Skip to main content

Advertisement

Log in

Testicular Stem Cells Express Follicle-Stimulating Hormone Receptors and Are Directly Modulated by FSH

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Testicular spermatogonial stem cells (SSCs) are a heterogeneous population of stem cells, and definitive marker for the most primitive subset that undergoes asymmetric cell division remains to be identified. A novel subpopulation of pluripotent, very small embryonic-like stem cells (VSELs) has been reported in both human and mouse testes. Follicle-stimulating hormone (FSH) receptors (FSHRs) are expressed on Sertoli cells in testis and on granulosa cells in ovary, but recently FSHRs are reported on VSELs in ovaries, bone marrow, and cord blood. The present study was aimed to investigate whether FSHRs are also expressed on testicular stem cells (VSELs and SSCs) and their possible modulation by FSH using intact and chemoablated (25 mg/kg busulfan) mice. Chemoablated testis was a better model to study stem cell biology since quiescent stem cells survive along with the Sertoli cells in the tubules. Proliferating cell nuclear antigen-positive, small-sized cells presumed to be VSELs were clearly visualized, and flow cytometry analysis revealed an increase in LIN/CD45/SCA-1+ VSELs from 0.045±0.008% to 0.1±0.03% of total cells in chemoablated testis after FSH treatment. Very small embryonic-like stem cells expressing nuclear octamer-binding transcription factor 4 (OCT-4) and SSCs with cytoplasmic OCT-4 were detected. Very small embryonic-like stem cells (Oct-4A, Sca-1, Nanog), SSCs (Oct-4), and proliferation (Pcna) specific transcripts were upregulated on FSH treatment. Stem cells expressed FSHR and were stimulated by FSH, and Fshr3 was the predominant transcript maximally modulated by FSH. Nuclear OCT-4 and SCA-1 (stem cell antigen 1) positive VSELs are the most primitive stem cells in testis, and FSH stimulates them to undergo asymmetric cell division including self-renewal and give rise to SSCs, which in turn proliferate rapidly and undergo clonal expansion and further differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Themmen APN, Kraaij R, Grootegoed JA. Regulation of gonadotropin receptor gene expression. Mol Cell Endocrinol. 1994;100(1-2):15–19.

    CAS  PubMed  Google Scholar 

  2. Paradisi R, Natali F, Fabbri R, Battaglia C, Seracchioli R, Venturoli S. Evidence for a stimulatory role of high doses of recombinant human follicle-stimulating hormone in the treatment of male-factor infertility. Andrologia. 2014;46(9):1067–1072.

    CAS  PubMed  Google Scholar 

  3. Themmen APN, Huhtaniemi IT. Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev. 2000;21(5):551–583.

    CAS  PubMed  Google Scholar 

  4. Sriraman V, Rao AJ. FSH, the neglected sibling: evidence for its role in regulation of spermatogenesis and Leydig cell function. Indian J Exp Biol. 2005;43(11):993–1000.

    CAS  PubMed  Google Scholar 

  5. Laan M, Grigorova M, Huhtaniemi IT. Pharmacogenetics of FSH action. Curr Opin Endocrinol Diabetes Obes. 2012;19(3):220–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kumar TR. The quest for male germ-line stem cell markers: PAX7 gets ID’d. J Clin Invest. 2014;124(10):4219–4222.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Aloisio GM, Nakada Y, Saatcioglu HD, et al. PAX7 expression defines germline stem cells in the adult testis. J Clin Invest. 2014;124(9):3929–3944.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan F, Oatley MJ, Kaucher AV, et al. Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev. 2014;28(12):1351–1362.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ratajczak MZ. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia. 2015;29(4):776–782.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lim JJ, Sung SY, Kim HJ, et al. Long-term proliferation and characterization of human spermatogonial stem cells obtained from obstructive and non-obstructive azoospermia under exogenous feeder-free culture conditions. Cell Prolif. 2010;43(4):405–417.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Izadyar F, Wong J, Maki C, et al. Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod. 2011;26(6):1296–1306.

    PubMed  Google Scholar 

  12. Bhartiya D, Parte S, Patel H, Anand S, Sriraman K, Gunjal P. Pluripotent very small embryonic-like stem cells in adult mammalian gonads. In: Ratajczak, ed. “Adult Stem Cell Therapies: Alternatives to Plasticity,” Stem Cell Biology and Regenerative Medicine. New York: Springer; 2014:191–209. ISBN: 978-1-4939-1000-7. doi:10.1007/978-1-4939-1001-4_1

    Google Scholar 

  13. Bhartiya D, Unni S, Parte S, Anand S. Very small embryonic-like stem cells: implications in reproductive biology. Biomed Res Int. 2013;2013:682326.

