initial trait herit-
ability was either 0.2 or 0.5. Error variance was held
constant through a simulation irrespective of changes in
the genetic variance, such that heritability changed over
the course of generations of selection.

Stochastic simulations
For all simulated breeding methods, each cycle of breed-
ing consisted of three steps: (1) crossing of selected par-
ents and inbred progeny generation, (2) phenotyping
and (3) data analysis and selection criterion estimation.
For all methods, step 1 was the same: out of 200 candi-
dates, the 20 with the highest selection criterion were
randomly mated to produce 200 F; progeny. Inbred
selection candidates were generated as doubled haploids
(DH) from the F; generation. Random mating is not a
realistic assumption for breeding but it provides a sim-
ple baseline model to interpret results. While inbreeding
is not needed for genomic selection, it is needed in crop
breeding for phenotypic evaluation. For simplicity,
inbreeding was performed prior to selection for all
schemes. Each DH was formed from a haploid gamete
simulated using the Mendelian laws of segregation, with
recombination occurring according to the known map
positions of the barley markers [14], assuming no cross-
over interference. For all methods, the base population
was formed by randomly mating the 192 founders to
generate 200 DH candidates that were phenotyped, as
described above. For GS with a “small” TP, this base
population served as the TP. For GS with a “large” TP,
an additional 800 individuals were generated and pheno-
typed in the same way. While these individuals provided
information to the GS model, they were not selection
candidates. Thus, the training population size factor was
not confounded with a change in selection intensity.
Phenotypic selection and three GS breeding schemes
were simulated. Time was somewhat arbitrarily broken
up into “seasons” with PS requiring two seasons, one for
crossing and inbred candidate generation, and one for
phenotypic evaluation and selection (Figure 1). In the
first GS scheme, all candidates were phenotyped and
genotyped so that the model had both sources of infor-
mation available. This “genomic and phenotypic selec-
tion” (GPS) scheme followed the time schedule of PS
(Figure 1). In the two GS schemes, selection occurred
solely on marker data immediately after, and in the
same season as, inbreeding (Figure 1). In the “phenotype
every season” GS scheme, candidates were then pheno-
typed in the following season to supplement the TP. In
the “phenotype every other season” GS scheme, it was
assumed that only odd-numbered seasons allowed phe-
notyping in the target environment (Figure 1).
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Therefore, only selection candidates from even-num-
bered seasons had to be phenotyped to supplement the
TP. To ensure that all GS methods involved the same
amount of phenotyping, only 50% of “phenotype every
season” candidates were phenotyped (since phenotyping
occurred in twice as many seasons). The 50% chosen for
phenotyping were those that had the highest selection
criterion of their cohort. Thus the parents selected to
perpetuate the breeding cycle were always phenotyped.

Genomic selection prediction models

Two prediction models were used, ridge regression i.e.
RR [1,10] and “BayesCn” (RL Fernando, personal com-
munication, June 2009). Both RR and BayesCrm use the
linear model

Vi =N+z],xijﬁj5j e

where y; is the phenotype of individual i, x;; is the allelic
state at marker j in individual , f; is the effect associated
with marker j, d; is a 1 or 0 indicator variable for the
inclusion or exclusion of marker j in the estimation of
breeding values, and e; is a residual. In RR, J; = 1 and
Bin~ N(O,&z) for all markers. The marker variance,
65, is estimated by maximum likelihood. BayesCm
implements two changes relative to BayesB developed by
[1]. As in BayesB, in BayesCrr, J; = 0 with probability 7,
but 7 itself is estimated assuming a uniform prior distri-
bution between 0 and 1. In addition, BayesCrm assumes
that the prior variance for the effects of all markers for
which ¢; = 1 is equal. That is, the effect f3; is zero when J;
=0 or B; NN(O,&f;) when J; = 1. In turn, the method
estimates 42 jointly over all non-zero markers [16].
Grouping markers in this way gives the data added
weight over the prior in estimating 42 [17]. Details of
the estimation of 42 are in Kizilkaya et al. [16]. The
model provides an esfimate of marker effects as

” 1
ﬂj :?Ztﬁjﬁjt

where T is the number of Markov chain iterations and
Bj: and 9;, are the values for those parameters in itera-
tion ¢. Here, 1500 iterations were run, with the first 500
discarded as burn-in.

