Skip to main content
Log in

The Relevance of Mammalian Peroxiredoxins to the Gametogenesis, Embryogenesis, and Pregnancy Outcomes

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Peroxiredoxin (PRX) defines a family that provides antioxidant defense in different cell types by removing reactive oxygen species (ROS) through conserved active cysteines, with the support of other types of antioxidants such as thioredoxin, glutaredoxin, and glutathione peroxidase. By regulation of intracellular ROS levels, the mammalian PRXs influence a variety of reproductive processes including gamete maturation, fertilization, and embryo development. Experimental mice lacking PRXs developed normally, but some showed accelerated decrease in fertility with aging, suggesting that deficiency of PRXs did not have lethal consequences for reproduction. The aim of this review is to summarize the role of mammalian PRXs in the reproductive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakamura BN, Lawson G, Chan JY, et al. Knockout of the transcription factor NRF2 disrupts spermatogenesis in an age-dependent manner. Free Radic Biol Med. 2010;49(9):1368–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shiva M, Gautam AK, Verma Y, Shivgotra V, Doshi H, Kumar S. Association between sperm quality, oxidative stress, and seminal antioxidant activity. Clin Biochem. 2011;44(4):319–324.

    Article  CAS  PubMed  Google Scholar 

  3. Pahune PP, Choudhari AR, Muley PA. The total antioxidant power of semen and its correlation with the fertility potential of human male subjects. J Clin Diagn Res. 2013;7(6):991–995.

    PubMed  PubMed Central  Google Scholar 

  4. Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoos-permia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol. 2014;12:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Roychoudhury S, Sharma R, Sikka S, Agarwal A. Diagnostic application of total antioxidant capacity in seminal plasma to assess oxidative stress in male factor infertility. J Assist Reprod Genet. 2016;33(5):627–635.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Meng L, Rijntjes E, Swarts H, et al. Dietary-induced chronic hypothyroidism negatively affects rat follicular development and ovulation rate and is associated with oxidative stress. Biol Reprod. 2016;94(4):90.

    PubMed  Google Scholar 

  7. Ji G, Gu A, Wang Y, et al. Genetic variants in antioxidant genes are associated with sperm DNA damage and risk of male infertility in a Chinese population. Free Radic Biol Med. 2012;52(4):775–780.

    Article  CAS  PubMed  Google Scholar 

  8. Tsunoda S, Kawano N, Miyado K, Kimura N, Fujii J. Impaired fertilizing ability of superoxide dismutase 1-deficient mouse sperm during in vitro fertilization. Biol Reprod. 2012;87(5):121.

    Article  PubMed  CAS  Google Scholar 

  9. Noda Y, Ota K, Shirasawa T, Shimizu T. Copper/zinc superoxide dismutase insufficiency impairs progesterone secretion and fertility in female mice. Biol Reprod. 2012;86(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  10. Donabela FC, Meola J, Padovan CC, de Paz CC, Navarro PA. Higher SOD1 gene expression in cumulus cells from infertile women with moderate and severe endometriosis. Reprod Sci. 2015;22(11):1452–1460.

    Article  CAS  PubMed  Google Scholar 

  11. Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A. 1994;91(15):7017–7021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem. 1998;273(11):6297–6302.

    Article  CAS  PubMed  Google Scholar 

  13. Chae HZ, Kim HJ, Kang SW, Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract. 1999;45(2-3):101–112.

    Article  CAS  PubMed  Google Scholar 

  14. Rhee SG, Kang SW, Chang TS, Jeong W, Kim K. Peroxiredoxin, a novel family of peroxidases. IUBMB Life. 2001;52(1-2):35–41.

    Article  CAS  PubMed  Google Scholar 

  15. Prospéri MT, Ferbus D, Karczinski I, Goubin G. A human cDNA corresponding to a gene overexpressed during cell proliferation encodes a product sharing homology with amoebic and bacterial proteins. J Biol Chem. 1993;268(15):11050–11056.

    PubMed  Google Scholar 

  16. Nemoto Y, Yamamoto T, Takada S, Matsui Y, Obinata M. Anti-sense RNA of the latent period gene (MER5) inhibits the differentiation of murine erythroleukemia cells. Gene. 1990;91(2):261–265.

