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Modelling volatility using a non-homogeneous
martingale model for processes with constant mean
on count data
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Abstract: In this article a non-homogeneous martingale model is proposed to model volatility in a
stochastic time series of count data with constant mean. The approach is derived from a general non-
homogeneous birth-and-death process, in which the mean and the variance of population size can vary
as a function of time. This model can be important in modelling early warning signals that there is
going to be a change of state in a complex system. The net reproduction ratio obtained from fitting a
non-homogeneous birth–death model can be used as an additional tool to compare this model with a
model where there is no change in the mean over the observation period. These models and procedures
are illustrated with quarterly Methicillin resistant staphylococcus aureus prevalence data registered
since 2001 from three Acute Trusts of hospitals of the National Health Service in Great Britain.
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1 Introduction

Count data, such as the population size of some biological species, or the number
infected by some infectious disease in a population, are often regulated by rich under-
lying mechanisms, and as a consequence can reveal complex behaviour. There are,
for example, situations in which it is difficult to determine in a time series of counts
whether there is upward or downward change in the mean, or whether there is just
some random fluctuation around a constant value, which only seems to show a trend.
In situations where there appears to be curvature, in the case of population data for
example because of density dependence, distinguishing between the situations might
be even more difficult. This ‘turbidity’ can occur because the variance of the process
might not be constant over time so that, for instance, an increase in variance might
generate several relatively high or low values in a row, suggesting erroneously an
upward or downward change of the mean. This variability in a measurement of in-
terest over time is often, especially in the economic literature, referred to as volatility.
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Volatility can have different meanings in the literature. In the economic literature
volatility is used for the constant diffusion coefficient in a geometric Brownian motion
when modelling the (log) outcome of a financial instrument over time, such as with
the famous Black-Scholes model.

Secondly, the idea of constant volatility in such models is usually replaced by
one where volatility can change in time, since in many cases this was what the data
suggests (Lewis, 2000). Stochastic volatility models were developed that deal with
this changing volatility. So volatility in this literature refers to the variability, usu-
ally measured in terms of standard deviation, of time series that have a continuous
state space. Modelling volatility is seen in the economic literature as being of vital
importance to obtain reasonable models for financial instruments.

Volatility is also defined as the occurrence of very extreme values of a certain
outcome over a period of time (Lindsey, 2004). The term then refers to a change
in variance over time. This might be modelled with heavy tail distributions and by
allowing the dispersion to depend on the previous values of the variability. This
‘increase in variance’ interpretation of volatility is also seen in the environmental
literature, for instance in climate research. There it is used as an indication that
more extreme outcomes in climate measurements occur (Ahmed et al., 2009). In
climate studies it has also been recognized, for some time now, that volatility plays
an important role in understanding climate change (Katz and Brown, 1992).

Volatility in this article is defined as the possible non-homogeneous variability in
a measurement of interest over time.

Modelling volatility usually means modelling the change in variability in time. For
count models with a time changing mean, the model implicitly accounts for changing
volatility, since with these models there is a relationship between the mean and the
variance, and if the mean is changing in time (e.g., drift), then so is the variance,
and thus the volatility. A good example is the much used Poisson model for count
data, for which the standard deviation is

√
�t, where �t is the mean at time t. In such

cases, when the change in volatility comes with the change in time of the mean of
the process, the question might be whether or not the model describes the change in
volatility adequately. If not, a version of the model can be used that is either over or
under dispersed.

This leaves open the case for stochastic processes that have counts as their state
space, where the mean of the process is constant, but where there might nevertheless
be a change in volatility. The case of a model with only a time trend for the mean and
not for the variance is usually not a valid case for count data.

It might be important to detect a change in volatility for processed data with
constant mean because this change in volatility might be a signal that in the near future
a change in the mean might occur. An increase in variance as a signal that there is
going to be a change of state is known in complex dynamical systems. As discussed in
(Scheffer et al., 2009), in such systems these changes can be early warning signals that
the system is approaching a state transition. As discussed there, a system approaching
critical points becomes increasingly slow in recovering from small perturbations. This
critical slowing down leads to three possible early warning signals, among which an
increase in variance. Examples that an increase in variance can be an early warning
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signal can be observed in such diverse areas as climate change, ecosystems, asthma
attacks and epileptic seizures (Scheffer et al., 2009).

In foregoing modelling studies of data from a stochastic process with constant
mean, the population size or the number of infected-and-immune individuals in a
population in the case of infectious diseases, tended to be described by deterministic
models and, to estimate the parameters of the model, rather ad hoc distributional
assumptions are made. But, it is not always realized that an ad hoc choice of a
distribution also means an ad hoc choice for the formula describing the variance of
the data.

This article proposes a new non-homogeneous martingale model for (changing)
volatility in count data with constant mean. As said, volatility is used here for the
(homogeneous) variability of the outcomes of a stochastic process. In Section 2 the
non-homogeneous birth-and-death process is used to derive this non-homogeneous
martingale model. A description of a likelihood-based approach to fit a conditional
version of the model is explained in Section 3. In Section 4 it is described how a change
in variance in a model with constant mean might be observed. Also the choice of a
survival curve is explained there. In section 5 the models are applied to methicillin-
resistant Staphylococcus aureus (MRSA) data obtained from the National Health
Service (NHS) Acute Trusts of hospitals from Great Britain.

