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ABSTRACT: Myosin is one of the basic structural components of skeletal mus-
cles. Its interaction with actin results in muscle contraction. The myosin molecule
is composed of two heavy (MyHC) and two light chains (MyLC) that, together
with the adenosine triphosphatase (ATPase) activity, determine the functional char-
acteristics of the fibre. Both MyHC and MyLC present different isoforms. The
main MyHC isoforms in adult mammals are the slow MyHC (MyHC-I) and fast
MyHCs (MyHC-IIa, MyHC-IIb and MyHC-IIx). Muscle fibres can express only
one isoform or coexpress different forms.

The muscle phenotype is the product of genome plus environmental stimuli. The
family of genes that codifies the MyHC isoforms is located in two different clus-
ters, each isoform being encoded by a separate gene. The gene corresponding to
slow MyHC is located in chromosome 14, both in humans and in mice. The other
genes are positioned in chromosome 17 in humans, and in chromosome 11 in mice.
The transcriptional and translational mechanisms that control the expression of
MyHC isoforms are not well known, although it is believed that the main regula-
tion is dependent on mechanical signals. These signals are probably mediated by
a biochemical messenger. As a general rule, fast MyHC genes seem to be expressed
"by default", whereas the slow MyHC gene would be expressed as a response to
changes in load.

So far, few studies have analysed the in vivo regulation of MyHC gene expres-
sion in respiratory muscles. It has recently been reported that breathing against
moderate levels of inspiratory resistance quickly induces an increase in the genet-
ic expression of slow MyHC in the diaphragm. This suggests the possibility of elic-
iting a phenotypic adaptation of respiratory muscles using specific training protocols.
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Muscles are extremely plastic, and are capable of modi-
fying their structure to the activity they develop [1-4].
At the molecular level, muscles are composed of diffe-
rent structural and enzymatic elements, whose genetic
expression is modulated by such activity. Myosin is one
of the main structural components of the skeletal mus-
cles, which include respiratory muscles. This myofibril-
lar protein (fig. 1), essential for muscle contraction, is
composed of two heavy (MyHC) and two light chains
(MyLC). The MyHC (molecular weight 220 kDa) has a
globular portion at one of its ends (amino-terminal part).
This site is called the "head" (or S,) of the molecule, and
is the site of interaction with actin. This is also the site
of action for the actomyosin adenosine triphosphatase
(ATPase). The two MyLC (molecular weights, 17-23
kDa) are located very close to this portion, in the "neck"
of the molecule. On the other side, there is an alpha-
helicoidal structure (carboxy-terminal part) called the
"tail". Both MyHC and MyLC present different isoforms.
The presence of one or another isoform conditions the
acti-vity of the myosinic ATPase [5], and these two fac-
tors determine the maximum velocity of shortening, the
predominant metabolism of the fibre and its resistance to
fatigue [1, 6-10]. In this regard, those fibres containing
slow MyHC isoforms present a smaller contraction velo-

city but higher metabolic efficiency for maintaining sim-
ilar levels of tension [11]. The relationship between the
MyHC composition and fibrillar function has been evi-
denced, not only in skeletal limb muscles but also in
the diaphragm [12]. The MyLC isoforms are involved in
force transduction, and, thus, in the mechanical efficien-
cy and economy of different kinds of contraction [13].
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Fig. 1. — Molecular structure of myosin. MyLC: myosin light chain;
MyHC: myosin heavy chain.
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In the skeletal muscles of adult mammals, four main
types of MyHC have been described: one slow (slow-
MyHC, MyHC-I or beta-MyHC) and three fast (MyHC-
Ila, MyHC-IIb and MyHC-IIx) [14, 15]. In the early
stages of development, foetal as well as neonatal MyHC
isoforms exist. On the other hand, there are three main
MyLC isoforms, MyLCls, MyLC1f and MyLC3f. It is
likely that these classifications still remain incomplete,
above all regarding slow isoforms [14, 15]. The struc-
ture of different MyHC isoforms is similar among dif-
ferent species, and their velocity of contraction is specific
for each isoform [1, 6, 7, 12, 16, 17]. Fibres contain-
ing MyHC-IIa have a velocity of shortening very close
to those containing MyHC-IIx, and lower than those
fibres containing MyHC-IIb [7, 12, 17]. The four main
MyHC isoforms determine the four types of fibres (I,
Ila, IIb and IIx) [18], although there are also mixed
fibres, with different combinations of MyHC isoforms
[18-23]. Generally, mixed fibres showed MyHC iso-
forms with similar functional and biochemical charac-
teristics (i.e. MyHC-Ila and MyHC-IIx). However, it is
also possible to detect fibres containing MyHC with
very "incongruous" properties (i.e. MyHC-I in fast fibres).
In human beings, fibres type I and type Ila are compo-
sed mainly of their corresponding isoforms (MyHC-I
and MyHC-IIa, respectively). However, and interest-
ingly, type IIb fibres seem to be predominantly formed
by an isoform equivalent to the MyHC-IIx of rodents
[18]. This is important for the respiratory muscles, since
the diaphragm has a high proportion of this MyHC in
many species [24]. The presence of MyHC-IIx and the
presence of abundant oxidative enzymes [25], provide
the respiratory muscle fibres with an important level of
resistance to fatigue [26].