    Article  CAS  PubMed  Google Scholar 

  17. Rabilloud T, Berthier R, Vinçon M, Ferbus D, Goubin G, Lawrence JJ. Early events in erythroid differentiation: accumulation of the acidic peroxidoxin (PRP/TSA/NKEF-B). Biochem J. 1995; 312(pt 3):699–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang HY, Jeong DK, Kim SH, et al. The role of peroxiredoxin III on late stage of proerythrocyte differentiation. Biochem Biophys Res Commun. 2007;359(4):1030–1036.

    Article  CAS  PubMed  Google Scholar 

  19. Kim H, Lee TH, Park ES, et al. Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide-induced apoptosis in thyroid cells. J Biol Chem. 2000;275(24):18266–18270.

    Article  CAS  PubMed  Google Scholar 

  20. Chang TS, Cho CS, Park S, Yu S, Kang SW, Rhee SG. Peroxir-edoxin III, a mitochondrion-specific peroxidase, regulates apop-totic signaling by mitochondria. J Biol Chem. 2004;279(40):41975–41984.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou Y, Kok KH, Chun AC, et al. Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53-induced apoptosis. Biochem Biophys Res Commun. 2000;268(3):921–927.

    Article  CAS  PubMed  Google Scholar 

  22. Pak JH, Manevich Y, Kim HS, Feinstein SI, Fisher AB. An anti-sense oligonucleotide to 1-cys peroxiredoxin causes lipid perox-idation and apoptosis in lung epithelial cells. J Biol Chem. 2002;277(51):49927–49934.

    Article  CAS  PubMed  Google Scholar 

  23. Wonsey DR, Zeller KI, Dang CV. The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proc Natl Acad Sci U S A. 2002;99(10):6649–6654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Flaherty C. Peroxiredoxins: hidden players in the antioxidant defence of human spermatozoa. Basic Clin Androl. 2014;24:4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Qian Y, Shao L, Yuan C, et al. Implication of differential perox-iredoxin 4 expression with age in ovaries of mouse and human for ovarian aging. Curr Mol Med. 2016;16(3):243–251.

    Article  CAS  PubMed  Google Scholar 

  26. Neumann CA, Krause DS, Carman CV, et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature. 2003;424(6948):561–565.

    Article  CAS  PubMed  Google Scholar 

  27. Lee TH, Kim SU, Yu SL, et al. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood. 2003;101(12):5033–5038.

    Article  CAS  PubMed  Google Scholar 

  28. Low FM, Hampton MB, Peskin AV, Winterbourn CC. Peroxir-edoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte. Blood. 2007;109(6):2611–2617.

    Article  CAS  PubMed  Google Scholar 

  29. Yang CS, Lee DS, Song CH, et al. Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock. J Exp Med. 2007;204(3):583–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cox AG, Winterbourn CC, Hampton MB. Mitochondrial perox-iredoxin involvement in antioxidant defence and redox signalling. Biochem J. 2009;425(2):313–325.

    Article  PubMed  CAS  Google Scholar 

  31. Rabilloud T, Heller M, Rigobello MP, Bindoli A, Aebersold R, Lunardi J. The mitochondrial antioxidant defence system and its response to oxidative stress. Proteomics. 2001;1(9):1105–1110.

    Article  CAS  PubMed  Google Scholar 

  32. Huh JY, Kim Y, Jeong J, et al. Peroxiredoxin 3 is a key molecule regulating adipocyte oxidative stress, mitochondrial biogenesis, and adipokine expression. Antioxid Redox Signal. 2012;16(3):229–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang YG, Wang L, Kaifu T, Li J, Li X, Li L. Accelerated decline of physical strength in peroxiredoxin-3 knockout mice. Exp Biol Med. 2016;241(13):1395–1400.

    Article  CAS  Google Scholar 

  34. Li L, Shoji W, Oshima H, Obinata M, Fukumoto M, Kanno N. Crucial role of peroxiredoxin III in placental antioxidant defense of mice. FEBS Lett. 2008;582(16):2431–2434.