2 Non-homogeneous martingale process

As time evolves, a stochastic process can generate count data from a distribution,
with the same mean and variance. Such a process can be ‘destabilized’ by a change
in volatility only, in the absence of a change in the mean: the counts in time remain
scattered around a certain level but the amount of scatter might increase or decrease
with time. As explained above, this kind of disturbance might be a signal that in the
near future the mean might change over time. This change in the mean can manifests
itself as a smooth—possibly non-linear—change in the mean over time, or it might be
a jump in the average count, upwards or downwards, after which the process might
‘stabilize’ again at a new level. To study ‘destabilization’, the model of the process that
generates the count data must be able to distinguish between the state in which only
the volatility changes and the state in which there is a change in the mean over time,
and thus also a change in volatility. In order to achieve this, the ‘change-in-volatility-
only’ model should be a special case of the ‘change-in-mean and change-in-volatility
model’. Besides this, the model should take the dependence between the counts at
different time points into account.

In the non-homogeneous birth–death models the rates are allowed to change over
time. This can be very useful in modelling the dynamics of a process, for example in
infectious disease models. A possible interpretation for the time-varying rates is given
in (Becker and Yip, 1989). The non-homogeneous birth–death model with counts as
its state-space can be reduced to a model that models volatility only, as will be shown
below by taking the birth rate—or reproductive power—and the death rate equal.
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In the non-homogeneous birth–death model the probability of a birth or a death at
a given point in time will depend on the population size at the previous point in time
only, i.e., it is a Markov model.

So, the general non-homogeneous birth-and-death process is an example of a
stochastic process that is suitable for our purpose. It is used in this article to de-
rive a new model that only describes the variance as a function of time and that is
shown to be a non-homogeneous martingale process. We will use the language of
infectious disease epidemiology as our motivating practical example.

First a brief discussion of the non-homogeneous birth–death process is given. De-
tails can be found in (Van den Broek and Nishiura, 2009). A random count variable,
measuring population size at calendar time t, or the number of infected-and-detected
individuals of an infectious disease at time t, is denoted by Y(t). Let y0 be the count
at the time point of the start of the observation period. The non-homogeneous birth-
and-death process is governed by the following differential equations:

d
dt
py(t) = �(t)(y− 1)py−1(t) + �(t)(y+ 1)py+1(t) − (�(t) + �(t)) ypy(t),

d
dt
p0(t) = �(t)p1(t) (2.1)

where py(t) represents the probability that the observed population size at time t is y.
The parameters �(t) and �(t) are referred to as the birth and death rates, respectively.
Non-homogeneity is reflected by allowing both �(t) and �(t) depend on time t.

From the birth rate it can be seen that S�(t) = e−
∫ t

0 �(�)d� is the survival function
for reproduction time (birth process), and similarly, S�(t) = e−

∫ t
0 �(�)d� is the survival

function for removal time (death process). The solution of 2.1 is a probability distri-
bution, the derivation of which can be found in Van den Broek and Nishiura (2009).

The non-homogeneous martingale process is a special case of the above mentioned
non-homogeneous birth-and-death process. In a population with a constant mean
the birth and death rates are equal (i.e., �(t) = �(t) (say �(t))). The probability
distribution can be derived along the lines of Van den Broek and Nishiura (2009)
and is given by:

P(Y(t) = 0) = ıy0(t), (2.2)

P(Y(t) = y) = y0

y
ıy+y0(t)

min(y−1,y0−1)∑
k=0

(
y0 − 1
k

)(
y

y− k− 1

) [
(1 − ı(t))
ı(t)

]2(k+1)

y ≥ 1.

Since �(t) = − d
dt log(S�(t)), it follows that �(t) = ∫ t

0 �(�)d�, is the integrated rate
function, similar to the integrated hazard function in survival analysis. In (2.2), ı(t)

is, by using �(t) (instead of �(t) or �(t)), equal to ı(t) = log(S−1
� (t))

1+log(S−1
� (t)) = �(t)

1+�(t) .

Statistical Modelling 2015; 15(5): 457–475

 at University Library Utrecht on April 21, 2016smj.sagepub.comDownloaded from 

http://smj.sagepub.com/


Modelling volatility for processes with constant mean on count data 461

The expected value of the population size at time t derived from (2.2) is

E(Y(t)|Y(0) = y0) = y0.

