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Abstract

Background: Gap junctions between R-cells participate in the precise regulation of insulin secretion. Adherens
junctions and their associated proteins are required for the formation, function and structural maintenance of gap
junctions. Increases in the number of the gap junctions between B-cells and enhanced glucose-stimulated insulin
secretion are observed during pregnancy. In contrast, protein restriction produces structural and functional alterations
that result in poor insulin secretion in response to glucose. We investigated whether protein restriction during pregnancy
affects the expression of MRNA and proteins involved in gap and adherens junctions in pancreatic islets. An isoenergetic
low-protein diet (6% protein) was fed to non-pregnant or pregnant rats from day 1-15 of pregnancy, and rats fed an
isocaloric normal-protein diet (17% protein) were used as controls.

Results: The low-protein diet reduced the levels of connexin 36 and [3-catenin protein in pancreatic islets. In rats
fed the control diet, pregnancy increased the levels of phospho-[Ser’’¥?*?]-connexin 43, and it decreased the

levels of connexin 36, B-catenin and beta-actin mRNA as well as the levels of connexin 36 and [3-catenin protein
in islets. The low-protein diet during pregnancy did not alter these mRNA and protein levels, but avoided the increase

of levels of phospho-[Ser’’¥?%?]

not interfer in the insulin secretion.

-connexin 43 in islets. Insulin secretion in response to 8.3 mmol/L glucose was higher in
pregnant rats than in non-pregnant rats, independently of the nutritional status.

Conclusion: Short-term protein restriction during pregnancy prevented the Cx43 phosphorylation, but this event did
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Background

Pregnancy and a low-protein diet have opposing effects on
insulin secretion. Pregnancy increases glucose-stimulated
insulin secretion and reduces the threshold for stimulation
of insulin secretion by glucose [1,2]. This effect is attrib-
uted to enhanced glucose metabolism, increased activity of
the cAMP and PLC pathways [1,3-5], high -cell prolifera-
tion and increased islet volume [6], insulin synthesis [7]
and gap junction coupling among B-cells [8]. In contrast,
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a low-protein diet reduces insulin secretion in response
to glucose as a result of structural and functional alter-
ations, including the reduced size and/or volume of
B-cells [9], a decreased level of coupling among [-cells
possibly due to the low expression of connexin 36
[10], inappropriate glucose metabolism [11], dimin-
ished calcium handling [12] and alterations in the
PLC (phospholipase C), PK (protein kinase) C and
cAMP/PK (protein kinase) A pathways [13,14]. The inabil-
ity of pancreatic islets to increase insulin secretion to a
sufficient level to compensate for insulin resistance during
pregnancy due to protein restriction could contribute the
development of gestational diabetes.
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A large body of evidence has indicated that p-cell gap
junctions are required for precise regulation of the bio-
synthesis, storage and release of insulin, particularly in
response to glucose stimulation [15-18]. Connexin pro-
teins form membrane channels at gap junctions, allow-
ing B-cells to rapidly exchange cytoplasmic ions and
metabolites, signaling the activity state of neighboring
cells. This direct communication allows for a coordinated
and synchronized response of the islet cell [16,18-20]. The
transcripts of at least three connexin isoforms (Cx36,
Cx43, Cx45) have been repeatedly observed in extracts of
intact pancreatic islets [21,22] and purified B-cell prepara-
tions derived from these extracts [22,23]. Immunolabeling
studies have confirmed the expression of the Cx36 protein
in the insulin-producing B-cells [16,17,22]. The pancreatic
localization of the Cx43 protein has not been confirmed.
However, an increase in Cx43 expression has been ob-
served in rat neonatal islets exposed to prolactin, which
promotes the secretory maturation of B-cells [21]. Evi-
dence indicates that Cx43 can modulate cellular prolifera-
tion in a manner that is independent of gap junctional
communication [24]. Both homozygous and heterozygous
transgenic mice that overexpresses Cx43 present increases
in the islet size, and heterozygous mice exhibit an increase
in insulin levels [25].