The expression of MyHC isoforms in the diaphragm
varies from one species to another. In humans, slow and
fast MyHC isoforms are expressed in similar amounts
[27]. The same occurs in rats [28-30]. Interestingly, there
is almost no MyHC-IIb in the latter animal [30]. By
contrast, mongrel dogs show a higher expression of
the fast MyHC isoform in this muscle [31]. The expres-
sion appears as homogeneous throughout the diaph-
ragm, with no differences between the costal and the
crural portions [31].

As mentioned above, the skeletal muscle has a great
capacity for structural adaptation. The phenotypic char-
acteristics of a muscle are determined by genes and the
influences of the environment on their expression [32].
In recent years, techniques in molecular biology have
made it possible to identify the genes encoding the dif-
ferent MyHC and MyLC isoforms [33]. These genes
form three multigenic families, each one probably being
derived from a common gene, called the "ancestor gene".
The superfamily of genes encoding MyHCs is compos-
ed of different genes, each one appearing to encode one
specific isoform. The MyHC genes are located in two
clusters (fig. 2). The one for slow MyHC is located in
chromosome 14, closely linked to that of cardiac alpha-
MyHC, both in humans and mice [34-36]. The other
MyHC genes, including those encoding fast MyHC iso-
forms, but also foetal and perinatal MyHC, are clus-
tered in chromosome 17 in humans, and in chromosome
11 in mice [36, 37]. At least six genes exist in this clus-
ter [38, 39], and it is believed that there is a specific
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Fig. 2. — In humans, the genes for slow myosin heavy chain (MyHC-
1) are clustered in chromosome 14, whereas those for fast, foetal and
perinatal myosin heavy chain (MyHC-IIa, b and x, -F and -PN, respec-
tively) are located in chromosome 17.

gene for each one of the fast isoforms (MyHC-IIa,
MyHC-IIb and MyHC-IIx) [33].

Genes are transcribed into messenger ribonucleic acids
(mRNAs), that are specific for each isoform. Studies
using in situ hybridization (ISH) have made it possible
to identify these mRNAs. This has improved knowledge
of the next steps necessary for the synthesis of MyHC
molecules and their assembly in the thick filament of
the sarcomere [40-42]. The mRNAs corresponding to
MyHC have been detected predominantly in the peri-
phery of the fibres, surrounding the nuclei [43] (fig. 3).
Smaller concentrations have been observed close to the
A-band of the sarcomere. This suggests both that the
message and not the product (MyHC) emigrate to the in-
corporation site, and that the MyHC translation ends up
in the interfibrillar space, in the periphery of the myofi-
bril [44-46]. There, the new MyHC diffuses and is incor-
porated throughout the width and length of the A-band
[46]. The studies using ISH have also confirmed the
heterogeneity of many fibres, that simultaneously co-
express genes encoding different MyHC isoforms [33].