That is, the expected value of the population size for any time point t, conditional
on time zero, is equal to the population size at time zero and thus the process is a
martingale process. (See for a definition of a martingale: Fleming and Harrington,
1991, p. 22–23.) The variance of the population size is:

var(Y(t)|Y(0) = y0) = 2y0 log(S−1
� (t)) = 2y0

∫ t

0
�(�)d� (2.3)

which depends on time through the integrated rate function. In a simpler case of a
homogeneous birth-and-death process (i.e., with equal and constant birth and death
rates, �), the variance is 2y0�t, and therefore the variance increases linearly as a
function of time t (see Bailey, 1990 pp. 94–96 for details). Note that this is the variance
of a stable process and that if � is large this process can handle a large variability. In
that case a couple of large or small observations in a row are not unlikely. This shows
that it can be hard to distinguish this model from a model which describes a change in
mean and thus in volatility or a changing volatility model. In the non-homogeneous
case, the derivative of the variance is positive, and thus the variance is an increasing
function with time.

3 Fitting the model

According to the model described in Section 2, the data are generated by the stochastic
non-homogeneous birth-and-death process where the rate at which a birth (new case,
for the ‘infectious-disease interpretation’) occurs is equal to the rate at which a death
(recovery/removal) occurs. To fit the model to empirical data, it can be noted that
the observed data represent just a single sample path of all possible sample paths
that can be generated by such a model. The population size at time t depends on the
population size before t (Markov property), and the model fitting procedure needs
to account for this conditionality (Van den Broek and Heesterbeek, 2007; Van den
Broek and Nishiura, 2009).

In addition, empirical observations of such a process are usually made in discrete
time tj (j = 0,1, · · · , n) where the interval of observation might be for instance days,
weeks or months. Accordingly, the population size at time tj is conditioned on popula-
tion size at time point tj−1. In other words, the model fitting is achieved by considering
only those sample paths of the process that go through the point (tj−1, ytj−1).

Because the probability mass function (2.2) is actually a conditional probability
(i.e., conditioned on the observed population size at t0), it can readily be used as a
conditional model for the population size at time tj given the population size at tj−1.
Because �(t) (and thus S�(t)) varies as a function of time, the conditional form of S�(t)
must be taken into account. Let T be a stochastic variable that measures the time at
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which an event (i.e., birth or death) occurs. The conditional survival probability is:

P(T > tj|T > tj−1) = S(tj)
S(tj−1)

= 1 − h(tj−1)

where h(tj−1) is the birth rate or the death rate in discrete time, depending on the
event considered.

Using h(tj−1), and defining c(tj−1) as the discrete version of ı(t) in the non-

homogeneous martingale model: c(tj−1) = log( 1
1−h(tj−1) )

1−log( 1
1−h(tj−1) )

, the conditional version of

(2.2) is

P(Y(tj) = 0|Y(tj−1) = ytj−1) = c(tj−1)ytj−1 , (3.1)

P(Y(tj) = ytj |Y(tj−1) = ytj−1) = ytj−1

ytj
c(tj−1)ytj+ytj−1 ×

min(ytj−1,ytj−1−1)∑
k=0

(
ytj−1 − 1

k

)(
ytj

ytj − k− 1

) [
(1 − c(tj−1))
c(tj−1)

]2(k+1)

ytj ≥ 1.

In this process, the expected value of the population size at time tj is:

E(Y(tj)|Y(tj−1) = ytj−1) = ytj−1,

and this can be referred to as sample path profile (Lindsey, 2004). The variance of the
population size at time tj, given that the process passes through the point (tj−1, ytj−1) is:

var(Y(tj)|Y(tj−1) = ytj−1) = 2ytj−1 log
(

1
1 − h(tj−1)

)
. (3.2)

In this variance, h(tj−1) = 1 − S(tj)
S(tj−1) . Depending on the choice of this survival func-

tion, let � represent the vector of its parameters; the log-likelihood as a function of
� is then written as:

l(�) =
n∑
i=1

log
[
P(Y(tj) = ytj |Y(tj−1) = ytj−1,�)

]
,

for ytj > 0. It should be noted that ytj = 0 is an absorbing state of the process. The log-
likelihood can be maximized using an optimization procedure such as the Nelder—
Mead simplex method followed by the Newton—Raphson method to find maximum
likelihood estimates. In the present study, we used the software system R for the
computations (R Development Core Team, 2010). The information matrix is used for
computing the standard errors of the parameters and we use the Akaike Information
Criterion (AIC) to compare models.
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4 Modelling issues

4.1 Using the net reproduction ratio

To compare the martingale model derived above with a model with a change in the
mean, the general non-homogeneous birth–death process seems the most obvious
candidate since it has the martingale model as a special case. The process is described
by the stochastic non-homogeneous birth-and-death differential equations, shown
in section two, the solution and properties of which are given elsewhere (Van den
Broek and Nishiura, 2009). The process involves time-dependent variation both
in the mean and in the variance of the population size. The expectation and the
variance of the population size are:

E(Y(t)|Y(0) = y0) = y0
S�(t)
S�(t)

= y0R(t),

var(Y(t)|Y(0) = y0) = y0R(t) [1 + (2� − 1)R(t)] ,

respectively, where R(t) = S�(t)
S�(t)

is referred to as the net reproduction ratio for this
model at time t (Van den Broek and Nishiura, 2009) since it is the expected number
of secondary cases per primary case at time t (Diekmann and Heesterbeek, 2000;
Nishiura and Chowell, 2009). The functions S�(t) and S�(t) are the survival functions
of the reproduction times and removal times, respectively. If R(t) < 1, it suggests
that the population is in decline, whereas it is growing if R(t) > 1. Moreover, R(t)
measures steepness of the trend. Because of non-homogeneity, the model is able to
reflect time-dependency in the trend.