    PubMed  PubMed Central  Google Scholar 

  14. Parte S, Patel H, Sriraman K, Bhartiya D. Isolation and characterization of stem cells in the adult mammalian ovary. Methods Mol Biol. 2015;1235:203–229.

    CAS  PubMed  Google Scholar 

  15. Bhartiya D, Kasiviswanathan S, Unni SK, et al. Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. J Histochem Cytochem. 2010;58(12):1093–1106.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Anand S, Bhartiya D, Sriraman K, Patel H, Manjramkar DD. Very small embryonic-like stem cells survive and restore spermatogenesis after busulphan treatment in mouse testis. J Stem Cell Res Ther. 2014;4:216.

    Google Scholar 

  17. Kurkure P, Prasad M, Dhamankar V, Bakshi G. Very small embryonic-like stem cells (VSELs) detected in azoospermic testicular biopsies of adult survivors of childhood cancer. Reprod Biol Endocrinol. 2015;13:122.

    PubMed  PubMed Central  Google Scholar 

  18. Stimpfel M, Skutella T, Kubista M, Malicev E, Conrad S, Virant-Klun I. Potential stemness of frozen-thawed testicular biopsies without sperm in infertile men included into the in vitro fertilization programme. J Biomed Biotechnol. 2012;2012:291038.

    PubMed  PubMed Central  Google Scholar 

  19. Virant-Klun I, Stimpfel M, Cvjeticanin B, Vrtacnik-Bokal E, Skutella T. Small SSEA-4-positive cells from human ovarian cell cultures: related to embryonic stem cells and germinal lineage? J Ovarian Res. 2013;6:24.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pesce M, Schöler HR. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells. 2001;19(4):271–278.

    CAS  PubMed  Google Scholar 

  21. Patel H, Bhartiya D, Parte S, Gunjal P, Yedurkar S, Bhatt M. Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSHR3. J Ovarian Res. 2013;6:52.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mierzejewska K, Borkowska S, Suszynska E, et al. Hematopoietic stem/progenitor cells express several functional sex hormone receptors-novel evidence for a potential developmental link between hematopoiesis and primordial germ cells. Stem Cells Dev. 2015;24(8):927–937.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Abdelbaset-Ismail A, Suszynska M, Borkowska S, et al. Human hematopoietic stem/progenitor cells express several functional sex hormone receptors. J Cell Mol Med. 2016;20:134–46.

    CAS  PubMed  Google Scholar 

  24. Sriraman K, Bhartiya D, Anand S, Bhutda S. Mouse ovarian very small embryonic-like stem cells resist chemotherapy and retain ability to initiate oocyte-specific differentiation. Reprod Sci. 2015;22(7):884–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Simoni M, Nieschlag E, Gromoll J. Isoforms and single nucleotide polymorphisms of the FSH receptor gene: implications for human reproduction. Hum Reprod Update. 2002;8(5):413–421.

    CAS  PubMed  Google Scholar 

  26. Sairam MR, Babu PS. The tale of follitropin receptor diversity: a recipe for fine tuning gonadal responses? Mol Cell Endocrinol. 2007;260-262:163–171.

    CAS  PubMed  Google Scholar 

  27. Zuba-Surma EK, Kucia M, Wu W, et al. Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry A. 2008;73A(12):1116–1127.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Ganta S, Cheng C, Craig R, Ganta RR, Freeman LC. FSH stimulates ovarian cancer cell growth by action on growth factor variant receptor. Mol Cell Endocrinol. 2007;267(1-2):26–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu G, Yang L, Zhang W, Wei X. All the tested human somatic cells express both Oct4A and its pseudogenes but express Oct4A at much lower levels compared with its pseudogenes and human embryonic stem cells. Stem Cells Dev. 2015;24(13):1546–1557.

    CAS  PubMed  Google Scholar 

  30. Jez M, Ambady S, Kashpur O, et al. Expression and differentiation between OCT4A and its pseudogenes in human ESCs and differentiated adult somatic cells. PLoS One. 2014;9(2):e89546.

    PubMed  PubMed Central  Google Scholar 

  31. Liedtke S, Stephan M, Kögler G. Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biol Chem. 2008;389(7):845–850.

    CAS  PubMed  Google Scholar 

  32. Samardzija C, Quinn M, Findlay JK, Ahmed N. Attributes of Oct4 in stem cell biology: perspectives on cancer stem cells of the ovary. J Ovarian Res. 2012;5(1):37.