    Article  CAS  PubMed  Google Scholar 

  35. Li L, Obinata M, Hori K. Role of peroxiredoxin III in the patho-genesis of pre-eclampsia as evidenced in mice. Oxid Med Cell Longev. 2010;3(1):71–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Matsumoto A, Okado A, Fujii T, et al. Cloning of the peroxire-doxin gene family in rats and characterization of the fourth member. FEBS Lett. 1999;443(3):246–250.

    Article  CAS  PubMed  Google Scholar 

  37. Okado-Matsumoto A, Matsumoto A, Fujii J, Taniguchi N. Perox-iredoxin IV is a secretable protein with heparin-binding properties under reduced conditions. J Biochem. 2000;127(3):493–501.

    Article  CAS  PubMed  Google Scholar 

  38. Iuchi Y, Okada F, Tsunoda S, et al. Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J. 2009;419(1):149–158.

    Article  CAS  PubMed  Google Scholar 

  39. Knoops B, Clippe A, Bogard C, et al. Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxin family. J Biol Chem. 1999;274(43):30451–30458.

    Article  CAS  PubMed  Google Scholar 

  40. Lee TH, Kim SJ, Kang SW, Lee KK, Rhee SG, Yu DY. Molecular cloning and characterization of the mouse peroxiredoxin V gene. Biochem Biophys Res Commun. 2000;270(2):356–362.

    Article  CAS  PubMed  Google Scholar 

  41. Banmeyer I, Marchand C, Clippe A, Knoops B. Human mitochon-drial peroxiredoxin 5 protects from mitochondrial DNA damages induced by hydrogen peroxide. FEBS Lett. 2005;579(11):2327–2333.

    Article  CAS  PubMed  Google Scholar 

  42. Kropotov A, Usmanova N, Serikov V, Zhivotovsky B, Tomilin N. Mitochondrial targeting of human peroxiredoxin V protein and regulation of PRDX5 gene expression by nuclear transcription factors controlling biogenesis of mitochondria. FEBS J. 2007;274(22):5804–5814.

    Article  CAS  PubMed  Google Scholar 

  43. Nagase T, Miyajima N, Tanaka A, et al. Prediction of the coding sequences of unidentified human genes. III. The coding sequences of 40 new genes (KIAA0081-KIAA0120) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 1995;2(1):37–43.

    CAS  PubMed  Google Scholar 

  44. Wang X, Phelan SA, Forsman-Semb K, Taylor EF, Petros C, Brown A, Lerner CP, Paigen B. Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. J Biol Chem. 2003;278(27):25179–25190.

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Feinstein SI, Manevich Y, Ho YS, Fisher AB. Peroxir-edoxin 6 gene-targeted mice show increased lung injury with paraquat-induced oxidative stress. Antioxid Redox Signal. 2006; 8(1-2):229–237.

    Article  PubMed  Google Scholar 

  46. Pacifici F, Arriga R, Sorice GP, et al. Peroxiredoxin 6, a novel player in the pathogenesis of diabetes. Diabetes. 2014;63(10):3210–3220.

    Article  CAS  PubMed  Google Scholar 

  47. Venkatesh S, Shamsi MB, Dudeja S, Kumar R, Dada R. Reactive oxygen species measurement in neat and washed semen: comparative analysis and its significance in male infertility assessment. Arch Gynecol Obstet. 2011;283(1):121–126.

    Article  CAS  PubMed  Google Scholar 

  48. Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod. 2012; 86(2):27.

    Article  PubMed  CAS  Google Scholar 

  49. Benedetti S, Tagliamonte MC, Catalani S, et al. Differences in blood and semen oxidative status in fertile and infertile men, and their relationship with sperm quality. Reprod Biomed Online. 2012;25(3):300–306.

    Article  CAS  PubMed  Google Scholar 

  50. Agarwal A, Sharma RK, Sharma R, et al. Characterizing semen parameters and their association with reactive oxygen species in infertile men. Reprod Biol Endocrinol. 2014;12:33.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lee YI, Kang WD, Kim MY, Cho MK, Chun SY. Expression of peroxiredoxin I regulated by gonadotropins in the rat ovary. Clin Exp Reprod Med. 2011;38(1):18–23.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gong S, San Gabriel MC, Zini A, Chan P, O’Flaherty C. Low amounts and high thiol oxidation of peroxiredoxins in spermatozoa from infertile men. J Androl. 2012;33(6):1342–1351.