The mean population count in this model can be thought of as consisting of two
parts. The first is the expected number present at t0 which have survived until time
t (i.e., y0S�(t), those available on time zero that are not removed up to t), and the
second part is 1

S�(t)
, which measures the rate at which a non-removed individual repro-

duces (which is the number of individuals needed to have at least one individual who
is still reproducing). This interpretation is similar to the interpretation of the effective
reproduction number in the sense that only those individuals that survive removal
can reproduce (Van den Broek and Nishiura, 2009). In other words, if non-removed
individuals reproduce faster than the speed at which they are removed, R(t) > 1 and
the population size increases (vice versa for a decreasing population). It can also be
seen from the formula for var(Y(t)) above that increase or decrease in the population
size directly influences the variance, because the variance depends on time t and R(t).

Note that the expected value of the process obeys the differential equation for
the deterministic birth–death process, that is d

dtE(Y(t)) = �(t)E(Y(t)) − �(t)E(Y(t)).
In a SIR-model—a compartment model with compartments susceptible, infectives
and removed—interpretation of the reproductive power can be written as the prod-
uct of the infection rate parameter and the time dependent fraction of susceptibles:
�(t) = ˇs(t). So in this interpretation the reproduction power depends on the fraction
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of susceptibles and the non-homogeneous character of the reproductive power is in-
herited from the fraction of susceptibles. In other words the reproductive power is
changing in time because the fraction of susceptibles is also changing.

The rates in this model, the birth rate �(t) and the death rate �(t), both depend
on time. These rates can also be taken constant in time. This is the same as using the
exponential distribution as the survival distribution for the reproduction times and
the removal times, that is by using S�(t) = e−�t and S�(t) = e−�t. This process yields
time-dependent variations in the mean population size, and the model is a special
case of the non-homogeneous process with a change in the mean in that the birth and
death rates are independent of time. Therefore, the model is able to capture a change
in population counts over time, but the birth and death rates are kept constant. This
homogeneous birth–death model has been frequently used in literature and has been
described in detail elsewhere (e.g., Bailey, 1990).

Since in the present work a model with changing volatility is compared to a model
with a changing mean and thus, because the variance is a function of the mean, also
changing volatility, model comparison might be difficult using only AIC. For instance,
in the first part of the observation period the martingale model may seems to fit well
whereas in the last part it may not. In that case the net reproduction ratio might
be an additional tool to compare models because the net reproduction ratio for the
martingale model is one, since there the birth rate equals the death rate. For the non-
homogeneous birth–death model, the net reproduction ratio can be an increasing or
a decreasing function or both. In this way it can be used to decide which model is
better: if the net reproduction ratio is constant around one, then the martingale model
might be appropriate, if not, the non-homogeneous model is preferred. But it can also
show the changing behaviour mentioned: in the first part the net reproduction ratio
can be constant around one but it can increase or decrease in a latter part of the
observation period or the other way around. That is, it might show a change when
time evolves.

The conditional version of the net reproduction ratio is: R(tj−1) = 1−h�(tj−1)
1−h�(tj−1) with

h�(tj−1) = 1 − S�(tj)
S�(tj−1) , the discrete hazard rate of removal, and h�(tj−1) = 1 − S�(tj)

S�(tj−1) ,
the discrete rate of reproduction. This net reproduction ratio is calculated using the
birth–death model with the survival functions that fits the data best according to
the AIC. From the estimated non-homogeneous birth–death process that fits the data
best, sample paths can be drawn and for each sample path the net reproduction ratio
can be calculated for each time point. From these the 95% percentile lines can be
inspected to see how the line R(t) = 1 behaves with respect to these 95% lines. This
technique is illustrated in Section 5.

4.2 Survival function

Given that the population dynamics involve complex mechanisms, on the one hand,
the family of survival functions used in the model needs to be flexible. On the
other hand, one generally should aim to use the simplest model, e.g., exponentially
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distributed survival functions for homogeneous processes, where rates are constant.
The generalized gamma is a rich family of distributions that include the exponential
as a special case but also the Weibull and the gamma distribution. As a consequence,
by checking the estimated parameters of the generalized gamma one can check if the
data supports constant rates.

The survival function is then given by:

S(t) = 1
�(p)

∫ ( t
b
)a

0
tp−1e−tdt

where p, b > 0. If a < 0, the distribution is referred to as inverse generalized gamma
distribution. Special cases of the generalized gamma distribution are:

• Gamma distributions for a = 1 and the inverse gamma for a = −1.
• Weibull distribution for p = 1, a > 0 and the inverse Weibull (log-Gompertz) for
p = 1, a < 0.

• Exponential distribution for a = p = 1 and the inverse exponential distribution
for a = −1, p = 1.