Several studies have demonstrated the crucial role of the
adherens junction and their associated proteins for the
formation, function and structural maintenance of gap
junctions [26,27]. In vitro experiments have demonstrated
a correlation between the expression of adhesion mole-
cules, such as E-cadherin, and glucose-stimulated insulin
secretion in the MING6 B-cell lineage and sorted [3-cell sub-
populations [28-31]. B-catenin is an adherens junction-
associated protein that links the cytoplasmic cadherin tail
with the cytoskeleton (actin filament) and contributes to
the function of cell adhesions [32-34]. A restriction in
the level of maternal protein during pregnancy reduced
[-catenin expression in placental vessels [35].

Decreased expression of Cx36 in P-cells is associated
with increased [36-38] or reduced [39] basal insulin se-
cretion, unaltered [36] or decreased [37] insulin secre-
tion in response to high glucose concentrations, with
impaired [39] or preserved [37] glucose homeostasis.

Interestingly, we previously verified [40] that islets
from rats submitted to protein restriction during preg-
nancy exhibit an “inverted U-shape” dose—response curve,
with elevated basal insulin secretion, a maximal insulin se-
cretion in response to 8.3 mmol/L glucose, and blunted
insulin secretion in response to 11.1 and 16.7 mmol/L glu-
cose. It is reasonable to suppose that this secretory profile
could, at least in part, to result from alterations in the ex-
pression of gap and adherens junction-associated proteins.
Because the regulation of gap junction communication
can occur at both the transcriptional and translational
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levels, we investigated the effect of protein restriction dur-
ing pregnancy on the gene and protein expression of gap
and adherens junction-associated proteins (Cx36, Cx43,
B-catenin and [B-actin) in pancreatic islets. This study is
the first to describe the expression of these genes and
proteins in islets from pregnant rats subjected to a low-
protein diet. Evaluate the effect of protein restriction
on molecular and cellular mechanisms involved in the
B-cell adaptation during pregnancy could contribute to
identify possibles cause of gestational diabetes and its
prevention.

Results

The low-protein non-pregnant (LPNP) group showed a
higher food intake than the control non-pregnant (CN)
group. Pregnancy enhanced the food intake in the two
nutritional status groups, and the low-protein pregnant
(LPP) group ate the same amount of food as the control
pregnant (CP) group. Independently of nutritional sta-
tus, pregnant rats had a greater body weight gain and a
higher final body weight (F;g6=532.97, P<0.0001 and
Fy 66 =41.36, P < 0.0001, respectively), and they had a lower
serum glucose concentration (F; ,3=5.80, P< 0.05) than
the non-pregnant rats. The serum insulin concentration
and the insulin:glucose ratio did not differ among the
groups (Table 1).

In islets that were administered 5.6 mmol/L glucose,
a two-way ANOVA revealed a significant effect of the
interaction between the nutritional and physiological
status (Fj,4=8.03, P<0.01). Thus, insulin secretion in

Table 1 Nutritional, biochemical and hormonal profile in
pregnant and nonpregnant rats that consumed control
(CP and CNP) or low-protein diets (LPP and LPNP)

Variable Groups
CN cp LPNP LPP

Food intake (g) 203+40° 282444 265+18° 292 +37°
(18) (15) (12) (25)

Body weight gain ()  27+9 84+12" 2245 80+ 12"
(18) (15) (12) (25)

Final body weight (g) ~ 266+22  306+24"  267+15 307 +31*
(18) (15) (12) 25)

Serum glucose (mmol/L) 440+1.50 3.10+021" 393+135 321+067"
@) (6) (6) @®)

Serum insulin (pmol/L) 137 +86 197+132 160+66 204+ 156
7) (6) (6) ()

Insulin:glucose ratio 30+ 14 65 +45 45+ 23 63 +43
7) (6) (6) ®)

Values are means + SD for the number of rats shown in parentheses. Means with
different superscript minuscule letters are significantly different by two-way ANOVA
followed by a least significant difference (LSD) test (P < 0.05). “Different in relation
to non-pregnant rats (two-way ANOVA, P < 0.05).
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the LPP, CP and CN groups was increased compared to
that of the LPNP group (Figure 1A). Insulin secretion in
the presence of 8.3 mmol/L glucose was influenced only
by the physiological status (Fj 36 =90.13, P<0.001); ie.,
islets from pregnant (LPP and CP) rats released more in-
sulin than islets from non-pregnant (LPNP and CN) rats
(Figure 1B).

