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SUMMARY 

Novel nanocomposites of polypyrrole (PPy) dispersed with iron oxide (Fe2O3) particles have 

been synthesised by in situ chemical oxidative polymerisation of pyrrole in the presence of 

ammonium persulfate (APS) as an oxidising agent. The concentration of Fe2O3 was varied 

between 10-50wt% of PPy. The simultaneous polymerisation of pyrrole and oxide addition led to 

the complete synthesis of nanocomposites. A maximum dielectric constant of ~28500 was 

observed at 20wt% of Fe2O3. The nanocomposites were characterised by X-ray diffraction 

(XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) 

and transmission electron microscopy (TEM). XRD analysis confirmed the structure and 

crystallinity of the nanocomposites, and a strong interaction between PPy and Fe2O3 particles 

was observed by FTIR technique. SEM and TEM images showed that Fe2O3 particles had been 

coated with PPy by establishing a network during the polymerisation process. The values of 

dielectric constant were obtained from capacitance measurements. The value of dielectric 

constant for nanocomposites with 20wt% of Fe2O3 was observed to be almost 12 times that of the 

pure PPy matrix. The high value of dielectric constant indicated a high packing density of Fe2O3 

particles in PPy matrix. These nanocomposites have potential applications in electronic or 

biomedical devices. 

Keywords: Polypyrrole; Fe2O3; Nanocomposite; Dielectric constant; Polymerisation 

 

 

 

 

 

 

 

 

 



1. INTRODUCTION 

Research into conjugated polymers demonstrated that all polymers need not be insulators
1
. These 

conjugated polymers have great scientific and technological significance due to their novel 

electrical, optical, electronic and optoelectronic characteristics
2,3

. In the neutral state these 

materials demonstrate insulating or semiconducting characteristics
4,5,6

 and find applications in 

different fields like, solar cells
7,8

, sensors
9
, organic light emitting diodes

10,11
 and opto-electronic 

devices
12

. 

Doping with metal oxides is one of the several ways to optimise the properties of these materials 

by carefully controlling the dopant into the polymer matrix
13

, resulting in new unique properties 

that cannot be achieved by single material
14,15

.The inorganic materials due to their high surface 

to volume ratio are expected to alter the properties of organic polymer matrix rapidly. Above all, 

the main idea to synthesise these organic-inorganic networks is to obtain the unique composite 

materials demonstrating optimized properties between those of the organic and inorganic 

materials. 

Among various polymers, polypyrrole (PPy) has reasonable thermal and environmental stability, 

significantly high electrical conductivity and simple route of synthesis
16,17,18

. PPy has potential 

applications in electronic and electrochromic devices such as solar cells, super capacitors, energy 

storage
19,20,21

, batteries, sensors
22,23,24

, microwave absorption
25

, antistatic coatings
26

, charge 

storage
27

, gas separation membranes
28

 and capacitors
29

. Its optical, electrical and mechanical 

properties can be improved by carefully doping of metal oxides in the PPy matrix
30,31,32

.  

However there is not much research done on the dielectric properties of PPy-Fe2O3 

nanocomposites. Herein we report the synthesis of the organic-inorganic composites by chemical 

oxidative polymerisation with different iron oxide contents in the polymer. The effects of 

concentration of filler metal oxide have been studied by exploring their structural, morphological 

and dielectric characteristics in order to assess the applications of such nanocomposites for 

electronic and related fields. 

2. EXPERIMENTAL 

2.1 Materials 



All the chemicals were purchased from reputable companies. Pyrrole (analytical grade, 99%) 

was purchased from Sigma-Aldrich, stored at 5°C and vacuum distilled prior to use. APS and 

Fe2O3 were supplied by Merck. All other supplementary chemicals and solvents such as acetone, 

hydrochloric acid (HCl), chloroform and methanol were obtained from Fluka and used as 

received.  Ultrapure deionised water (Seralpur delta) was used during all synthesis procedures. 

2.2 Synthesis of PPy and PPy-Fe2O3 nanocomposites 

The chemical oxidative polymerisation method was carried out for the synthesis of PPy and PPy-

Fe2O3 nanocomposites as described earlier
33

.Vacuum distilled pyrrole (10 g) and ammonium 

persulfate (APS) (12.25 g) were dissolved separately in deionised water for synthesis of PPy-

Fe2O3 nanocomposites. The pyrrole mixture was acidified gradually by dropwise addition of HCl 

(5 mL). At the next stage, 10wt% Fe2O3 (1 g) ultrasonically dispersed in deionised water was 

added to the pyrrole solution and the mixture was well stirred for 3 h. Afterwards, the solution of 