    PubMed  PubMed Central  Google Scholar 

  33. Mays-Hoopes LL, Bolen J, Riggs AD, Singer-Sam J. Preparation of spermatogonia, spermatocytes, and round spermatids for analysis of gene expression using fluorescence-activated cell sorting. Biol Reprod. 1995;53(5):1003–1011.

    CAS  PubMed  Google Scholar 

  34. Dahia CL, Rao AJ. Regulation of FSH receptor, PKIbeta, IL-6 and calcium mobilization: possible mediators of differential action of FSH. Mol Cell Endocrinol. 2006;247(1-2):73–81.

    CAS  PubMed  Google Scholar 

  35. Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci U S A. 2003;100(11):6487–6492.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. van Bragt MP, Ciliberti N, Stanford WL, de Rooij DG, van Pelt AM. LY6A/E (SCA-1) expression in the mouse testis. Biol Reprod. 2005;73(4):634–638.

    PubMed  Google Scholar 

  37. Anand S, Bhartiya D, Sriraman K, Mallick A. Underlying mechanisms that restore spermatogenesis from very small embryonic-like stem cells on transplanting healthy niche cells in busulphan treated mouse testis [published online ahead of print Sep 23, 2016]. Stem Cell Rev. 2016. doi:10.1007/s12015-016-9685-1.

    Google Scholar 

  38. Shaikh A, Nagvenkar P, Pethe P, Hinduja I, Bhartiya D. Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood. Leukemia. 2015;29(9):1909–1917.

    CAS  PubMed  Google Scholar 

  39. Vassena R, Eguizabal C, Heindryckx B, et al. Stem cells in reproductive medicine: ready for the patient? Hum Reprod. 2015;30(9):2014–2021.

    CAS  PubMed  Google Scholar 

  40. Bhartiya D. Stem cells, progenitors & regenerative medicine: a retrospection. Indian J Med Res. 2015;141(2):154–161.

    PubMed  PubMed Central  Google Scholar 

  41. Bhartiya D, Singh J. FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer. Reproduction. 2015;149(1):R35–R48.

    PubMed  Google Scholar 

  42. Bhartiya D, Sriraman K, Gunjal P, Modak H. Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries? J Ovarian Res. 2012;5(1):32.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Parte S, Bhartiya D, Manjramkar DD, Chauhan A, Joshi A. Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture. J Ovarian Res. 2013;6(1):20.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Orth J, Christensen AK. Autoradiographic localization of specifically bound 125I-labeled follicle-stimulating hormone on spermatogonia of the rat testis. Endocrinol. 1978;103(5):1944–1951.

    CAS  Google Scholar 

  45. Baccetti B, Collodel G, Costantino-Ceccarini E, et al. Localization of human follicle-stimulating hormone in the testis. FASEB J. 1998;12(11):1045–1054.

    CAS  PubMed  Google Scholar 

  46. Kulkarni SA, Garde SV, Sheth AR. Immunocytochemical localization of bioregulatory peptides in marmoset testes. Arch Androl. 1992;29(1):87–102.

    CAS  PubMed  Google Scholar 

  47. Boitani C, Politi MG, Menna T. Spermatogonial cell proliferation in organ culture of immature rat testis. Biol Reprod. 1993;48(4):761–767.

    CAS  PubMed  Google Scholar 

  48. Yarney TA, Fahmy MH, Sairam MR, Khan H, Macdonald EA. Ontogeny of FSH receptor messenger ribonucleic acid transcripts in relation to FSH secretion and testicular function in sheep. J Mol Endocrinol. 1997;18(2):113–125.

    CAS  PubMed  Google Scholar 

  49. Sairam MR, Jiang LG, Yarney TA, Khan H. Alternative splicing converts the G-protein coupled follitropin receptor gene into a growth factor type I receptor: implications for pleiotropic actions of the hormone. Mol Reprod Dev. 1997;48(4):471–479.

    CAS  PubMed  Google Scholar 

  50. Simoni M, Gromoll J, Höppner W, et al. Mutational analysis of the follicle-stimulating hormone (FSH) receptor in normal and infertile men: identification and characterization of two discrete FSH receptor isoforms. J Clin Endocrinol Metab. 1999;84(2):751–755.

    CAS  PubMed  Google Scholar 

  51. Song GJ, Park YS, Lee YS, Lee CC, Kang IS. Alternatively spliced variants of the follicle-stimulating hormone receptor gene in the testis of infertile men. Fertil Steril. 2002;77(3):499–504.