Initially, the capacity for detecting Cx36 mRNA and
protein expression was tested in tissues that are known
to express high levels of this protein, such as the brain,
and tissues known to express undetectable levels, such
as the heart (Figure 2A and 2B).In LPNP islets, Cx36
mRNA and protein expression was lower than in CN is-
lets. Pregnancy decreased the Cx36 mRNA and protein
expression in CP islets, and Cx36 expression did not
change in LPP islets. Thus, the expression of Cx36
mRNA and protein was similar in LPP, LPNP and CP islets
(Figure 2C and 2D).
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The ability to detect Cx43 mRNA and protein expres-
sion was tested in liver (negative control) and heart
(positive control), which express undetectable and high
levels, respectively, of this connexin (Figure 3A and 3B).
Cx43 mRNA expression was lower in LPP and LPNP is-
lets than in CP and CN islets (F;o=13.54, P<0.01)
(Figure 3C). The Cx43 protein content did not differ
among the experimental groups (Figure 3D). The
phospho-[Ser*”®/?%2]-Cx43 content was elevated in CP is-
lets when compared to the other groups (Figure 3E).

As expected, we detected high p-catenin mRNA expres-
sion and protein content in a heart sample (Figure 4A
and 4B). The expression of B-catenin mRNA (Figure 4C)
and protein (Figure 4D) did not differ between LPP and
LPNP islets and was reduced in the CP group compared to
the CN group.

Islets from the CP group exhibited lower expression of
B-actin mRNA when compared with the CN group, and
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Figure 1 Glucose stimulation of insulin secretion by islets from non-pregnant controls (CN), pregnant controls (CP), low-protein
non-pregnant rats (LPNP) and low-protein pregnant rats (LPP). Groups of 5 islets were incubated for 90 min in Krebs-bicarbonate medium
containing (A) 5.6 or (B) 8.3 mmol/L glucose. The columns represent the cumulative 90-min insulin secretion and are the means + SD of 5-9
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Figure 2 Cx36 mRNA and protein expression in islets from non-pregnant controls (CN), pregnant controls (CP), low-protein non-pregnant
rats (LPNP) and low-protein pregnant rats (LPP). (A) and (B) Cx36 mRNA and protein expression in a heart sample (negative control), brain (positive
control) and islets, respectively. (C) and (D) Cx36 mRNA and protein expression in islets from pregnant and non-pregnant rats fed control or low-protein
diets. The Cx36 mRNA content was normalized to RPS29 mRNA. The columns represent the means + SD of 3-5 independent experiments. Columns with
different superscript minuscule letters are significantly different by two-way ANOVA followed by a least significant difference (LSD) test (P < 0.05).
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B-actin expression was similar in the LPP and LPNP
islets (Figure 5).

Discussion

In the present study, non-pregnant rats fed a low-
protein diet exhibited increased food intake, in agree-
ment with a previous report that mild protein restriction
can result in hyperphagia [41]. Despite hyperphagia,
the low-protein non-pregnant group ate half of the
amount of protein ingested by control non-pregnant
group. Pregnancy also produces hyperphagia [41-43],
and the pregnant rats in this study exhibited a higher
food intake that resulted in significant body weight gain
and a consequent higher final body weight in compari-
son to the non-pregnant rats. Thus, a short duration of
mild protein restriction during pregnancy did not alter
the food-related behavior or somatic profile of the rats,
corroborating previous observations [44].