Using these models, genomic prediction in a given breed-
ing cycle was performed by analyzing the marker states of
all individuals with phenotypes to estimate marker effects.
These effects were then applied to the genotypes of selec-
tion candidates to predict their breeding values:

&izzjxijﬁj
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Figure 1 Phenotypic and genomic selection breeding schemes. Under phenotypic selection, one season is used for crossing and inbreeding
and the next for evaluation and selection; under GS, selection can be performed prior to evaluation so that selection occurs every season rather
than every other season; for “every season phenotyping,” the evaluation is assumed to represent the target environment in any season; for
"every other season phenotyping,” only odd-numbered seasons represent the target environment and even-numbered seasons are greenhouse
or off-season nurseries; for all methods, the black cycle (C0) is phenotyped; for GS, this cycle contributes to the training population (TP), as
indicated by the colored line under the word “Select” in Season 1; in Season 2, candidates of the blue cycle (C1) are produced, and selection is
possible under GS, but using the same TP as for Season 1 (insufficient time for new phenotyping has elapsed); in Season 3, candidates of the
green cycle (C2) are produced, evaluation of C1 candidates occurs and can contribute to the TP used to select C2 candidates; similar events
occur in Season 4 except that for every other season phenotyping, evaluations are not performed because they would not be representative of

the target environment

Finally, a weighted GS model was used, following
Goddard [18] and clarified in Hayes et al. [6] so that
markers for which the favorable allele had a low fre-
quency should be weighted more heavily to avoid los-
ing such alleles. For weighted GS, the estimation
procedure was as described above. Then, for each mar-
ker j, the frequency of the favorable allele among selec-
tion candidates, p;, was calculated. The selection
criterion was

AL 7 05
€1 = E,jxij Bipj

Using pj’o‘5 as a weight for locus j is a simplification
with the following justification. Using Goddard’s

optimization [18], assuming sufficient long-term selec-
tion to fix all favorable alleles, the selection criterion
should be:

. A 7t/2—arcsin(\/p7j)
Ci —ijijslgn(ﬂj) \/P](l—P])

This criterion includes only the sign (positive or nega-
tive) of the locus effect, because it is assumed that the
favorable allele should be fixed regardless of the magni-
tude of its effect.

[7:/2 - arcsin(\/pT) :|/ [pj(1=p;) is closely propor-

tional to p;0'5 over a range of allele frequencies. In

addition, an estimate of the allelic effect was included in
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the criterion to reduce the importance of small-effect
loci for which it could not be determined with any
certainty which allele was favorable.

In summary, 48 different GS schemes were tested: a
factorial of two heritabilities (0.2 or 0.5), two initial TP
sizes (200 or 1000), three breeding schemes (with phe-
notyping prior to selection, phenotyping after selection
every season, or every other season), two prediction
models (RR or BayesCm), and unweighted or weighted
allele effects. In addition, simple phenotypic mass selec-
tion was simulated at heritabilities of 0.2 or 0.5. All set-
tings were replicated 100 times. Replications differed in
the base population of 200 individuals generated by
randomly mating the 192 founder lines and in the 100
markers chosen to be QTL and removed from the mar-
ker dataset. Twenty seasons were simulated. For pheno-
typic selection (PS) and genomic and phenotypic
selection (GPS) schemes, ten breeding cycles could be
accomplished, while for the two GS cycles, 19 could be
accomplished (one in the first two seasons and then one
per season for the remaining 18 seasons). All simula-
tions were performed in R, version 2.10 [19].