    Article  CAS  PubMed  Google Scholar 

  53. Park JI, Jeon HJ, Jung NK, et al. Periovulatory expression of hydrogen peroxide-induced sulfiredoxin and peroxiredoxin 2 in the rat ovary: gonadotropin regulation and potential modification. Endocrinology. 2012;153(11):5512–5521.

    Article  CAS  PubMed  Google Scholar 

  54. Lee MS, Liu CH, Lee TH, et al. Association of creatine kinase B and peroxiredoxin 2 expression with age and embryo quality in cumulus cells. J Assist Reprod Genet. 2010;27(11):629–639.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fakruzzaman M, Ghanem N, Bang JI, et al. Effect of peroxir-edoxin II on the quality and mitochondrial activity of pre-implantation bovine embryos. Anim Reprod Sci. 2015;159: 172–183.

    Article  CAS  PubMed  Google Scholar 

  56. O’Flaherty C. Redox regulation of mammalian sperm capacitation. Asian J Androl. 2015;17(4):583–590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  58. Onorato TM, Brown PW, Morris PL. Mono-(2-ethylhexyl) phthalate increases spermatocyte mitochondrial peroxiredoxin 3 and cyclooxygenase 2. J Androl. 2008;29(3):293–303.

    Article  CAS  PubMed  Google Scholar 

  59. Hammond ER, Stewart B, Peek JC, Shelling AN, Cree LM. Assessing embryo quality by combining non-invasive markers: early time-lapse parameters reflect gene expression in associated cumulus cells. Hum Reprod. 2015;30(8):1850–1860.

    Article  CAS  PubMed  Google Scholar 

  60. Sasagawa I, Matsuki S, Suzuki Y, et al. Possible involvement of the membrane-bound form of peroxiredoxin 4 in acrosome formation during spermiogenesis of rats. Eur J Biochem. 2001;268(10):3053–3061.

    Article  CAS  PubMed  Google Scholar 

  61. Matsuki S, Sasagawa I, Iuchi Y, Fujii J. Impaired expression of peroxiredoxin 4 in damaged testes by artificial cryptorchidism. Redox Rep. 2002;7(5):276–278.

    Article  CAS  PubMed  Google Scholar 

  62. Banmeyer I, Marchand C, Verhaeghe C, Vucic B, Rees JF, Knoops B. Overexpression of human peroxiredoxin 5 in subcel-lular compartments of Chinese hamster ovary cells: effects on cytotoxicity and DNA damage caused by peroxides. Free Radic Biol Med. 2004;36(1):65–77.

    Article  CAS  PubMed  Google Scholar 

  63. Park K, Jeon S, Song YJ, Yi LS. Proteomic analysis of boar spermatozoa and quantity changes of superoxide dismutase 1, glutathione peroxidase, and peroxiredoxin 5 during epididymal maturation. Anim Reprod Sci. 2012;135(1-4):53–61.

    Article  CAS  PubMed  Google Scholar 

  64. Nagdas SK, Buchanan T, Raychoudhury S. Identification of peroxiredoxin-5 in bovine cauda epididymal sperm. Mol Cell Biochem. 2014;387(1-2):113–121.

    Article  CAS  PubMed  Google Scholar 

  65. Kwon WS, Rahman MS, Lee JS, et al. A comprehensive proteomic approach to identifying capacitation related proteins in boar spermatozoa. BMC Genomics. 2014;15:897.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ozkosem B, Feinstein SI, Fisher AB, O’Flaherty C. Advancing age increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 null mice. Redox Biol. 2015;5:15-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ozkosem B, Feinstein SI, Fisher AB, O’Flaherty C. Absence of peroxiredoxin 6 amplifies the effect of oxidant stress on mobility and SCSA/CMA3 defined chromatin quality and impairs fertilizing ability of mouse spermatozoa. Biol Reprod. 2016; 94(3):68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Liu J, Rong CT, Li Y, Liu XX, Wang WT, Li N. Vasectomy induces oxidative stress and up-regulates the expression of per-oxiredoxins in mouse testis in short and early periods after surgery. J Urol. 2014;191(6):1920–1926.