Interestingly, protein restriction reduced the Cx36
transcript levels in pancreatic islets, and pregnancy re-
duced the Cx36 transcript levels in islets from rats main-
tained on the control diet. This pattern was confirmed
by determination of the Cx36 protein content. Moreover,
our data did not show a correlation between Cx36 ex-
pression and insulin secretion at physiological or basal
glucose concentrations. Under physiological conditions,
the pregnant rats exhibited higher insulin secretion than
non-pregnant rats, which is in agreement with a previ-
ous study [2]. The unaltered insulin secretion exhibited
by isolated islets incubated with 5.6 mmol/L glucose

coincided with the unchanged basal serum insulin levels,
although we observed a trend of increased insulinemia
in both pregnant groups. Recently, we evaluated the kin-
etics of insulin release by isolated islets, and we verified
that the mean level of insulin secretion during 20 mi-
nutes of perfusion with a low glucose concentration
(2.8 mmol/L) was higher in pregnant rats, coinciding
with basal hyperinsulinemia and low glucemia, regard-
less of the amount dietary protein (unpublished data).
The hypoglycemia that is typical of normal pregnancy
[45] was also observed in our pregnant rats. However,
neither protein deprivation nor pregnancy altered the in-
sulin:glucose ratio (which was used here as an indicator
of insulin resistance), although the increase in the insu-
lin:glucose ratio observed in pregnant rats approached
statistical significance. Thus, Cx36 suppression in pan-
creatic islets from low protein non-pregnant rats and in
islets from pregnant rats did not induce insulin resist-
ance or glucose intolerance.

An important component of optimal long-term glu-
cose homeostasis is the ability of the pancreatic beta-cell
mass to vary its activity according to insulin require-
ments [46]. The beta-to-beta cell communication medi-
ated by connexins is implicated in the regulation of the
beta-cell mass during pregnancy [47], and Cx43 isoforms
have been shown to increase the islet size or insulin con-
tent [25]. Thus, we investigated if protein restriction
during pregnancy modulates Cx43 expression in pancre-
atic islets. We identified Cx43 in pancreatic islets, con-
firming the findings of other authors who showed that
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Figure 3 Cx43 mRNA and protein expression in islets from non-pregnant controls (CN), pregnant controls (CP), low-protein
non-pregnant rats (LPNP) and low-protein pregnant rats (LPP). (A) and (B) Cx43 mRNA and protein expression in a liver sample
(negative control), heart (positive control) and islets, respectively. (C) and (D) Cx43 mRNA and protein expression in islets from pregnant and
non-pregnant rats fed control or low-protein diets. The mMRNA concentration of Cx43 is expressed relative to RPS29 mRNA. (E) Phospho-[Ser279/282]-Cx43
content in islets from pregnant and non-pregnant rats fed control or low-protein diets. The columns represent the means + SD of 3-5
independent experiments. Columns with different superscript minuscule letters are significantly different by two-way ANOVA followed by a
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Cx43 is present in pancreatic islets cultured with prolac-
tin [21] and that Cx43 is specifically expressed on the
intra-islet endothelium rather than on p-cells [48]. Al-
though we observed reduced levels of Cx43 mRNA in
malnourished rats, the individual variations in the Cx43
protein levels were sufficient to mask the differences
among our experimental groups. Additionally, the dur-
ation of exposure a low-protein diet may not have been
sufficient to negatively modulate the translation process.