• Log-normal, Pareto and power function distributions for appropriate limits.

Further details of the generalized gamma distribution are given elsewhere (Kleiber
and Kotz, 2003).

5 Prevalence of MRSA in three NHS trust in Great Britain

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial infection that
causes infections in different parts of the body and is resistant to several antibiotics
such as methicillin, amoxicillin, penicillin and oxacillin. MRSA infections are an
important risk for people who have weakened immune systems and are in hospital
intensive care units, nursing homes and other health care centres. There are many
risk factors for acquiring MRSA like surgery, duration of hospitalization, compliance
with hand disinfection procedures and antibiotic exposure, among others (Tacconelli
et al., 2008).

Because hospital patients have an increased risk of being infected with MRSA it is
important for hospitals to monitor their MRSA-prevalence and to take measures to
prevent spread. Are the (precautionary) measures taken effective and is the prevalence
decreasing in time, or is the volatility increasing as a consequence of the measures?
It is also possible that the measures taken, hardly have influence and that the preva-
lence of MRSA is randomly fluctuating around some fixed level. For a discussion of
the problems that can arise with MRSA infection data, including the variability of
the rates (see Spiegelhalter, 2005).

Other stochastic models for hospital outbreak data have been used. For instance,
Pelupessy et al. (2009) describe a model for different colonization routes of pathogens
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within a hospital. They derive a stationary probability distribution for the colonized
patients that takes the different routes of colonization into account and need data on
these routes. Yet other modelling approaches can be found in Cooper et al. (2004),
Grundmann et al. (2002) and in Grundmann and Hellriegel (2006). In contrast the
present article describes a model that uses a probability distribution for which the
expected value is not changing over time but which is nevertheless depending on time
through the variance of the process and only relays on infection prevalence data.
The model is a special case of the non-homogeneous birth–death model to which it
can be compared in order to determine whether or not there is a change in mean
over time. This comparison can be done in two ways: by using Akaike’s information
criterium (or the bias corrected version if the sample size is small) and by use of the
net reproduction ratio.

An important point is that the rate at which MRSA reproduces, depends on the
duration of hospitalization (Beyersman et al., 2011). The above model deals with this
by taking the reproduction power to be time dependent. As is explained by Becker
and Yip (1989), a rate parameter might behave in a time dependent manner because
there is a difference in susceptibility among the susceptibles. Those with higher
susceptibility tend to be infected earlier while those with low-risk susceptibility will
evade infection for a longer period. Hence heterogeneity among susceptibles (related
to duration of hospitalization) can make the rate behave in a time dependent manner.
Furthermore, as explained, in a SIR interpretation, the reproductive power can be
thought of as a product of the infection rate parameter (ˇ) and the time dependent
fraction susceptibles. This fraction is a parameter in the model. So if the fraction of
susceptibles is changing because the discharge rate is changing over time, then this
is reflected in the reproductive power through the fraction of susceptibles. Besides
this, as said, the model discussed here is for the case where only counts per unit time
are available although it still depends implicitly on the time-dependent fraction of
susceptibles.

Because of the importance to monitor the MRSA prevalence, there is a surveil-
lance of MRSA among NHS Acute Trust hospitals in Great Britain. This surveillance
has been mandatory since April 2004. Quarterly data from April–June 2001 until
January–March 2010 and monthly tables from February 2010 until February 2011
can be obtained from the web site of Public Health Enland (https://www.gov.uk/
government/statistics/mrsa-bacteraemia-annual-data).

Positive blood cultures from the same patient within 14 days of the initial culture
were considered to be part of a single infected episode. Duplicate reports, more than
14 days apart are considered to be separate episodes of infection of the same patient.
That is, the data consist of 14-day-episodes prevalence data for patients who are
MRSA positive. New cases in a hospital are reproduced from existing cases usually
through health care workers. The rate at which this happens is the reproductive power
in the model. After discovery of MRSA a case is usually removed or isolated so that it
is not possible for this person to reproduce any longer. The rate at which this removal
happens is the death rate in the model.

The models and methods described in this article are used for the data of three of
the NHS Trust hospitals to illustrate the following specific data issues:
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• The data from the Leeds Teaching Hospitals Trust show that the non-
homogeneous martingale model fits the data best, based on the bias corrected
Akaike’s information criterium. There is a change in volatility.

• The data from the Guy’s & St. Thomas’ Trust do not show a clear choice between
some birth–death models and a martingale model, based on the bias corrected
Akaike’s information criterium. Inspection of the curve of the net reproduction
ratio shows that there is evidence for a birth–death model and thus a change in
mean.

• Also the data for the King’s College Hospital Trust is not conclusive between
some birth–death models and the martingale model, based on the bias corrected
Akaike’s information criterium. Here, however, the net reproduction ratio does
not show evidence of a change in mean, indicating that the martingale model is
to be preferred. The data also shows that there is a constant rate at which an
event (new MRSA infection or MRSA removal) occurs, meaning that volatility
is changing linearly in time.