    Article  CAS  PubMed  Google Scholar 

  69. O’Flaherty C, de Souza AR. Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biol Reprod. 2011;84(2):238–247.

    Article  PubMed  CAS  Google Scholar 

  70. Regan L, Rai R. Epidemiology and the medical causes of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14(5):839–854.

    Article  CAS  PubMed  Google Scholar 

  71. Cunningham FG, Ieveno KJ, Bloom SL, Hauth JC, Rouse DJ, Spong CY. Williams Obstetrics. 23rd ed. New York, NY: McGraw Hill; 2010.

    Google Scholar 

  72. Rai R, Regan L. Recurrent miscarriage. Lancet. 2006;368(9535):601–611.

    Article  PubMed  Google Scholar 

  73. Jauniaux E, Burton GJ. Pathophysiology of histological changes in early pregnancy loss. Placenta. 2005;26(2-3):114–123.

    Article  CAS  PubMed  Google Scholar 

  74. Toy H, Camuzcuoglu H, Camuzcuoglu A, Celik H, Aksoy N. Decreased serum prolidase activity and increased oxidative stress in early pregnancy loss. Gynecol Obstet Invest. 2010;69(2):122–127.

    Article  CAS  PubMed  Google Scholar 

  75. Yiyenoğlu ÖB, Uğur MG, Özcan HÇ, et al. Assessment of oxidative stress markers in recurrent pregnancy loss: a prospective study. Arch Gynecol Obstet. 2014;289(6):1337–1340.

    Article  PubMed  CAS  Google Scholar 

  76. Yin G, Li C, Shan B, et al. Insufficient peroxiredoxin-2 expression in uterine NK cells obtained from a murine model of abortion. J Cell Biochem. 2011;112(3):773–781.

    Article  CAS  PubMed  Google Scholar 

  77. Hirota Y, Acar N, Tranguch S, et al. Uterine FK506-binding protein 52 (FKBP52)-peroxiredoxin-6 (PRDX6) signaling protects pregnancy from overt oxidative stress. Proc Natl Acad Sci U S A. 2010;107(35):15577–15582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu AX, Jin F, Zhang WW, et al. Proteomic analysis on the alteration of protein expression in the placental villous tissue of early pregnancy loss. Biol Reprod. 2006;75(3):414–420.

    Article  CAS  PubMed  Google Scholar 

  79. Gharesi-Fard B, Jafarzadeh L, Ghaderi-shabankareh F, Zolghadri J, Kamali-Sarvestani E. Presence of autoantibody against two placental proteins, peroxiredoxin 3 and peroxiredoxin 4, in sera of recurrent pregnancy loss patients. Am J Reprod Immunol. 2013;69(3):248–255.

    Article  CAS  PubMed  Google Scholar 

  80. Gharesi-Fard B. Preoxiredoxin family members (Prx3 and Prx4) and pregnancy disorder (recurrent pregnancy loss). Methods Mol Biol. 2015;1208:299-311.

    Article  CAS  PubMed  Google Scholar 

  81. Younis A, Clower C, Nelsen D, et al. The relationship between pregnancy and oxidative stress markers on patients undergoing ovarian stimulations. J Assist Reprod Genet. 2012;29(10):1083–1089.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Velthut A, Zilmer M, Zilmer K, Kaart T, Karro H, Salumets A. Elevated blood plasma antioxidant status is favourable for achieving IVF/ICSI pregnancy. Reprod Biomed Online. 2013;26(4):345–352.

    Article  CAS  PubMed  Google Scholar 

  83. Ozatik O, Aydin Y, Hassa H, Ulusoy D, Ogut S, Sahin F. Relationship between oxidative stress and clinical pregnancy in assisted reproductive technology treatment cycles. J Assist Reprod Genet. 2013;30(6):765–772.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shen C, Nathan C. Nonredundant antioxidant defense by multiple two-cysteine peroxiredoxins in human prostate cancer cells. Mol Med. 2002;8(2):95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bae JY, Ahn SJ, Han W, Noh DY. Peroxiredoxin I and II inhibit H2O2-induced cell death in MCF-7 cell lines. J Cell Biochem. 2007;101(4):1038–1045.