Cx43 is a MAP kinase substrate that, when phosphor-
ylated on Ser’”® and Ser*®?, disrupts gap junctions and
initiates the down-regulation of gap junctional commu-
nication [49]. We found that the phospho-[Ser*”®/*?]-
Cx43 content was increased during normal pregnancy.
However, the consumption of a low-protein diet during
pregnancy did not result in an alteration of Cx43 phos-
phorylation, which was lower compared with the levels
observed in islets from normal pregnant rats. The meaning
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Figure 4 -catenin mRNA and protein expression in islets from non-pregnant controls (CN), pregnant controls (CP), low-protein
non-pregnant rats (LPNP) and low-protein pregnant rats (LPP). (A) and (B) B-catenin mRNA and protein expression in a heart sample
(positive control) and islets. (C) and (D) -catenin mRNA and protein expression in islets from pregnant and non-pregnant rats fed control
or low-protein diets. The mRNA concentration of 3-catenin is expressed relative to RPS29 mRNA. The columns represent the means + SD of
3-6 independent experiments. Columns with different superscript minuscule letters are significantly different by two-way ANOVA followed
by a least significant difference (LSD) test (P < 0.05).

of this result in pancreatic islets is still not clear; however, effects of phosphorylation and protein degradation by a
at least in epithelial cells, an increase in the phosphoryl-  proteasome-dependent mechanism contribute to the regu-
ation of Cx43 appears to regulate its trafficking to the lation of Cx43 stability in the plasma membrane and intra-
plasma membrane and its assembly into gap junctions cellular communication through gap junctions [52]. Lastly,
[50]. Evidence exists that Cx43 phosphorylation may trig-  in vascular smooth muscle cells, the proliferation is con-
ger its internalization and degradation [51]. The combined  trolled through MAP kinase phosphorylation of Cx43 [53].
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Figure 5 -actin mRNA expression in islets from non-pregnant controls (CN), pregnant controls (CP), low-protein non-pregnant rats
(LPNP) and low-protein pregnant rats (LPP). The mRNA concentration of 3-actin is expressed relative to RPS29 mRNA. The columns represent
the means + SD of 3-4 independent experiments. Columns with different superscript minuscule letters are significantly different by two-way
ANOVA followed by a least significant difference (LSD) test (P < 0.05).
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Important cellular processes, such as cell proliferation
and growth, are partly regulated by connexin-cadherin
interactions [54], and P-catenin plays a crucial role in
cell adhesion in several epithelial cell types by modulat-
ing the linkage of cadherins to a-catenin, which in turn
interacts with the actin cytoskeleton [55,56]. Recently, it
was shown that E-cadherin negatively regulates p-cell
proliferation by reducing the levels of B-catenin in the
nucleus, resulting in decreased D-cyclin levels [57]. In
rodents, several lines of evidence suggest that prolactin
(PRL) and/or placental lactogens (PLs) are responsible
for the pregnancy-associated changes in the [-cell
mass [58]. In vitro prolactin treatment induces higher
[-catenin expression in islets cells, and high B-catenin
correlates with increased Cx43 expression. We verified
that in normal pregnancy, the p-catenin transcript levels
and protein content were reduced, and no correlation
was observed between the Cx43 protein and (-catenin
content. However, our studies were performed on day 15
of pregnancy, and the levels of prolactin are known in-
crease immediately before delivery [59]. We also ob-
served that the decrease in the level of f-catenin mRNA
correlated with low levels of B-actin mRNA during nor-
mal pregnancy. Thus, the profile of B-catenin protein ex-
pression as well as Cx43 phosphorylation observed in our
normal pregnant groups coincides with the beginning of
the decline of the proliferative phase of B-cells [58]. In
contrast, the consumption of a low-protein diet during
pregnancy did not alter the levels of f-catenin and B-actin
transcripts; however, it did result in reduced p-catenin
protein content, which had a level similar to the value ob-
served during normal pregnancy. Considering the data on
Cx43 phosphorylation and [-catenin together, it is reason-
able to speculate that cellular processes that regulate the
[-cell mass were reduced by the low-protein diet during
pregnancy. However, these alterations did not contribute
to an impairment of glucose tolerance.

Conclusion

In conclusion, our results indicate that short-term pro-
tein restriction during pregnancy prevented the Cx43
phosphorylation, but this event did not interfere in the
insulin secretion in the basal and physiological glucose
ranges.