We assumed that the characteristics of the process that generates the data within a
Trust is approximately the same for all hospitals of that Trust and that thus the data
within a Trust can be aggregated.

Using the data of these three Trusts, 14 different models were fitted. Four martin-
gale models were fitted in which the survival distribution (of the reproduction and
removal times) is taken to be the generalized gamma, the gamma, the Weibull and
the exponential distribution. Ten birth–death models were fitted: birth–death models
where the reproduction times and the removal times had different generalized gamma,
gamma, Weibull and exponential distributions, birth–death models where the repro-
duction times had a exponential distribution, constant birth rate, and the removal
times had a generalized gamma, gamma or a Weibull distribution and finally birth–
death models where the removal times had an exponential distribution (constant
death rate) and the reproduction times had a generalized gamma, gamma or a Weibull
distribution. Table 1 compares the bias corrected AIC values (AICc) between the dif-
ferent models for each of the three Trusts mentioned above. The bias corrected version
of the AIC is used since the sample sizes are not that large.

Figure 1 shows the data (upper part) for Leeds Teaching Hospital. The number of
cases per quarter seems to stay reasonably stable for a long period (about 30 quar-
ters). Only at the end of the observation period there seems to be a disturbance in
volatility or in the mean (and thus also in volatility). As can be seen from Table 1
the martingale model with the gamma distribution gives the best fit according to
AICc, indicating that the volatility of the process is changing. This martingale model
has an AICc 3.63 smaller the the best fitted birth–death model so the choice for a
martingale model as compared to a non-homogeneous birth–death model, is clearly
indicated by the AICc. This is not the case for the choice of the distribution since
for the martingale model, the Weibull distribution gives a fit that is reasonably close
(according to AICc) and has the same number of parameters. The (log)parameter esti-
mates and their standard errors for the martingale model with the gamma distribution
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Table 1 Bias corrected AIC’s (AICc’s) for 3 Trusts using 14 different models

Model Survival distribution Leeds Teaching Guy’s & St. Thomas’ King’s College

Martingale Generalized Gamma 2812.54 25045.76 263.02
Gamma 280.20 248.88 261.06
Weibull 281.85 248.14 261.22
Exponential 282.22 249.71 259.01

Birth–death Generalized Gamma 288.51 253.19 267.39
Gamma 284.40 251.74 262.28
Weibull 286.21 252.03 263.78
Exponential 283.83 250.68 261.93

Birth–death with Generalized Gamma 287.81 251.15 262.06
birth rate exponential Gamma 286.10 250.12 259.82

Weibull 285.76 251.81 261.31
Birth–death with Generalized Gamma 288.23 248.42 263.70
death rate exponential Gamma 286.19 251.53 261.22

Weibull 286.11 253.03 261.76

Source: Author’s own.

are: log(p) = 1.533(0.2599); log(b) = −0.455(0.2248). From these estimates the sta-
ndard deviations of the conditional process can be estimated using (3.2). These
estimated conditional standard deviations are shown in Figure 1 in the lower-part
(the solid line). As can be seen, these standard deviations increase in the early ob-
servation period, after which they stay reasonably stable, until in the last part of the
observation period where they seem to decrease. After time point 30, there seems to
be an increase in variance. A couple of relatively low counts are produced and the
variance process adapts itself to these low values, and as a result more low counts
are observed. If this is continued (the production of low counts), then there might be
evidence for a changing mean in the data.

In this figure, the line for the four-period moving standard deviation is also shown
(dashed line), as an empirical measure of the standard deviation of this process. This is
of course different from the conditional standard deviation of the martingale model,
but shows approximately the same pattern, although in a more ‘zig-zag’-style: an
increase in the beginning and a decrease in the end of the observation period.

If the choice for the martingale model in the case of the Leeds Teaching Hospital
seems a clear one, such is not the case with Guy’s & St. Thomas. As can be seen
from Table 1, the martingale model with a Weibull and the birth–death model with
an exponential distribution for the reproduction times (a constant birth rate) and a
gamma distribution for the removal times are close. Figure 2 shows a barplot of the
data in the upper part and in the lower part the four-period moving standard devia-
tion (dashed line) together with the conditional standard deviation (solid line) from
the martingale model with the Weibull distribution. These are both decreasing. One
can then pick the martingale model because its number of parameters is smaller but
one may also try to see if there is some other information available. As mentioned
previously, Akaike’s information criterion—and also the bias corrected one—judges
the fit over the whole observation range. There can be evidence in the data, however,
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Figure 1 Leeds Teaching Hospital. Upper: the MRSA prevalence. Lower: the four-period moving standard
deviation (dashed line) and the standard deviation from the conditional model (solid line).
Source: Author’s own.

that the birth and death rates are approximately equal in the first part of the obser-
vation period but not for a later part and one can then, as discussed earlier, use the
net reproduction ratio R(t) for comparison. Figure 3 shows the conditional version
of the net reproduction ratio R(tj−1). This net reproduction ratio is calculated using
the birth–death model with an exponential distribution for the removal times and
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Figure 2 Guy’s & St.Thomas’. Upper: the MRSA prevalence. Lower: the four-period moving standard
deviation (dashed line) and the standard deviation from the conditional model (solid line).
Source: Author’s own.