Analysis of simulation results

For each simulation, gains from selection were standar-
dized by dividing by the maximal genotypic value pos-
sible for the genetic model. Therefore for all
replications, genotypic values are expressed on a -1 to
+1 scale. Besides the mean genotypic values of selected
populations, other tracked variables were additive
genetic standard deviations, rates of inbreeding calcu-
lated on the basis of pedigree (AFp; in a pedigree with
DHs, the standard tabular method for calculating
coancestries can be used, save that all diagonal ele-
ments are set to one), Bulmer effects (calculated as the
ratio of the additive genetic standard deviation to the
expected additive genetic standard deviation under
linkage equilibrium between QTL), and the realized
accuracies in each generation of selection, which was
calculated as

() = G(t+1)—-G(1)
1.7550 4(t)

where G(t) is the mean genotypic value in generation
t, 04(2) is the additive genetic standard deviation in gen-
eration ¢, and 1.755 is the mean of the upper 10% tail of
a standard normal distribution [20]. Several variables
were tracked to examine mechanisms causing the
observed responses: the number of favorable QTL alleles
lost or fixed, the mean across polymorphic QTL of each
QTL’s LD with that marker with which it was in highest
LD (LD was calculated here as the correlation between
QTL and marker), the mean across polymorphic QTL
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of each QTL’s recombination frequency with the closest
polymorphic marker, and the ratio between the rate of
inbreeding calculated on the basis of markers (AFy;) and
AFp. The rate of inbreeding on the basis of markers was
calculated as the proportion of markers polymorphic in
generation ¢ - 1 that were fixed in generation ¢. Analysis
of variance was performed on cumulative gain from
selection after four seasons (two PS or GPS and three
GS cycles, Figure 1) and after twenty seasons (ten PS or
GPS and 19 GS cycles). Because 100 replications of each
setting were performed, the power to identify “signifi-
cant” interactions among simulation factors was very
high. Therefore only interactions for which the mean
square was at least one tenth that of the mean square
for replications are discussed.

Results

Under the simulated conditions, differences in both
initial and final gain from GS using RR versus BayesCrn
were extremely small, though BayesCr tended to gener-
ate higher initial gains and lower final gains than RR
(data not shown). Under GS, the difference between
phenotyping half of the selection candidates every sea-
son versus all candidates every other season were mini-
mal. Because these two factors (GS prediction method
and every vs. every other season phenotyping) had
effects that were small relative to between-replication
variation, the discussion hereafter will focus on simula-
tions using RR and phenotyping all candidates every
other season.

Looking first at unweighted GS (UGS; left-hand
graphs of Figure 2), several points are apparent. First,
performing selection every season (i.e., by selecting prior
to phenotypic evaluation) always increased initial gain
relative to waiting for evaluation results (i.e., using PS or
GPS with selection only every other season). Second,
phenotyping prior to selection increased long-term gain:
after 20 seasons, rate of gain from PS and GPS was
higher than that from GS. In fact, regardless of a high
or low heritability, small or large TP, after about 12
cycles, GS reached a plateau beyond which gains were
minimal (Figure 2). At a high heritability, genotypic
information used by GPS hardly improved gain over PS.
Besides, greater initial gains were obtained under a high
than a low heritability for GS, leading to a significant
GS vs. GPS by heritability interaction. Finally, having a
large TP increased gain both for GS and GPS, but more
so for the former, again leading to a significant interac-
tion. Weighted GS (WGS; right-hand graphs of Figure
2) increased final gain from selection. Less apparent but
no less important, weighting hardly changed initial gain,
showing little tradeoff between long- and short-term
gains. Weighting was more important in the absence of
phenotyping prior to selection: it improved GS gains
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Figure 2 Gain from phenotypic and genomic selection. Phenotypic selection (PS, closed symbols, continuous lines), genomic selection with
phenotyping prior to selection (GPS, closed symbols, dashed lines), and genomic selection (GS, open symbols, dashed lines), using ridge
regression to estimate genomic breeding values. Weighted and unweighted methods were used for GS and GPS, on the right- and left-hand
graphs, respectively; small and large training populations were of 200 and 1000 individuals, on the upper and lower graphs, respectively;
triangles: h? = 0.5; Circles: h? = 0.2; to avoid cluttered graphs, simulations with h? = 0.2 were offset to the right by four seasons; note that PS
curves are identical across the four graphs; maximum standard errors observed were less than half the height of plot symbols so no error bars
are given
J

more than GPS gains. Weighting also produced greater
gains with the large than with the small TP. Finally,
weighting increased gains more at a high heritability

than at a low one.