Methods

Animals and diet

The animal experiments were approved by the Institu-
tional Committee for Ethics in Animal Experimentation
(Universidade Federal de Mato Grosso). Non-pregnant
Wistar rats (90 days old) were obtained from the univer-
sity’s breeding colony. Mating was achieved by housing
males with females overnight, and pregnancy was con-
firmed by the examination of vaginal smears for the
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presence of sperm. Pregnant and non-pregnant rats were
each randomly assigned to two diet groups: control and
low-protein. The control non-pregnant (CN) and preg-
nant (CP) groups were fed a 17% protein diet, and the
low-protein non-pregnant (LPNP) and pregnant (LPP)
groups were fed a 6% protein diet from days 1 to 15 of
pregnancy. The diets were isocaloric, and the energy dif-
ference due to the reduction of dietary protein was com-
pensated for by an equivalent change in the level of
dietary carbohydrate, as described previously [40]. Dur-
ing the experimental period, the rats had free access to
food and water and were housed at 22°C with a 12-h
light:dark cycle. The food intake and body weight were
recorded three times per week. At the end of this experi-
mental period, the rats were weighed and killed by de-
capitation. Blood samples were collected and allowed to
clot. Sera were stored at —20°C for the subsequent meas-
urement of insulin by radioimmunoassay [60] and glu-
cose by the oxidase-peroxidase system [61].

Islet isolation and insulin secretion

The pancreas was removed from the rats and digested
with collagenase type V (Sigma-Aldrich, CA, USA), as
described elsewhere [62]. In the first series of experi-
ments, groups of five islets were incubated for 90 min at
37°C in Krebs-bicarbonate buffer containing glucose
(5.6 and 8.3 mmol/L) and equilibrated with a mixture
of 95% O, and 5% CO, to result in a pH of 7.4. The incu-
bation medium contained (in mmol/L): NaCl, 115; KCl,
5; CaCl,, 2.56; MgCl,, 1; NaHCO3, 24; and bovine serum
albumin 3 g/L (Sigma-Aldrich, CA, USA). The insu-
lin released was measured by RIA using rat insulin as a
standard [60].

Semiquantitative RT-PCR

Total RNA from 1,000 isolated and separated islets was
extracted using TRIzol reagent (Life Technologies,
Gaithersburg, MD). All of the reagents used in the experi-
ments for RT-PCR were from Invitrogen (Carlsbad, CA,
USA). For PCR analysis, RNA (2 pg) was reverse-
transcribed using oligo (DT) primers. The resulting cDNA
was amplified by PCR using oligonucleotides complemen-
tary to sequences in the Cx36 gene (5'- CGGTGTACGAT
GATGAGCAG -3" and 5- GAGTACCGGCGTTCTCT
CTG -3'), Cx43 gene (5'-CCGACGACAACCAGAAT
GCC -3’ and 5'-CTTGGGATAGCTGGGCGGAAC-3'),
B-catenin gene (5'-GCCAGTGGATTCCGTACTGT and
5'-GAGCTTGCTTTCCTGATTGC-3"), B-actin gene (5'-
CAACCTTCTTGCAGCTCCTC-3" and 5'-TTCTGACC
CATACCCACCAT-3") and RPS-29 gene (5'-CTGAAGG
CAAGATGGGTCAC-3" and 5'- CCATTCAGGTCGCT
TAGTCC-3"). RPS-29 served as the internal control. The
primers were from Prodimol (Belo Horizonte, MG, Brazil).
The semiquantitative R7-PCR was performed in a 15-pL
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reaction volume containing 1 pL ¢cDNA, 0.2 mM dNTP
(dATP, dCTP, dGTP and dTTP), 1 mM MgCl,, 100% (v/v)
10 x PCR buffer, appropriate oligonucleotides primers
(0075 pM, 03 puM and 0.6 pM for RPS-29, Cx43,
[-catenin, p-actin and Cx36, respectively) and 1 U Tag
polymerase. The RT-PCR amplification conditions were as
follows: for RPS-29 (internal control) and [-actin, 5 min at
94°C followed by 27 cycles of 45 s at 94°, 45 s at 59° and
1 min at 72°C; for Cx36, 5 min at 94°C followed by 35 cy-
cles of 45 s at 94°, 45 s at 62° and 1 min at 72°C; for
[-catenin, 5 min at 94°C followed by 27 cycles of 45 s at
94°, 45 s at 45° and 1 min at 72°C; and for Cx43, 5 min at
94°C followed by 30 cycles of 45 s at 50°, 45 s at 62° and
1 min at 72°C. The RT-PCR products were separated
on a 1.5% agarose gel in 1 x Tris-borate-EDTA buffer
and stained with ethidium bromide (USB Corporation,
Cleveland, Ohio, USA). All of the assays included a nega-
tive control. The absence of contamination was confirmed
by reverse transcriptase-negative RNA samples. The rela-
tive band intensities were determined by densitometry, and
the ratio of Cx36, Cx43, B-catenin and B-actin to RPS-29
gene expression was calculated for each sample.