a generalized gamma distribution for the reproduction times (being the best fitting
birth–death model according to the AIC). From this model, 250 sample paths are
drawn and for each sample path the net reproduction ratio is calculated (gray lines);
from these the 95% percentile lines are determined (dashed lines). From this plot
it can be seen that the net reproduction ratio does not differ much from one in the
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Figure 3 Guy’s & St.Thomas’. Net reproduction ratio as a function of time (black solid line) and the net
reproduction ratio calculated from sample paths drawn from the underlying estimated process (gray lines)
with the 95% percentile lines (dashed lines).
Source: Author’s own.

first part of the observation period (about the first 18 quarters), indicating that the
birth and death rates are approximately equal, but is less than one in the second
part. So by judging the net reproduction ratio over the observation period, the con-
clusion can be drawn that the removal rate is larger than the reproduction rate and
that thus the number of cases is decreasing after approximately 18 quarters. In other
words, the net reproduction ratio and its 95% percentile lines, indicate that there is
evidence in the data for a decreasing mean of the average number of MRSA cases in
the second part of the observation period. This also causes a decrease in the standard
deviation.

Similar observations can be made for King’s College Hospital. Five models are
very close in fit as can be seen from Table 1—The martingale model with exponential
distribution; the birth–death model with exponential survival functions; the birth–
death model with exponential birth rate and generalized gamma or Weibull removal
times and the birth–death model with exponential removal times and gamma repro-
duction times. Figure 4 shows the data in the top graph and in the lower graph the
four-period moving standard deviation (dashed line), with the conditional standard
deviation from the martingale model with the exponential distribution (solid line).
Again, one can have a look at the net reproduction ratio which is shown in Figure 5,
together with the net reproduction ratio’s from 250 sample paths and their 95% per-
centile lines. Here, the line R(t) = 1 lies between the 95% percentile lines, and there
thus seems no evidence in the data that the birth rates and death rates are different.
So, in this case one can take the martingale model with the exponential distribution
as the one that best fitted the data, and conclude that there is no evidence in the data
for a change in mean or in volatility.
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Figure 4 King’s College Hospital. Upper: the MRSA prevalence. Lower: the four-period moving standard
deviation (dashed line) and the standard deviation from the conditional model (solid line).
Source: Author’s own.

6 Discussion

Modelling volatility is becoming an important issue, not only in the economic liter-
ature where the Black-Scholes model has drawn much attention, but also in areas
as ecology, and more recently in the environmental sciences where climate change is
thought to cause an increase in volatility. Modelling volatility can be done separately
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Figure 5 King’s College Hospital. Net Reproduction ratio as a function of time (black solid line) and the Net
reproduction ratio calculated from sample paths drawn from the underlying estimated process (gray lines)
with the 95% percentile lines (dashed lines).
Source: Author’s own.

from modelling the mean of a process when the normal distribution is used. When
models for counts are used, things are slightly more complicated since there a change
in mean has a change in variance as a consequence because of the relationship be-
tween the mean and the variance. If there is more (or less) variance as there must be
according to the model, then models for over (or under) dispersion can be used.

This leaves the important case where there is no change in the mean but there
is a change in volatility. It is important to be able to distinguish this case from the
‘changing-mean’ case, because a change in volatility can give the erroneous impression
that there is a change in the mean. Consider for instance the case that the variance is in-
creasing, then by coincidence a few large (or small) values in a row might be observed,
suggesting a change in the mean. A change in volatility only can also indicate a distur-
bance in a stable process, after which a change in the mean can occur. This change can
be smooth, or it can manifest as a jump, after which the process can stabilize again.

This article proposes a new non-homogeneous martingale model for count data,
derived from a non-homogeneous birth–death process, to study the changes in volatil-
ity without change in the mean. This model is capable of modelling a change in
volatility while the mean stays the same, but can also deal with a process that shows
no change at all, a stable process.

The net reproduction ratio plays an important role in choosing between a
volatility-only model and a model with different non-homogeneous birth and death
rates. It might be that in a part of the observation period the net reproduction ratio is
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approximately one, indicating an equal birth and death rate and thus pointing to the
non-homogeneous martingale model, where in another part there might be evidence
from the data that this is not the case.

As an illustration the models were fitted to MRSA prevalence data from three
Trusts in Great Britain: Leeds Teaching Hospital, Guy’s & St. Thomas and King’s
college Hospital. The procedure described above was able to reveal different aspects
of the data: a changing volatility only (Leeds Teaching Hospital), evidence using the
bias corrected AIC and the net reproduction ratio that there was a change in mean
in the later part of the observation period (Guy’s & St. Thomas) and no evidence for
change, not in volatility and not in mean (King’s college Hospital). For the hospital
Guy’s & St. Thomas the data showed that the net reproduction ratio dropped below
one, indicating that the MRSA measures taken in that hospital are effective. For King’s
college the data did not show that the net reproduction ratio was different from one
indicating that MRSA is persisting there.