Fig. 3. — Expression of messenger ribonucleic acid (mRNA) corre-
sponding to slow myosin heavy chain observed in a cross-sectional
view of fibres from the diaphragm.
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The transcriptional and translational mechanisms that
regulate the expression of the genes encoding MyHC
isoforms are not well-known, although they are being
actively investigated. It is believed that the expression
is regulated fundamentally by mechanical signals, par-
ticularly by changes in the tension generated by the mus-
cle during the effort [47]. The stretch (active tension)
as well as electrical stimulation (passive tension) pro-
voke the repression of the fast-type genes, with acti-
vation of the slow-type genes [2, 48]. This implies a
progressive transformation in the type of fibres [49-52].
This transformation is not dependent on their substi-
tution by new fibres, but on changes in the molecular
expression of their MyHC isoforms [53]. As a general
rule, the fast-type genes seem to be expressed "by def-
ault", whereas the slow-type genes would be expressed
as a response to changes in loads [50-52]. Thus, a
decrease in or lack of activity would result in a higher
expression of fast MyHC, with an increase in the size
and/or proportion of type I fibres [54-58]. However, the
type of activity also influences the expression [59]. For
example, aerobic exercises trigger the expression of slow
MyHC, whereas weight-lifting training induces a greater
expression of fast MyHC [59]. Rest and weight-lifting
exercises act in different ways, increasing the expres-
sion of fast MyHC. Whereas the latter provoke an in-
crease in expression of fast MyHC in fast fibres that
become hypertrophic, the decrease in activity results in
a higher expression of fast MyHC in the overall popu-
lation of fibres. Apparently, transitions among different
types of MyHC seem to follow an order established by
their functional characteristics. Thus, MyHC-I would be
substituted by MyHC-IIa, which in turn would be sequ-
entially replaced by MyHC-IIx and MyHC-IIb [60, 61].
This sequence would operate in both directions, accor-
ding to the type of stimulus experienced.

As mentioned previously, mechanical signals are be-
lieved to be the main stimulus capable of inducing chan-
ges in the expression of MyHC isoforms. The effects of
active tension have been studied, submitting the mus-
cle either to an increase or decrease in loads [54, 62—
64]. For the former, muscle overloading [50, 64, 65]
and training [59, 66-71] were used. In contrast, sus-
pension [50, 54, 57, 65, 67, 72], immobilization [2, 72]
and microgravity [56, 73] were employed to reduce the
loads. On the other hand, passive tension has been
evaluated through studies using different patterns of neu-
ral activity [1, 51, 74-77]: electrical stimulation [51, 53,
77— 81]; muscle blockade [83-85]; and denervation [82].
Finally, hormonal factors, such as the effects of thyroid
hormone or steroids, also influence the expression of
different MyHC isoforms [66, 86—88]. The above-men-
tioned factors were used both separately and in a com-
bined form to evaluate the specific weight of each one
[65, 67]

Nutrition is an additional factor that can modulate the
genetic expression of MyHC. Some dietary deficiencies
during development [89], and local ischaemia [90], ap-
pear to favour the expression of slow MyHC. Sex, degree
of development and ageing are other factors that con-
dition the expression of MyHC [91]. At the moment of
birth, skeletal muscles show a combination of embryo-
nic and neonatal MyHC, with small quantities of MyHC-
I and MyHC-IIa. The embryonic MyHC is progressively

substituted by adult forms [92, 93]. Ageing involves
new changes in expression. As an example, MyHC-IIb
is substituted by MyHC-IIx in older rats [94].

A point of interest is the intensity of the stimulus
capable of triggering changes in the genetic expression
of MyHC. Although even moderate loads are capable
of modifying this expression [31], the minimum thresh-
old required to induce the transformation still remains
unknown. In general, the intensity and velocity of the
changes vary from one animal species to another [95].
A factor that should also be considered is the duration
of the stimulus required for transformation [96]. In adult
animals, changes have been observed even after extreme-
ly short periods of stimulation [48].

