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Abstract 
Visual analysis of EEG background and reactivity during therapeutic hypothermia provides 
important outcome information, but is time-consuming and not always consistent between 
reviewers. An automated EEG analysis approach may help to quantify the brain damage. Forty-
six comatose patients in therapeutic hypothermia after cardiac arrest were included in the study. 
EEG background was quantified with burst-suppression ratio and approximate entropy, both 
used to monitor anesthesia. Reactivity was detected through change in the power spectrum of 
signal before and after stimulation. Automatic results obtained almost perfect agreement 
(discontinuity) to substantial agreement (background reactivity) with a visual score from EEG-
certified neurologists. Burst-suppression ratio was more suited to distinguish continuous EEG 
background from burst-suppression than approximate entropy in this specific population. 
Automatic EEG background and reactivity measures were significantly related to good and poor 
outcome. We conclude that quantitative EEG measurements can provide promising information 
regarding current state of the patient and clinical outcome, but further work is needed before a 
routine application in a clinical setting. 
 



Introduction 
EEG monitoring provides important information regarding brain function, particularly in 
comatose patients1-3, and is increasingly used to monitor early changes of cerebral 
electrophysiology at the bedside in critically ill patients. EEG background activity and EEG 
reactivity are associated with prognostic information2, 4-6. Currently, EEG is monitored mostly 
through visual analysis of the raw signals, but this approach is subjective and therefore 
dependent on the investigator. Agreement ratings between trained electroencephalographers are 
generally moderate to good, but not absolute7, 8.  Quantitative EEG analysis, the numerical 
computations of parameters from the EEG, has received some attention in this setting, and has 
been shown to offer better validity than visual scoring9. 
In this specific setting, visually assessed absent EEG background, lack of reactivity, persistent 
discontinuous background, or the presence of seizures or epileptiform discharges are strong risk 
factors of poor outcome10-13; these features are generally assessed in normothermia. Recently, 
EEG reactivity during therapeutic hypothermia (TH) has also been shown to carry robust 
prognostic information2, 11, 14. Automatic analysis of background EEG has been proposed with 
methods based on burst-suppression ratio, entropy15 or amplitude equivalent EEG16, 17 and shown 
to have prognostic implications, but was not compared to visual analysis. Furthermore, these 
studies did not include the important variable of reactivity. 
 
In the present study, we sought to examine the relation between automatic and visual EEG 
analysis of background EEG and reactivity. We also investigated their prognostic value. 
Background EEG was analyzed with two methods developed to monitor anesthesia: the burst 
suppression ratio (BSR)18and the approximate entropy19, 20. Reactivity was analyzed with a 
method based on frequency features of the signal.   
 
 
Materials and methods 
Patients 
We included 46 post-anoxic comatose patients (9 females; age 61± 2) admitted from January 
2011 to May 2012 to the Department of Adult Critical Care Medicine, Centre Hospitalier 
Universitaire Vaudois (CHUV-Lausanne University Hospital), Lausanne, Switzerland. The study 
was approved by the Ethics Committee of the institution. The average time between cardiac 
arrest (CA) and return of spontaneous circulation was 20±12 minutes. Level of consciousness 
was assessed based on the Glasgow Coma Scale at regular intervals (every 2–3 h) during the first 
48 h after coma onset. All patients scored 3 or 4 during these first 48 h, indicating unconscious 
state. 
 
All patients were managed according to a standard protocol21; they were resuscitated following 
current recommendations (American Heart Association, 2005) and treated with mild therapeutic 
hypothermia to 33°C for 24 h, using ice-packs, intravenous ice-cold fluids and a surface cooling 



device (Arctic Sun System, Medivance) for the maintenance of therapeutic hypothermia, during 
which standardized doses of midazolam (0.1 mg/kg/h) and fentanyl (1.5 mg/kg/h) were 
administered for sedation, and vecuronium (0.1 mg/kg boluses) to control shivering. Patients 
with myoclonus and/or electroencephalographic epileptiform activity were treated with 
intravenous anti-epileptic drugs, which were discontinued if no clinical improvement was noted 
after at least 72 h. An interdisciplinary decision on withdrawal of intensive care support was 
based on a multimodal approach11 including at least two of the following (assessed in 
normothermia at least 48–72 h after cardiac arrest): incomplete recovery of brainstem reflexes, 
early myoclonus, bilaterally absent cortical somatosensory evoked potentials, and lack of EEG 
reactivity, Specifically, the EEG reactivity during TH, which is the object of the present study, 
was not used for this decision.  
 