Western blotting

After isolation, groups of islets were pelleted by centrifu-
gation (15,000 x g) and then resuspended in 50-100 pL
of homogenization buffer containing protease and phos-
phatase inhibitors [63,64]. The islets were sonicated, and
the total protein content was determined with a biuret
(Labtest Diagndstica, Lagoa Santa, MG, Brazil). Samples
containing 200 pg of protein from each experimental
group were incubated for 1 h at 37°C with 4 x concen-
trated Laemmli sample buffer (1 mmol sodium phos-
phate/L, pH 7.8; 0.1% bromophenol blue; 50% glycerol;
10% SDS; 2% mercaptoethanol) (4:1, v:v) and assayed on
12% polyacrylamide gels at 120 V for 90 min. The elec-
trotransfer of proteins to nitrocellulose membranes
(Bio-Rad) was performed for 2 h at 120 V in buffer lacking
methanol and SDS. After checking the transfer efficiency
by Ponceau S staining, the membranes were blocked with
5% skimmed milk in Tween-Tris-buffered saline (TTBS)
(10 mmol Tris/L, 150 mmol NaCl/L, 0.5% Tween 20)
overnight at 4°C. Cx36, phospho-5"%79/2821_Cx43 and
[B-catenin were detected on the membranes after a 2-h
incubation at room temperature with anti-Cx36 (goat
polyclonal), anti-phospho-527282_Cx43 (goat polyclonal)
and anti-p-catenin (mouse monoclonal) antibodies (Santa
Cruz Biotechnology (Santa Cruz, CA, USA) and Zymed
Laboratories (Invitrogen, CA, USA), respectively; diluted
1:500, 1:1000 and 1:1000, respectively, in TTBS containing
3% dry skimmed milk). To detect Cx43, samples contain-
ing 200 pg of total protein were incubated overnight at 4°C
with 10 pL of anti-Cx43 mouse polyclonal IgG (Zymed,
Invitrogen, CA, USA), followed by the addition of Protein

Page 8 of 10

A Sepharose (40 pL), transfer to nitrocellulose membranes,
and blotting with a specific horseradish peroxidase-
conjugated secondary antibody (Zymed, Invitrogen,
CA, USA) diluted in blocking buffer (3% BSA 1:1500).
Enhanced chemiluminescence (SuperSignal West Pico,
Pierce) was used for detection. Band intensities were
quantified by optical densitometry of the developed auto-
radiogram using Scion Image Beta software.

Statistical analysis

The results were expressed as the mean +SD for the
number of rats (n) indicated. For islets, n refers to the
number of experiments performed. Levene’s test for the
homogeneity of variances was used initially to determine
the fit of the data to the parametric ANOVA assump-
tions [65]. The data were analyzed by two-way ANOVA
(nutritional status and physiological status). When ne-
cessary, these analyses were followed by LSD’s honestly
significant difference test to determine the significance
of individual differences. The level of significance was
set at P < 0.05. The data were analyzed using the Statistic
Software package (Statsoft).
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