APS was added dropwise by dropping funnel into the mixture containing pyrrole, HCl and Fe2O3 

under vigorous stirring. Same synthesis procedure was adopted for other concentrations of Fe2O3 

i.e., 20, 30, 40 and 50 wt%. The prepared nanocomposites were designated as P-1, P-2, P-3, P-4 

and P-5 respectively. The suspension of obtained composites left overnight in fume hood. After 

ensuring the complete polymerisation, the suspensions were successively filtered and washed 

with deionised water. The precipitate was then dried under vacuum at 70°C for 24 h. To achieve 

complete homogeneity of the constituents, the dried precipitates were well crushed and ground 

for 1hour by an A-grade mortar and pestle, cleaned with acetone and deionised water. Pellets of 

the ground powder were prepared using a hydraulic press with a pressure of 30 kN applied for 2 

min before further characterisation. 

The powder X-ray diffraction patterns of samples were obtained by using an automated 

diffractometer, Bruker-AXS D8, using Cu Kα radiation. The operating voltage and current of the 

machine were maintained at 40 kV and 30 mA respectively. The samples were mounted on 

standard holders and diffraction spectra were recorded over the range of 10-60 degrees (2-theta) 

with a counting time of 3 s and step size 0.10 degree. Molecular structure was analysed through 

FTIR spectra recorded by Perkin Elmer FTIR spectrometer in the range from 500 to 3500 cm
-1

. 

The surface morphology of nanocomposites was observed by an EVO50 ZEISS scanning 

electron microscope and a Philips CM 12 transmission electron microscope respectively. For the 



measurement of dielectric properties a Wayne Kerr LCR meter Model 4275 was used in the 

frequency range from 20 Hz to 20 MHz. The obtained data were transformed into dielectric 

constants by applying the relation: 

          (1)   

where is relative permittivity,  is capacitance,  is permittivity of free space,  and  are 

thickness and cross sectional area of the pellets respectively. The thickness and diameter of the 

samples were measured by a digital micrometer. 

3. RESULTS AND DISCUSSION 

3.1 X-ray Diffraction (XRD)  

XRD patterns reveal that pure PPy is amorphous
34

 and PPy-Fe2O3 nanocomposites are 

polycrystalline in nature due to the existence of crystalline material i.e., Fe2O3 whose diffraction 

pattern is shown in Figure 1. The diffraction patterns of pure PPy along with its nanocomposites 

are depicted in Figure 2. An increase in the intensity of diffraction peaks is observed with 

increasing concentration of Fe2O3 in the nanocomposites. For pure PPy, the existence of a 

broader peak at 2θ between 20-28° has already been reported, and corresponds to the 

characteristic peak of pure PPy
35

. The appearance of this broad peak in all nanocomposites 

confirms the existence of PPy, and its intensity decreases with an increase in Fe2O3 content. 

Figures 2(a-f) show diffraction peaks corresponding to the (102), (104), (110), (113), (024) and 

(116) planes of Fe2O3 at 24.51, 33.28, 35.669, 40.880, 49.495 and 54.14 degrees 2θ respectively. 

The observed diffraction peaks are well matched with the JCPDS data Card No. 13-534. 

The variation in crystallite size of the nanocomposites as a function of Fe2O3 concentration was 

estimated by means of the Scherrer relation: 

         (2) 

Here  is crystallite size for individual peak,  is the unit cell geometry dependent constant, 

whose value is typically between 0.85 to 0.99,  is the wavelength of incident X-ray,  is the 

line broadening at full width at half maximum (FWHM) of the individual peaks and  is the 



Bragg angle. For crystallite size measurement, the strongest peak corresponding to the (104) 

plane was selected. The average value of crystallites observed to be in the range from 18 to 36 

nm. A slight shift in diffraction angle of the (104) diffraction peak is observed for all 

nanocomposites with respect to the Fe2O3 pattern as reported earlier
36

. The structural parameters 

for nanocomposites are listed in Table 1.        

3.2 Fourier Transform Infrared Spectroscopy (FTIR)  

Figure 3 depicts the FTIR spectra correlating the chemical structure of PPy and PPy-Fe2O3 

nanocomposites. For pure PPy, FTIR spectrum is in close agreement with one reported earlier
37

. 

The spectral bands observed at 780, 1090 and 1160 cm
-1

 are due to C–H out-of-plane ring 

deformation, C–H/N–H in-plane deformation modes and C-H interplane bending respectively
38

. 

The spectral bands at 1428 and 1550 cm
-1 

are associated with CH3 absorption and interacting C–

C vibrations respectively
39

. The spectral bands located at 1490 and 1728 cm
-1

 exhibit C=C 

vibrations of the quinoid rings
40,41

. It is noticeable that peak positions of all PPy-Fe2O3 

nanocomposites are displaced towards higher wavenumbers than those observed in pure PPy. 