Outcome assessment 
Neurologic outcome was assessed at 3 months by a semi-structured phone interview, and 
categorized according to the Glasgow-Pittsburgh Cerebral Performance Categories (CPC), in 
which 1 = good recovery, 2 = moderate disability, 3 = severe disability with dependency for 
daily-life activity, 4 = vegetative state, and 5 = death22, and outcome was dichotomized as good 
(CPC 1 and 2) versus poor (CPC 3 to 5).  
 
EEG recording 
Video-EEG (Viasys Neurocare, Madison, WI, USA) was performed during TH, by using 19 
electrodes arranged according to the international 10-20 system (Fp1, Fp2, F7, F3, Fz, F4, F8, 
T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2) referenced to Oz, ground Fpz, and repeated after 
rewarming. Background reactivity on EEG was tested with repetitive auditory and nociceptive 
stimulations performed by a neurologist during and after TH, as described in our previous 
study11. Patients had 5 stimulations in average (range 1 to 9 stimulations, median 5). While these 
EEGs were recorded for at least 20 minutes, for the present study we selected the parts of the 
recordings that contained stimulations, excluding artifacts, and generated EEG files lasting 3 to 
12 minutes. Offline, data were re-referenced to a common average reference. Some recordings of 
this dataset were previously visually analyzed and the results summarized in a publication14. 
 
Visual scoring 
All recordings were interpreted by two EEG-certified CHUV neurologists; EEG background 
reactivity was considered present if cerebral electrical activity of at least 10 μV (regardless of 
frequency range) was observed and EEG background showed any clear and reproducible change 
in amplitude or frequency on simulation (auditory or painful), excluding “stimulus-induced 
rhythmic, periodic, or irritative discharges” (SIRPIDS)23or induction of muscle artifact alone. 
Stimulation and EEG background activity were assessed in all patients after at least 12 hours 
after the start of TH (that is, during the maintenance phase of TH) and within 24 hours from CA, 
still during TH. EEG background interrupted by flat periods lasting more than 10% of the 



recording was labeled as “discontinuous”24 if this pattern was found over the whole recording. 
Spontaneous, repetitive or rhythmic, focal or generalized spikes, sharp waves, spike and waves, 
or rhythmic waves evolving in amplitude, frequency, or field were categorized as “epileptiform,” 
as detailed in our previous studies11, 25, 26. Of note, no patient presented isolated epileptiform 
transients. After reviewing the EEG separately, the two EEG certified neurologists established a 
consensus score. 
 