    PubMed  Google Scholar 

  52. Sullivan RR, Faris BR, Eborn D, Grieger DM, Cino-Ozuna AG, Rozell TG. Follicular expression of follicle stimulating hormone receptor variants in the ewe. Reprod Biol Endocrinol. 2013;11:113–20.

    PubMed  PubMed Central  Google Scholar 

  53. Crepieux P, Marion S, Martinat N, et al. The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation. Oncogene. 2001;20(34):4696–4709.

    CAS  PubMed  Google Scholar 

  54. Simoni M, Casarini L. Mechanisms in endocrinology: Genetics of FSH action: a 2014-and-beyond view. Eur J Endocrinol. 2014;170(3):R91–R107.

    CAS  PubMed  Google Scholar 

  55. O’Shaughnessy PJ. Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol. 2014;29:55–65.

    PubMed  Google Scholar 

  56. Themmen AP. An update of the pathophysiology of human gonadotrophin subunit and receptor gene mutations and polymorphisms. Reproduction. 2005;130(3):263–274.

    CAS  PubMed  Google Scholar 

  57. Desai SS, Roy BS, Mahale SD. Mutations and polymorphisms in FSH receptor: functional implications in human reproduction. Reproduction. 2013;146(6):R235–R248.

    CAS  PubMed  Google Scholar 

  58. McLachlan RI, Wreford NG, de Kretser DM, Robertson DM. The effects of recombinant follicle-stimulating hormone on the restoration of spermatogenesis in the gonadotropin-releasing hormone-immunized adult rat. Endocrinology. 1995;136(9):4035–4043.

    CAS  PubMed  Google Scholar 

  59. Foresta C, Bettella A, Ferlin A, Garolla A, Rossato M. Evidence for a stimulatory role of follicle-stimulating hormone on the spermatogonial population in adult males. Fertil Steril. 1998;69(4):636–642.

    CAS  PubMed  Google Scholar 

  60. Garolla A, Selice R, Engl B, et al. Spermatid count as a predictor of response to FSH therapy. Reprod Biomed Online. 2014;29(1):102–112.

    CAS  PubMed  Google Scholar 

  61. Valenti D, La Vignera S, Condorelli RA, et al. Follicle-stimulating hormone treatment in normogonadotropic infertile men. Nat Rev Urol. 2013;10(1):55–62.

    CAS  PubMed  Google Scholar 

  62. Rao AJ, Ramachandra SG, Ramesh V, et al. Induction of infertility in adult male bonnet monkeys by immunization with phage-expressed peptides of the extracellular domain of FSH receptor. Reprod Biomed Online. 2004;8(4):385–391.

    CAS  PubMed  Google Scholar 

  63. Moudgal NR, Sairam MR, Krishnamurthy HN, Sridhar S, Krishnamurthy H, Khan H. Immunization of male bonnet monkeys (M. radiata) with a recombinant FSH receptor preparation affects testicular function and fertility. Endocrinology. 1997;138(7):3065–3068.

    CAS  PubMed  Google Scholar 

  64. Kanatsu-Shinohara M, Shinohara T. Spermatogonial stem cell self-renewal and development. Annu Rev Cell Dev Biol. 2013;29:163–187.

    CAS  PubMed  Google Scholar 

  65. Waheeb R, Hofmann MC. Human spermatogonial stem cells: a possible origin for spermatocytic seminoma. Int J Androl. 2011;34(4 pt 2):e296–e305.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. O’Shaughnessy PJ, Monteiro A, Verhoeven G, De Gendt K, Abel MH. Effect of FSH on testicular morphology and spermatogenesis in gonadotrophin-deficient hypogonadal mice lacking androgen receptors. Reproduction. 2010;139(1):177–184.

    PubMed  PubMed Central  Google Scholar 

  67. Abel MH, Baban D, Lee S, Charlton HM, O’Shaughnessy PJ. Effects of FSH on testicular mRNA transcript levels in the hypogonadal mouse. J Mol Endocrinol. 2009;42(4):291–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Takashima S, Kanatsu-Shinohara M, Tanaka T, et al. Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal. Stem Cell Reports. 2015;4(3):489–502.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Bhartiya PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, H., Bhartiya, D. Testicular Stem Cells Express Follicle-Stimulating Hormone Receptors and Are Directly Modulated by FSH. Reprod. Sci. 23, 1493–1508 (2016). https://doi.org/10.1177/1933719116643593

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116643593

Keywords

Navigation