From these results, two observations bear further scru-
tiny. First, why did gains from selection reach a plateau

so early under UGS, regardless of TP size and heritabil-
ity? Loss of genetic variance and/or loss of LD between
markers and QTL could be responsible. Second, what
mechanisms contributed most to the performance of
WGS? Here, QTL and/or marker polymorphism could
be important.
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Figure 3 Variables affecting long-term response to genomic selection. Simulations at heritability of 0.5 using ridge regression to estimate
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training population; closed vs open: unweighted vs. weighted GS; seasons correspond to the scheme given in Figure 1; A. genetic standard
deviation among selection candidates in each cycle; B. rate of inbreeding calculated on the basis of pedigree, AFp; C. Bulmer effect, given by the
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absolute correlation between QTL and markers in highest LD with them; F. mean recombination frequency between QTL and markers closest to
them; G. ratio between rate of inbreeding calculated on the basis of markers (AFy,) to that on the basis of pedigree; H. number of favorable QTL
alleles lost from the selection population
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The most immediate cause of the plateau reached by
UGS is the loss of genetic variance in UGS populations
(Figure 3A). This loss was more pronounced for the
small than for the large initial TP but in either case was
much stronger for UGS than for WGS. Increased weight
on rare favorable marker alleles led to more rapid gains
in the frequency of rare favorable QTL alleles with
which only those markers could be in high LD. That
impact on the QTL then strongly increased genetic
standard deviation in the first cycles (Figure 3A). The
proportional increase in gain explains why little short-
term gain from selection was lost under WGS (Figure
2). The loss of variance came primarily from inbreeding
(Figure 3B). The per cycle rate of inbreeding from UGS
was generally higher than that of PS, while that of WGS
was similar (Figure 3B). More importantly, GS went
through twice as many cycles as PS, so that the per sea-
son rate of inbreeding was much higher. Two other
observations on inbreeding rates bear note. First, in sea-
sons when the prediction model was updated (odd-num-
bered seasons, Figure 1), AFp is consistently lower than
in seasons when the model is not updated, leading to
the zigzag pattern in AFp over selection cycles (Figure
3B). This zigzag pattern is counter-cyclical to that
observed in the realized accuracies (Figure 3D) in the
sense that when realized accuracy is up, AFp is down,
and vice-versa. Second, for both WGS and UGS, there is
a trend upward in AFp over time. This trend also corre-
sponds to a general downward trend in realized accura-
cies (Figure 3D). Estimates of the Bulmer effect were
noisier (Figure 3C). A zigzag pattern was also present:
the Bulmer effect was stronger in the generation after
model updating, that is, after realized accuracy was the
strongest. For both UGS and WGS, the Bulmer effect
diminished (leading to ratios closer to 1) when genetic
variance diminished. Despite lower accuracies for GS
than PS (Figure 3D), the Bulmer effect appeared stron-
ger for the former than the latter.