Automatic analysis 
In the current study, automatic processing of the data aimed at describing background activity 
and reactivity to auditory or nociceptive stimulation (reactive/not reactive).  Background activity 
was automatically measured by computing the “burst suppression ratio” (BSR)18 and the 
approximate entropy19on Fz, Cz and Pz. In the BSR, suppression intervals are defined as periods 
longer than 240 ms during which EEG voltage does not exceed 5μV18.  BSR represents the ratio 
between the total suppression time and the total recording time. An EEG was coined suppressed 
if the ratio was greater than a chosen threshold.  
Approximate entropy is a measure that quantifies the regularity or predictability of a time series. 
Approximate entropy has been applied to the analysis of EEG to measure depth of anesthesia20, 27 
or to estimate sleep stage28, and was shown to correlate with BSR during anesthesia29.  
Approximate entropy measures the logarithmic likelihood that runs of patterns that are close for 
m contiguous observations remain close on subsequent comparisons between m+1contiguous 
observations. Approximate entropy is a relative measure which depends on three parameters: the 
number of contiguous observations m, the length of the epoch N, and a distance measure r19, 30. 
In our analysis, we used m = 2 and 8 seconds epochs (N = 2000), based on theoretical 
considerations19, 30 as well as previous studies20, 27. These studies also suggested to chose r = 0.1, 
0.15, 0.2 or 0.25 times the standard deviation of the original data sequence. The present data had 
standard deviation ranging from 0.8 to 17.3 (mean = 5.5 ± 3.3).  As comparisons between time 
series segments can only be made with the same values of m and r{Pincus, 2001 #2201}, and 
Bruhn and colleagues29 in a study on approximate entropy and burst suppression ratio suggested 
not to use a standard deviation below 7, we decided to take r = 0.2*7 for all data. 
Reactivity to stimulation was computed as change in power at given frequencies between two 
one-second windows taken half a second before and after stimulation (Fig. 1). Data were high 
pass filtered above 1Hz before to be epoched. The Welch periodogram algorithm estimated the 
power spectrum of each one-second window. The frequencies of interest were selected as the 
peaks in the power spectrum. A peak has to be at least as high as 20% of the maximum value in 
the window to be recognized as a peak. A stimulation was considered reactive if (i) a peak 
detected at a given frequency was twice higher than same frequency of the other window31, and 
(ii) a peak was also present and twice higher on a chosen minimal number (see below) of other 
electrodes. The reactive frequency plus or minus 0.5 Hz was checked in other conditions. The 
frequency with most reactive conditions was kept. The final result was the ratio between the 
number of detected change and the total number of stimulations in a recording. To avoid false 



positive results due to change in activity not related to stimulation, we removed from analysis the 
windows fulfilling one of the two following criteria. First, the number of detected peaks was 
greater than a maximum number (see below). This corresponds to the fact that no clear peak 
appears in these data. Second, the change in total power between pre and post windows was 
greater than a threshold (see below). High change of the whole spectrum was most probably due 
to pathological EEG patterns, such as epileptiform bursts on a suppressed background.  
 
Comparison between automatic and EEG-certified neurologists 
To compare the ratio of the automatic scoring with the binary EEG-certified neurologist scores, 
we fixed a threshold at 0.5. A recording was reactive if at least half of the stimulations were 
reactive. We computed the agreement between automatic detection of reactivity and the 
reactivity given by the consensus score. We also computed the Cohen’s kappa coefficient, which 
take into account sensitivity, specificity and agreement occurring by chance.  
The choice of parameters (minimum number of electrodes to name a condition reactive, 
maximum number of peak in the power spectrum, threshold on the total power) had an influence 
on the final results: with strict parameters, we may reject as noise reactive stimulations. On the 
other hand, with loose parameters, every artifact may induce false reactivity. Therefore, 
parameters selection was done through an approach from machine learning, a 9-fold cross-
validation scheme. The 46 subjects were randomly distributed into 9 sets (8 sets of 5 subjects and 
one of 6 subjects). We then repetitively performed an exhaustive search for best parameters on 8 
sets and applied these parameters to the remaining set. Each patient was then used once as a test 
subject with parameters independently selected. We repeated this procedure 5 times with 
different folds and averaged the final results. During exhaustive search, we optimized the 
Cohen’s kappa coefficient between automatic measure and consensus score. 
 
Third reviewer 
The EEG was further reviewed by a separate third EEG neurologist from Liège which did not 
have access to patients’ medical information. This third reviewing was intended as a comparison 
with the automatic score in similar condition (only short EEG segment). We computed the 
agreement and Cohen’s kappa coefficient between the score from the third neurologist and the 
clinical consensus score of the CHUV neurologists. 
 