It is believed that changes in the tension generated
by the muscle during the effort would be the initial phe-
nomenon involved in the transformation process [47].
A fascinating question is how changes in tension result
in changes in MyHC gene expression. The signal could
act just mechanically or through the release of a mes-
senger. However, recent studies suggest that the mus-
cular activity itself is not sufficient for triggering the
process [47]. Nevertheless, the link between the mechan-
ical signal and changes in MyHC gene expression re-
mains undiscovered. It is possible that some of the
mediators that act in the early stages of development,
such as myogenin and/or MyoD, could be implicated
[97]. The persistent decrease in the potential of phos-
phorylation in the adenosine triphosphate (ATP) system
has also been suggested as a potential trigger for MyHC
transformation [95]. In addition, a growth factor that
has recently been cloned from muscles subjected to stress
can also be implicated in this genetic modulation [98].
On the other hand, membrane and sarcomere damage
have been observed in muscles after moderate loading
[99]. This damage coexists with changes in the gene-
tic expression of MyHC [31], and with the presence of
the above-mentioned growth factor [98]. The relation-
ship between muscle damage and changes in MyHC
expression is also unknown. The first event may be a
prerequisite for gene switching or just a different part
of the same remodelling process, not directly related to
the latter.

The capacity of muscles to adapt to a variety of chal-
lenges has been explored mainly in the field of sports
medicine, and in the treatment of cardiac diseases with
myocardial substitutes [100, 101]. There are few stud-
ies evaluating these phenomena in respiratory muscles.
In general, the results are quite similar to those observed
in other skeletal muscles submitted to loads [83, 101,
102]. Interestingly, general training, although prolonged,
appears to result in only mild changes in the cellular
and molecular characteristics of the diaphragm [103].
In addition, changes appear to affect just the costal por-
tion of the diaphragm. In contrast, we have recently ob-
served that specific respiratory stimuli are capable of
dramatically modifying the structure of this muscle in
vivo. Breathing against moderate levels of inspiratory
resistance resulted in an increase in the expression of
the genes encoding the slow MyHC [31]. These changes
affected both the costal and crural portions of the di-
aphragm. The transient submission to respiratory loads
probably emulated an endurance training, with similar
results in MyHC expression [70]. The nature of these
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Fig. 4. — Densitometric profiles of slow (MyHC-I) and fast myosin
(MyHC-II) heavy chain isoforms obtained in electrophoresis from the
external intercostal muscles of subjects with: a) normal lung function;
and b) severe chronic obstructive pulmonary disease (COPD). FEV1:
forced expiratory volume in one second; % pred: percentage of pre-
dicted value.

changes is presumably adaptive. Thus, the phenotypic
reprogramming of the muscle with a greater expression
of genes encoding slow MyHC would condition multi-
ple metabolic and mechanical advantages. The smaller
energy cost necessary to maintain a similar tension [5,
11, 104], would be added to a higher resistance to fatigue
[70]. However, not everything is beneficial; these chan-
ges would also result in a higher curvature of the force-
velocity relationship in the muscle, with loss both of
velocity and strength of contraction [7, 8, 17]. On the
other hand, it has recently been observed that external
intercostal muscles show an increased expression of fast
MyHC in patients with chronic obstructive pulmonary
disease (COPD) [105] (fig. 4). This increase, in the op-
posite direction to what one would expect in the dia-
phragm, is probably related to the type of activity that
external intercostals have to develop in COPD patients.
On the other hand, our group was not able to demon-
strate changes in the expression of MyHC in the diaph-
ragm of these patients [27]. However, this could have
been due to the fact that patients with severe airways
obstruction were not included.

An interesting implication of these studies is that they
suggest the possibility of eliciting a phenotypic adapta-
tion of the diaphragm in humans using training pro-
grammes. The beneficiaries of such programmes would
be mainly COPD patients, but also those individuals sub-
mitted to long-term mechanical ventilation. The program-
mes should be designed to achieve specific objectives.
Improving the strength of respiratory muscles can be use-
ful for some functions (i.e. cough and sighs in exacerba-
tions of chronic respiratory diseases), whereas increasing
the endurance would be useful in others (i.e. exercise
tolerance). Possibilities other than training could proba-
bly be contemplated in the near future, such as the use of
drugs known to modify the genetic expression of struc-
tural proteins, or the use of genetic therapies to induce
the synthesis of endogenous growth factors in the muscle.
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