This displacement is likely to result from the process of active electronic interaction between 

PPy and Fe2O3 particles
42

. The inclusion of Fe2O3 causes the creation of hydrogen bonds 

between the NH protons and oxygen atoms on the Fe2O3. As a result N⎯H bond and the 

stretching intensity become weaker
43,44

.  

3.3 Scanning Electron Microscopy (SEM) 

Figure 4 (a) shows SEM images of PPy representing the formation of a porous spongy irregular 

agglomerated structure. Figures 4(b) to 4(f) depict the SEM images of PPy-Fe2O3 

nanocomposites, showing an enhancement in the attachment of Fe2O3 particles to the polymer 

matrix, with an increase in Fe2O3 concentration. It is clearly visible from the micrographs that 

Fe2O3 particles (white colour) were embedded almost completely in the PPy matrix, confirming 

the formation of nanocomposites. Furthermore, the presence of Fe2O3 particles covered by PPy 

chain agglomerates and the resulting microstructure shows the presence of modified aggregated 

porous regions which would facilitate good electrical conductivity and dielectric response. 

3.4 Transmission Electron Microscopy (TEM) 



For detailed surface characterisation of PPy-Fe2O3 nanocomposites, transmission electron 

microscopy of selected samples was carried out. The morphology shown from Figures 5(a) to 

5(c) reveals the presence of two distinct regions, i.e. a black core of iron oxide particles well 

wrapped by outer grey shells of PPy with an average diameter ranging from 30 to 36 nm. This 

observation is evidence for successful polymerisation of polymer-metal oxide nanocomposites. 

The increment in Fe2O3 concentration seems helpful for it to occupy the porous sites of the 

polymer, which could result in improvement of various structural, electrical and magnetic 

properties. 

3.5 Dielectric Constant measurements 

The dielectric constant (έ) of a material refers to its capacity to store energy in the presence of an 

electric field, while the dielectric loss (ε'') expresses a concomitant loss or dissipation of 

energy
45,46

. Under the influence of an applied electric field, a conductive material always 

experiences the induction of two types of currents: (i) displacement current and (ii) conduction 

current
47

. The former type of current arises from localised bound charges, responsible for 

electronic, ionic, orientational and space charge polarisation (ε') within the material. The latter 

type is typically induced due to mobile charges and is responsible for dielectric losses (ε'') within 

the material
 48

. 

In composite materials, heterogeneity of organic and inorganic material would result in the 

domination of space charge polarisation, whereas in conjugated polymer system, polarons and/or 

bipolarons are mobile and free to hop between different sites along the polymer chain. The space 

charge polarisation arises from the restricted mobility of bound carrier dipoles, which leads to a 

form of orientational polarisation
49

, responsible for a decreasing value of ε' with an increase in 

frequency. Figure 6 shows the graph of ε' vs. frequency for pure PPy and PPy-Fe2O3 

nanocomposites. A sharp decrease in the value of ε' is observed initially from 20 Hz to 1 kHz 

that would be well explained on the basis of space charge effects
50

 and interfacial polarisation
51

. 

During that process the charge carriers appearing from the Maxwell-Wagner-Sillars polarisation 

effect, are stored at the interfaces of the constituents. These interfaces could be either inner 

dielectric boundaries or external sample-electrode contacts
52.

 



After 1 kHz, the sharp decrease in ε' slowed down and became linear presented no further 

reasonable change in higher frequency regions. The decrease in ε' at higher frequency region is 

due to the dielectric relaxation response of the material
53

. The dielectric relaxation usually occurs 

due to delayed molecular polarisation within the external applied field
54

.  P-2 nanocomposite 

exhibits the highest values of ε' among all the samples, which might be due to the strong 

interaction between PPy and Fe2O3 particles
55

.The obtained ε' values of PPy are 2408 and 371 at 

20 Hz and 1 kHz respectively, whereas for the case of P-2 nanocomposite higher values of 

dielectric constant are obtained  i.e., 28500 and 4169 at 20 Hz and 1 kHz respectively. For the 

higher frequency regions ε' remained persistent, because induced moments could no longer 

synchronise themselves with the applied field in that frequency range. The dependence of ε' on 

concentration of Fe2O3 is shown in Figure 6 (inset), presenting the highest value of ε' for P-2 

nanocomposite.  