 
Results 
The clinical characteristics of the 46 patients are summarized in Table 1. At 3 months, 25 of the 
26 patients who left alive the hospital were assessed: 21 had a CPC of 1 or 2 (good outcome), 
while 3 had a CPC of 3 and one patient died; one patient was missed. The remaining patients 
died in hospital. Of note, no patient remained in vegetative state. Visually, the CHUV 
neurologists considered that 1/21 patients with good outcome and 15/24 with poor outcome had a 



non-reactive EEG background in hypothermia, while corresponding proportions for a 
discontinuous background were 4/21 and 23/24. 
 
Quantitative results were compared to the consensus score of the two CHUV neurologists. The 
ROC curves of agreement between automatic and consensus score of background activity are 
presented in figure 2. Automatic analysis of background activity on Fz yielded 93.5% 
correspondence with the background activity of the consensus score (kappa 0.86; almost perfect 
agreement) with a threshold of 0.12. Similar agreements were obtained for Cz and Pz (89.1% for 
Cz, and 91.3% for Pz). Approximate entropy negatively correlated with BSR (r = -0.76, -0.77, 
and -0.78 for Fz, Cz and Pz respectively, p<0.001) (Fig. 3). The correspondence between 
consensus score and approximate entropy was lower than for BSR on all electrodes. The 
computation of approximate entropy on Fz yielded 82.6% correspondence with background 
activity of consensus score (kappa score 0.64) with a threshold of 0.55. 
 
The automatic procedure for reactivity had 79±2% (kappa = 0.71±0.01) agreement (substantial) 
with the consensus score (Fig. 1). One combination of parameters was selected the majority of 
the time. In that combination, the minimum number of electrodes to name a condition reactive 
was 6, the maximum accepted number of peak in the power spectrum was 4, and the threshold on 
the total power was a ratio of maximum 5 between the total power before and after the stimulus. 
Other combinations were slight variations of the favored combination. 
Six subjects were presented as reactive in the 5 cross-validations while the clinical assessment 
diagnosed them as non-reactive. One subject was automatically diagnosed as non-reactive while 
the clinically they were considered as reactive. One more subject was automatically diagnosed as 
non-reactive four times out of five. A few other subjects were selected as reactive or non-reactive 
once or twice while consensus clinical score had the opposite diagnosis. 
 
The association between outcome and EEG findings from the consensus score and the automatic 
score during TH is shown in Table 2. Nonreactive EEG background and discontinuous EEG 
background were strongly associated with poor outcome by both consensus and automatic 
scores. Continuous EEG background was associated with a good outcome. The average BSR was 
significantly lower in the good outcome group than in the poor outcome group for all electrodes 
(permutation test, 10000 permutations) (Table 3). The approximate entropy values were 
significantly higher in the good outcome group than in the poor outcome group (permutation test, 
10000 permutations) (Table 3). 
 
The third physician score achieved a 91.3% agreement on the background activity (kappa score = 
0.83) with the consensus score and a 78.3% agreement on the reactivity (kappa score = 0.53). 
 
Discussion 



In the present study, automatic analysis of background activity and reactivity in patients in TH 
following cardiac arrest provided results almost perfect agreement with the visual inspection of 
certified EEG neurologists regarding discontinuity, and substantial agreement regarding EEG 
reactivity; agreements were comparable to the observed inter-rater agreement among clinicians. 
The automatic scoring was also a good predictor of outcome.   
 
Clinical EEG analysis in the intensive care unit is mostly based on visual inspection of the raw 
signal to detect background patterns, epileptical activities and reactivity. This approach is time 
consuming and requires extensive training31. Quantitative EEG analysis can provide 
complementary information and improve generalizability.  
 