Another possible cause for decrease in the accuracy of
GS predictions is decay of marker - QTL associations.
This decay began for UGS after about the eighth season
and then strongly accelerated after that (Figure 3E). In
contrast, for WGS, the decay in QTL - marker LD did
not start until several seasons later and remained mild.
Decay might arise because markers close to QTL
become fixed such that the distance between the nearest
polymorphic marker to a polymorphic QTL increases,
and recombination more rapidly reduces accuracy. That
mechanism indeed occurred (Figure 3F), again, much
more strongly for UGS than WGS. Figure 3F also shows
that marker fixation per season is more rapid under GS
(both weighted and unweighted) than under PS: because
GS selects on markers, it is more likely to cause markers
to go to fixation than PS. Mechanistically, however, it is
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instructive to look at the rate of marker fixation relative
to the rate of inbreeding. Figure 3G contrasts the pro-
portion of polymorphic markers becoming fixed in each
generation to the rate of inbreeding based on pedigree.
Phenotypic selection provides an expectation for how
much marker fixation to expect for a given increase in
coancestry. Marker fixation occurs more rapidly than
increase in identity by descent because a marker can
become “fixed” when all its alleles are identical in state,
which may occur before they are all identical by descent.
Thus the equilibrium of the ratio of the rate of marker
fixation to the rate of inbreeding is greater than one. In
the case simulated here, that equilibrium for PS was
about 1.7. For UGS, marker fixation clearly occurred
more rapidly than might be expected on the basis of
increasing coancestry (Figure 3G). In contrast, for WGS,
marker fixation appeared to occur more slowly than
expected on the basis of coancestry, at least in the later
seasons. Thus, WGS might keep markers “in play” by
selecting more strongly on low frequency alleles if they
are associated with favorable QTL alleles. The bottom
line of selection is to avoid the loss of favorable alleles,
so that they may ultimately become fixed. A large loss
in the number of favorable QTL alleles occurred in the
first generation (Figure 3H), but that loss was smaller
for WGS than for either UGS or PS. In the two subse-
quent seasons, per-season loss of favorable alleles was
higher for both UGS and WGS than for PS. Thereafter,
that higher rate of loss continued for UGS but slowed
for WGS such that the rate of loss was lower for WGS
than PS.

Discussion

Before discussing results in detail, we should consider
aspects of the simulation that lack realism and the
impact those aspects might have on results. One
strength of the marker data used here is that they repro-
duce levels of LD and a structure that occur within a
real breeding program. However, true QTL were unob-
served and simulating them using marker data is likely
unrealistic for several reasons. First, this approach forces
the QTL to be bi-allelic. Evidence is lacking in inbred
crops with a small effective population size (N.) but in
maize, an outcrosser with a large global N, a recent
study has shown that multi-allelic QTL are the norm
[21]. It seems probable that multi-allelic QTL would be
in lower LD than bi-allelic QTL with bi-allelic markers.
Lower LD would in turn reduce the performance of GS
relative to PS, though it is unclear how it would affect
the relative performances of different GS schemes. Sec-
ond, the approach means that the QTL have the same
allele frequency spectrum as the markers, and the same
distribution over the genome. Again, these limitations
mean that the simulated QTL are probably in higher LD
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with the markers than the true QTL would be, with the
same consequence of favoring GS over PS, but not
obviously one GS scheme over another. The present
simulations were conducted without regard to the fact
that the base population for any real GS will have been
under phenotypic selection for some time. By virtue of
the Bulmer effect, such selection will generate repul-
sion-phase linkage disequilibria between QTL, reducing
the genetic variance and increasing the difficulty of QTL
detection. Furthermore, no mutation model was applied
to the simulations, and results relate strictly to standing
variation at the start of selection. Phenotypic selection
benefits from mutational variation (reviewed in [22]),
but it is not clear how GS might, considering that new
mutant effects will not immediately be present in the
training population. Finally, on a simple note, the breed-
ing schemes used here assumed that GS reduced breed-
ing cycle times only by half. In practice, for crops
[12,23] and livestock [24] the reduction is likely to be
much greater than that, favoring GS over PS more than
predicted here.