    Article  CAS  PubMed  Google Scholar 

  86. De Simoni S, Goemaere J, Knoops B. Silencing of peroxire-doxin 3 and peroxiredoxin 5 reveals the role of mitochondrial peroxiredoxins in the protection of human neuroblastoma SH-SY5Y cells toward MPPβ. Neurosci Lett. 2008;433(3):219–224.

    Article  PubMed  CAS  Google Scholar 

  87. Goncalves K, Sullivan K, Phelan S. Differential expression and function of peroxiredoxin 1 and peroxiredoxin 6 in cancerous MCF-7 and noncancerous MCF-10A breast epithelial cells. Cancer Invest. 2012;30(1):38–47.

    Article  CAS  PubMed  Google Scholar 

  88. Kalinina EV, Berezov TT, Shtil’ AA, et al. Expression of peroxiredoxin 1, 2, 3, and 6 genes in cancer cells during drug resistance formation. Bull Exp Biol Med. 2012;153(6):878–881.

    Article  CAS  PubMed  Google Scholar 

  89. Bast A, Wolf G, Oberbäumer I, Walther R. Oxidative and nitro-sative stress induces peroxiredoxins in pancreatic beta cells. Diabetologia. 2002;45(6):867–876.

    Article  CAS  PubMed  Google Scholar 

  90. Dubuisson M, Vander Stricht D, Clippe A, et al. Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett. 2004;571(1-3):161–165.

    Article  CAS  PubMed  Google Scholar 

  91. Diet A, Abbas K, Bouton C, et al, Regulation of peroxiredoxins by nitric oxide in immunostimulated macrophages. J Biol Chem. 2007;282(50):36199–36205.

    Article  CAS  PubMed  Google Scholar 

  92. Reinartz M, Ding Z, Flögel U, Gödecke A, Schrader J. Nitrosative stress leads to protein glutathionylation, increased s-nitrosation, and up-regulation of peroxiredoxins in the heart. J Biol Chem. 2008;283(25):17440–17449.

    Article  CAS  PubMed  Google Scholar 

  93. Hanschmann EM, Lönn ME, Schütte LD, et al. Both thioredoxin 2 and glutaredoxin 2 contribute to the reduction of the mitochon-drial 2-Cys peroxiredoxin Prx3. J Biol Chem. 2010;285(52):40699–40705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Madrigal-Matute J, Fernandez-Garcia CE, Blanco-Colio LM, et al. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis. Free Radic Biol Med. 2015;86:352-361.

    Article  CAS  PubMed  Google Scholar 

  95. Peskin AV, Pace PE, Behring JB, et al. Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutar-edoxin. J Biol Chem. 2016;291(6):3053–3062.

    Article  CAS  PubMed  Google Scholar 

  96. Chang TS, Jeong W, Woo HA, Lee SM, Park S, Rhee SG. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem. 2004;279(49):50994–51001.

    Article  CAS  PubMed  Google Scholar 

  97. Woo HA, Jeong W, Chang TS, et al. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem. 2005;280(5):3125–3128.

    Article  CAS  PubMed  Google Scholar 

  98. Seo MS, Kang SW, Kim K, Baines IC, Lee TH, Rhee SG. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem. 2000;275(27):20346–20354.

    Article  CAS  PubMed  Google Scholar 

  99. Lee SP, Hwang YS, Kim YJ, et al. Cyclophilin a binds to per-oxiredoxins and activates its peroxidase activity. J Biol Chem. 2001;276(32):29826–29832.

    Article  CAS  PubMed  Google Scholar 

  100. Nonn L, Williams RR, Erickson RP, Powis G. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol Cell Biol. 2003;23(3):916–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianqin Li MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L. The Relevance of Mammalian Peroxiredoxins to the Gametogenesis, Embryogenesis, and Pregnancy Outcomes. Reprod. Sci. 24, 812–817 (2017). https://doi.org/10.1177/1933719116667217

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116667217

Keywords

Navigation