Reactivity is defined as change in cerebral EEG activity in response to stimulation24, however, 
formal guidelines do not exist. Lack of reactivity is related to poor neurologic recovery4, 5. In 
patients with postanoxic coma, nonreactive EEG background activity during or after TH is an 
early predictor of poor outcome2, 6. Previous automatic detection of reactivity was limited to data 
from patients investigated for epilepsy and the detection of attenuation of the alpha band over the 
occipital region between an idle and an eye-open state31. The present approach is wider, 
investigating more type of stimulations, more frequency bands and more electrodes. The 
proposed automatic approach to detect reactivity was in good agreement with the consensus 
scores. However, seven patients obtained an automatic score different from the consensus score. 
The automatic approach did not detect any reproducible change while the consensus score 
detected reactivity in the theta band in one patient. This patient had a good outcome. In six 
patients, the automatic score found reactive patterns but not the consensus score: two patients 
presented a high-voltage burst-suppression just before or after stimulations, two had a slight 
increase in delta activity following stimulations; and another patient had epileptiform activity. 
All these patients died. One last patient, presented changes in delta activity in half of the 
stimulations: despite being scored as non-reactive by the consensus score, he had a good 
outcome.  
 
The proposed approach scored each stimulation individually before testing the inter-stimulation 
reproducibility. If reproducibility is important, ideally it should be compared among stimulations 
of same intensity. A patient may not respond to auditory stimuli but to pain, in which case the 
neurologist will classify the EEG as reactive while the automatic scoring will consider that only 
one third of the stimulations are reactive. This scenario was not present in our data, but it 
illustrates the difficulty to reduce a classification for each stimulation to a binary score for the 
whole recording. Furthermore, the number of stimulations varied from one subject to the next, 
and the response to previous stimulations as well as other clinical factors may influence the 
decision to continue or stop the test. To enable the comparison between automatic scores and 
consensus scores, we set an arbitrary threshold at 0.5. Half of the stimulations had to be reactive 
in order to score a recording reactive. In future developments, an individual score should be 



given for each stimulation as well as group of stimulations, which could reflect the intensity of 
the reaction. 
 
BSR and entropy measures have been developed for anesthesia before to be applied to comatose 
patients15, 32. The BSR and entropy characteristics have significantly different values in good 
outcome and poor outcome group15 as confirmed in the present study.  Discontinuous EEG 
background is strongly associated with poor outcome6, 11, 14, although (in clinical EEG 
interpretation) it is less robust that lack of background reactivity. Furthermore, we tested the 
agreement between automatic and physician score. A high (respectively low) BSR was an 
unequivocal sign of discontinuous (respectively diffuse continuous) background. Patients with 
in-between values (from 0.1 to 0.5 for frontal lead) should be further inspected by EEG certified 
neurologists to disentangle discontinuous background from other patterns. The consensus score 
differed from the score of the third physician for 3 of the 10 patients in this “grey zone”. Three 
more patients had a burst suppression ratio above the threshold while both physicians classified 
their EEG as continuous. Indeed, on visual inspection these patients had an EEG with very low 
power but no sign of discontinuity. One of these three patients deceased after leaving the hospital 
while the other two had a good outcome. One patient suffered from epilepsy which increased his 
BSR. The remaining three patients were scored identically by physicians and BSR.  
 
Approximate entropy was shown to be negatively correlated with the BSR but less sensitive than 
BSR in regards to consensus score. The negative correlation is in accordance with results from 
anesthetized subjects where approximate entropy was inversely related to BSR (r=-0.94)27.  
Approximate entropy measures the complexity of the signal and has been shown to correlate 
with the level of anesthesia20, 27, 29 or sleep{Burioka, 2005 #2196}. EEG entropy was shown to 
correlate with the coma-recovery scale in an acute setting32. Further studies are needed to see if 
approximate entropy may be more suited to follow longitudinally a given patient, or rather to 
disentangle background patterns or rhythms. 
 
Automatic scoring is sensitive to epileptiform activity, muscle activity as well as other artifacts. 
One patient had generalized periodic discharges with a suppressed background and no sign of 
reactivity according to the three neurologists. Both BSR and approximate entropy could not 
detect the suppressed state which should have resulted in a high BSR and low approximate 
entropy. Instead, the BSR was at the border with continuous background and the entropy was in 
the middle range. Furthermore, the subject was scored reactive. The present approach was not 
developed to detect epileptiform activity as only two recordings in our cohort presented 
epileptical activity. Of note, approaches based on wavelet entropy15 or amplitude-integrated 
EEG16 have been proposed to automatically detect epilepsy in comatose patients.  
 