Given so many caveats, the value of these simulations
is clearly not to accurately predict relative responses of
different breeding schemes over long-term selection but
to ask whether GS can work over the long-term, to raise
hypotheses relative to its success or failure, and to point
to possible solutions to be tested empirically. In those
regards, the stochastic simulations provide three primary
observations and a number of insights into the mechan-
isms causing them. The observations are: 1) by selecting
prior to phenotyping, GS allows a more rapid initial
gain than is possible under PS or GPS; 2) while these
gains are occurring, UGS is also rapidly losing favorable
QTL alleles such that UGS reaches a selection plateau
early on; 3) long-term gain can be increased, with little
sacrifice on short-term gain, by selecting on a criterion
that weights more heavily favorable marker alleles at
low frequency. There is nothing surprising about obser-
vation 1. This result has been anticipated since the
invention of GS [1] and has been the cause of much
excitement since GS became practically feasible [9,24].
The second observation is more problematic and had
not been anticipated by deterministic simulations of GS
[25]. Habier et al. [10] have shown that GS captures not
just marker - QTL associations but also genetic relation-
ships via marker information [see also [5] and [11]].
Thus, GS is prone to the selection of close relatives that
occurs in standard animal-model BLUP [26]. The theory
has predicted that GS should reduce rates of inbreeding
compared to selection on breeding value BLUP [27].
This claim is not disputed here, since no simulation of
BLUP selection was performed. The theory is based on
the extent to which the selection criterion is able to pre-
dict the Mendelian sampling term (i.e., within-family
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effects). In the absence of phenotyping prior to selec-
tion, animal model BLUP estimation provides no predic-
tion of the term whereas GS does. In fact, as the GS
model becomes more accurate, it can better predict the
term, its reliance on genetic relationship information
decreases, and inbreeding under GS decreases. Confir-
mation of that dynamic is apparent in the opposing
trends of Figures 3B and 3D: when the model has just
been updated with newly-measured phenotypes, it is
more accurate (Figure 3D) and the rate of inbreeding is
decreased (Figure 3B); conversely, during selection in
off-seasons without model updating, the rate of inbreed-
ing is increased. Likewise, but over a period of many
seasons, as the accuracy of GS gradually decreases, the
rate of inbreeding under GS gradually increases. The
opposite effect would be expected under phenotypic
selection: as genetic variance is depleted and heritability
declines, PS accuracy would decline and selection would
become random. In that case, the rate of inbreeding
should converge toward 0.05 per generation, as would
be expected under random-mating with 20 gametes (or
completely inbred diploids) selected in each generation.

There is, nevertheless, disagreement between the pre-
sent finding of increasing rate of inbreeding under GS
with decreasing GS accuracy and the prediction from
selection index theory that rate of inbreeding should be
insensitive to accuracy [25]. Presumably, this disagree-
ment has to do with the use of genetic relationship
information by GS that is not accounted for by the the-
ory. But the meaning of “use of genetic relationship
information” is not particularly clear. This mechanism
may occur: allele effect estimates used in GS are influ-
enced by the regression of family means on within-
family allele frequency. These estimates would contri-
bute to accuracy by improving predictions of family
means, but would contribute nothing to the estimation
of Mendelian sampling terms. Thus they increase
between-family but not within-family variance of predic-
tions. Finally, as the overall accuracy of GS decreases,
the importance of this family-mean prediction compo-
nent increases, and with it the correlation between GS
predictions for relatives. When applying index selection
theory to GS, however, the analysis assumes that the
variance of the GS prediction is split equally between
within- and between-family effects, regardless of
accuracy.

The fact that a very simple weighting scheme can
greatly increase long-term gain with little loss in short-
term gain is probably the most exciting observation
made here. Goddard [18] have proposed and Hayes et
al. [6] have clarified differentially weighting markers to
increase weight on favorable low-frequency alleles. All
other things equal, UGS should be more accurate than
WGS. This higher accuracy can be seen in the very first
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selection cycle, because initial conditions are the same
for all methods (Figure 3D). Rapidly thereafter, however,
WGS catches up because strong selection on low fre-
quency favorable alleles boosts genetic variance (Figure
3A), leading to proportional increases in gain. This
observation causes concern as to the generality of the
benefit of the weighting scheme across different genetic
models. In the model used here, each QTL generated
equal variance so allele substitution effects were inver-
sely related to the square root of the variance of QTL
allelic states. In other words, QTL with low minor allele
frequencies had large allele substitution effects. This
genetic model may not be unrealistic for a population
under stabilizing selection [28]. For a population under
directional selection, deleterious alleles with large substi-
tution effects would be expected to be at low frequen-
cies. In addition, breeders should be most concerned
with capturing new favorable mutations when they are
at a low frequency [22]. But clearly, this genetic model
is also ideal for the weighting scheme outlined here: low
frequency marker alleles that are heavily weighted will
more often be associated with large substitution QTL
that will generate large gain. To test the impact of the
genetic model, the simulations shown in Figure 2 were
also run using a genetic model where the QTL allele
substitution effect was sampled at random (ignoring
QTL allele frequency) from a standard normal distribu-
tion. Under the random model, the weighting scheme
was still beneficial over the long term, increasing final
gain by 10% to 15% (14% average) over UGS, depending
on heritability, TP size, and phenotyping scheme. In
comparison, under the original equal-variances model,
the range of improvement was 14% to 28% (22% aver-
age). In other respects, the progression of genetic gain
was remarkably similar across genetic models (Addi-
tional file 1, Figure S1). Thus, the advantage of WGS
observed does not depend on an inverse relationship
between QTL allele frequency and effect size, though its
robustness to other aspects of the genetic model is still
subject to research. Finally, to further diminish the small
loss of initial gain under WGS relative to UGS, it would
be possible to choose one set of lines for potential vari-
ety release using UGS while selecting a different set to
become parents of the next generation of progeny can-
didates using WGS [9,24]. In some sense, UGS reflects
the current genetic value of a line while WGS reflects
its potential for long-term contribution to the breeding
program.