As is clear from the models used here and the data of the three hospitals, it might
not at all be obvious, whether there is a changing mean in the data or change in
volatility or that the time series as a whole stays reasonably stable. This is especially
the case in data that shows a large variance. This would lead to the policy implication
for these kind of surveillance that rather long time series are needed in order to be
able to identify a changing mean.

Acknowledgements

I would like to thank Hiroshi Nishiura for his help on an early draft of the article.

References

Ahmed SA, Diffenbaugh NS and Hertel TW
(2009) Climate volatility deepens poverty
vulnerability in developing countries. Envi-
ronmental Research Letters, 4, 1–8.

Bailey NTJ (1990) The elements of stochastic
processes with applications to the natural
sciences, reprint edition. New York, USA:
Wiley-interscience.

Becker NG and Yip P (1989) Analysis of varia-
tions in an infection rate. Australian Journal
of Statistics, 31, 42–52.

Beyersman J, Wolkewitz M, Alligol A, Grambauer
N and Schumacher M (2011) Application of
multistate models in hospital epidemiology:
advantages and challenges. Biometrical
Journal, 53, 332–50.

Cooper BS, Medley GF, Stone SP, Kibbler CC,
Cookson BD, Roberts JA, Duckworth G,

Lai R and Ebrahim S (2004) Methicillin-
resistant Staphylococcus aureus in hospitals
and the community: stealth dynamics and
control catastrophes. Proceedings of the Na-
tional Academy of Sciences, 101, 10223–
28.

Diekmann O and Heesterbeek JAP (2000)
Mathematical epidemiology of infectious
diseases: model building, analysis and
interpretation. New York, USA: John Wiley
& Sons.

Fleming TR and Harrington DP (1991) Counting
processes & survival analysis. New York,
USA: John Wiley & Sons.

Grundmann H, Hori S, Winter B, Tami A and
Austin DJ (2002) Risk factors for the
transmission of methicillin-resistant staphy-
lococcus aureus in an adult intensive care

Statistical Modelling 2015; 15(5): 457–475

 at University Library Utrecht on April 21, 2016smj.sagepub.comDownloaded from 

http://smj.sagepub.com/


Modelling volatility for processes with constant mean on count data 475

unit: fitting a model to the data. The Journal
of Infectious Diseases, 185, 481–88.

Grundmann H and Hellriegel B (2006) Math-
ematical modelling: a tool for hospital
infection control. The Lancet Infectious
Diseases, 6, 39–45.

Katz RW and Brown BG (1992) Extreme events
in a changing climate: variablity is more
important than averages. Climate Change,
21, 289–302.

Kleiber C and Kotz S (2003) Statistical size distri-
butions in economics and actuarial sciences.
Hoboken, New Jersey, USA: John Wiley.

Lewis AL (2000) Option valuation under
stochastic volatility: with matematica code.
Newport Beach, California, USA: Finance
Press.

Lindsey JK (2004) Statistical analysis of stochas-
tic processes in time. Cambridge, UK:
Cambridge University Press.

Nishiura H and Chowell G (2009) The net
reproduction ratio as a prelude to statistical
estimation of time-dependent epidemic
trends. In Chowell G, Hyman JM, Betten-
court LMA and Castillo-Chavez C, eds.
Mathematical and statistical estimation
approaches in epidemiology. New York:
Springer, 103–21.

Pelupessy I, Bonten MJM and Diekman O
(2009) How to assess the relative impor-
tance of different colonization routes of

pathogens within hospital settings. PNAS,
99, 5601–05.

R Development core team (2010) R: a language
and environment for statistical computing,
R Foundation for Statistical Computing:
Vienna, Austria, 2010. ISBN 3-900051-
07-0. http://www.R-project.org.

Scheffer M, Bascompte J, Brock WA, Brovkin
V, Carpenter RC, Dakos V, Held H, Van
Nes EH, Rietkerk M and Sugihara G
(2009) Early-warning signals for critical
transitions. Nature, 461, 53–9.

Spiegelhalter DJ (2005) Problems in assessing
the rates of infection with methicillin
resistant Staphylococcus aureus. BMJ, 331,
1013–15.

Tacconelli E, De Angelis G, Cataldo MA, Pozzi E
and Cauda R (2008) Does antibiotic expo-
sure increase the risk of methicilin-resistant
Staphylococcus aurus (MRSA) isolation?
A systemetic review and meta-analysis.
Journal of Antimicrobial Chemotherapy,
61, 26–38.

Van Den Broek J and Heesterbeek JAP (2007)
Nonhomogeneous birth and death models
for epidemic outbreak data. Biostatistics, 8,
453–67.

Van Den Broek J and Nishiura H (2009) Using
epidemic prevalence data to jointly estimate
reproduction and removal. Annals of
Applied Statistics, 3(4), 1505–20.

Statistical Modelling 2015; 15(5): 457–475

 at University Library Utrecht on April 21, 2016smj.sagepub.comDownloaded from 

http://smj.sagepub.com/