Quantitative EEG provides results in accordance with trained physicians scoring, but the 
correlation is not absolute. Pending confirmation in a larger dataset and the identification of 



reliable thresholds (especially for entropy), we propose that this quantitative EEG analysis might 
contribute to improve the generalization of EEG interpretation in this clinical setting, and 
provide an objective baseline for prognosis and research.  
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Table 1: clinical characteristics of the studied patients 
 
 Good 

outcome 

(21 
patients) 

Poor 
outcome 

(24 
patients) 

Age (years, mean ±SD) 60.1 ± 11.2 63.1 ± 12.4 

Female gender 4 5 

Ventricular fibrillation  14 14 

Time to return of spontaneous circulation (minutes, mean ±SD) 18.8 (13.0) 21.5 (10.4) 

Mean delay from cardiac arrest to EEG recording of stimulations 
during hypothermia (hours, mean ±SD) 

17.4 (6.5) 20.0 (5.8) 

Hypotermic EEG epileptiform 0 5 

Bilaterally absent somtosensory evoked potentials  0/21 9/23 

Cerebral performance categories at 3 months (median, range) 1 (1-2) 5 (3-5) 

 
 
 



Table 2. Automatic score in good outcome and poor outcome groups 
  Good outcome 

(n=21) 
Poor outcome 
(n=24) 

p-value from 
Fisher’s exact 
test 

Nonreactive cEEG 
background, 
number (%) 

Clinical score 1 (5) 15 (63) <0.01 

Automatic 
score 

2 (10) 10 (42) <0.01 

Discontinuous 
background 
activity ("burst-
suppression”), 
number (%) 

Clinical score 4 (19) 23 (96) <0.01 

Automatic 
score 

6 (29) 24 (100) <0.01 

 



Table 3. Average and median values of burst suppression ratio (BSR) and approximate entropy 
(apen) for good outcome and poor outcome groups. 
  Good outcome 

Mean 

Median (25-75 quantiles) 

Bad outcome  

Mean 

Median (25-75 quantiles) 

p-value 

BSR Fz 0.18  0.70  <0.01 

0.07 (0.02-0.19) 0.69 (0.46-0.86) 

Cz 0.26  0.70  <0.01 

0.16 (0.05-0.42) 0.69 (0.54-0.91) 

Pz 0.31  0.72  <0.01 

0.20 (0.12-0.38) 0.71 (0.61-0.88) 

Apen Fz 0.65 0.41 <0.01 

0.64 (0.48-0.71) 0.41 (0.25-0.52) 

Cz 0.58 0.38 <0.01 

0.58 (0.40-0.67) 0.39 (0.21-0.49) 

Pz 0.57 0.38  <0.01 

0.56 (0.37-0.70) 0.34 (0.18-0.58) 

  



Figure 1. Computation of reactivity. Left, a subset of the original EEG. The black vertical line 
indicates the stimulation. The two one-second windows are taken half a second before and after 
stimulation. Right, the power spectrum decomposition of the one-second windows before and 
after stimulation. One electrode by row. First figure, a stimulation where no change is detected, 
neither by the physicians, nor by the automatic scoring. Second figure, a stimulation which is 
considered as reactive by the automatic scoring (increased low frequency) and as non-reactive by 
the physicians. Third figure, a stimulation inducing a decrease of low frequency as detected by 
physicians and automatic scoring. 

 
 

 
 





Figure 2. ROC curves of burst-suppression ratio and physicians’ EEG continuity scores for 
electrodes Fz, Cz and Pz 
 

 



Figure 3. Correlation between burst-suppression ratio and approximate entropy for Fz. Squares 
correspond to patients with continuous background following the clinical EEG interpretation. 
Stars correspond to patients with discontinuous background following the consensus diagnosis. 
 

 