The mechanism of WGS is manifest in three other
ways. First, the rate of inbreeding on the basis of pedi-
gree was lower for WGS than UGS (Figure 3B). This
lower rate of inbreeding was not caused by a greater
accuracy of WGS than UGS: for about the first half of
the seasons simulated, WGS had a lower accuracy than
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UGS. It is difficult to see why weighting low-frequency
favorable alleles would differentially affect the between-
family versus within-family variances of the predictor.
Rather, the higher genetic variance present under WGS
than under UGS would simply lead to more accurate
allele effect estimates generally, which would in turn
affect those variances. Second, WGS fixes markers more
slowly than UGS (Figure 3G). Consequently, markers
close to QTL remain polymorphic for much longer in
WGS than in UGS (Figure 3F), and WGS retains mar-
kers in higher LD with the QTL than does UGS (Figure
3E). This causal sequence presumably also plays a role
in lifting the accuracy of WGS above that of UGS in the
second half of the seasons simulated (Figure 3D). Natu-
rally, the greater genetic variance generated and pre-
served by WGS than UGS would increase the
heritability of observations in the TP, also improving
model accuracy. Third, and perhaps most importantly,
WGS loses fewer favorable alleles than UGS (Figure
3H). The rare marker alleles that WGS weights more
heavily are in higher LD with rare QTL alleles than
other markers. The risk of losing the QTL alleles is
therefore indirectly reduced by this weighting. Note that
these reasonings concerning WGS assume a simple
situation with one marker in LD with one QTL. In rea-
lity, the effect of a QTL may be absorbed by several
markers in partial LD with it. Nevertheless, those mar-
kers are likely to have similar allele frequencies as the
QTL such that the essential mechanism remains valid.

Conclusions

What occurs initially upon adoption of GS should mat-
ter most to current plant and animal breeders, because
that is what is happening in breeding programs now.
Even assuming optimistic breeding cycle times, the
long-term predictions presented here are about 20 years
away, at which point breeding technologies will no
doubt have changed dramatically. But even in the first
cycles, the benefits of a large TP and of WGS are evi-
dent in the form of the reduction of favorable alleles
lost from the breeding population (Figure 3H). Some of
these alleles will inevitably be lost because they are in
low LD with any marker. Indeed, Figure 3E shows a
slight increase in the mean QTL-marker LD after the
first generation of selection. That increase is due to the
fact that some low-frequency, low LD alleles are lost
immediately and they therefore no longer enter the
mean. Retaining those alleles would be difficult and
would likely cause unwarranted losses of selection gain.
Nevertheless, it appears that WGS goes some way in the
right direction, and further research on its optimization
is warranted. In general, loss of genetic diversity will rise
in tandem with the greater number of selection cycles
made possible by GS, suggesting that methods that
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balance selection gain with the maintenance of diversity
[29] should be a priority.

Additional material

Additional file 1: Figure S1. Identical to Figure 2, save that the genetic
model included QTL effects sampled from a standard normal distribution
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