3.6 Dielectric Loss Measurements 

Dielectric loss (ε'') response to frequency in PPy and PPy-Fe2O3 nanocomposites is shown in 

Figure 7.  The observed energy loss is due to the existence of moving dipoles between polymer 

and the metal oxide. These moving dipoles are a result of the strong interactions between the 

constituents. Since the existence of moving dipoles is less in nanocomposites as compared to 

PPy, that is the reason for increased value of dielectric loss in nanocomposites as compared to 

PPy and is confirmed experimentally. Dielectric loss varies with the particle size of the 

nanocomposites and is usually high for large particles
56

. The inset of Figure 7 displays the 

highest value of ε'' for P-2 nanocomposite.  

The values of ε'' for PPy are 6032 and 361 at 20 Hz and 1 kHz respectively, whereas in the case 

of P-2 nanocomposite these values are 278472 and 26315 at 20 Hz and 1 kHz respectively. The 

observed values of ε' and ε'' for all the samples are listed in Table 2. 

The ratio of ε'' to ε' is a measure of energy dissipation of a material, denoted as “tan δ” provides 

the basic information about an efficient energy absorbing material. The dependence of tan δ on 

frequency for PPy and PPy-Fe2O3 nanocomposites is presented in Figure 8. A decreasing trend in 

the value of tan δ is observed with gradual increase in frequency. The highest value of tan δ of 

each sample was found to be different depending on the loading of Fe2O3 content and it was 



found to reach a maximum at 20wt% Fe2O3 concentration. Those nanocomposites demonstrating 

high dielectric constant values in low frequency regions are suitable candidates for use in charge 

storing devices, electro-magnetic interference ( EMI ) shielding and decoupling capacitor 

applications
57

.  

4. CONCLUSION 

PPy-Fe2O3 nanocomposites have been prepared by incorporation of Fe2O3 particles into a PPy 

matrix. A uniform dispersion of the Fe2O3 particles and strong interaction between the PPy and 

the Fe2O3 particles have been observed by XRD and FTIR respectively. An increasing trend of 

the dielectric constant up to 20wt% and then a gradual decrease up to 50wt% of Fe2O3, has been 

observed, with a maximum almost 12 times that of pure PPy. The surface morphology clearly 

reveals the presence of evenly-dispersed Fe2O3 particles in the PPy matrix, in accordance with 

their proportion and the successful formation of nanocomposites. The synthesised 

nanocomposites could be helpful in applications such as fabricating charge storing devices, 

electromagnetic interference (EMI) shielding and decoupling capacitor applications.  
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Figure Captions 

Fig 1:  XRD pattern of Fe2O3 



Fig 2: XRD patterns of (a) PPy (b) P-1 (c) P-2 (d) P-3 (e) P-4 (f) P-5 



Fig 3:  FTIR spectra of (a) PPy (b) P-1 (c) P-2(d) P-3 (e) P-4 (f) P-5 



Fig 4 (a): SEM image of PPy 

 

Fig 4 (b): SEM image of P-1 

 

Fig 4 (c): SEM image of P-2 

 



Fig 4 (d): SEM image of P-3 

 

Fig 4 (e): SEM image of P-4 

 

 

Fig 4 (f): SEM image of P-5 

 



Fig 5 (a): TEM image of P-1 

 

Fig 5 (b): TEM image of P-3 

 

 

Fig 5 (c): TEM image of P-5 

 

 



Fig 6: Variation in ε' as a function of frequency for (a) PPy (b) P-1 (c) P-2(d) P-3 

(e) P-4 (f) P-5 

 

 



Fig 7: Variation in ε'' as a function of frequency for (a) PPy (b) P-1 (c) P-2(d) P-3 

(e) P-4 (f) P-5 

 

 



Fig 8: Variation in tan δ for (a) PPy (b) P-1 (c) P-2(d) P-3 (e) P-4 (f) P-5 

 



Table 1: Structural parameters for Fe2O3 and PPy-Fe2O3 nanocomposites 

Sample 
2θ 

(Degrees) 
d-Spacing 

(Å) 
β 

(Radians) 
Cos θ 

(Degrees) 
Thickness 

(nm) 

Fe2O3 33.177 2.699 0.0804 0.958 18 

P-1 33.400 2.682 0.0402 0.958 36 

P-2 33.400 2.682 0.0425 0.958 34 

P-3 33.540 2.671 0.0425 0.958 34 

P-4 33.800 2.651 0.0452 0.958 32 

P-5 33.440 2.679 0.0482 0.957 30 

 

 

 

Table 2:  Fe2O3 loading effect on dielectric properties of PPy- Fe2O3 nanocomposites 

 

Sample 
Dielectric Constant at: Dielectric Loss at: 

20 Hz 1 KHz 20 Hz 1 KHz 

PPy 2408 371 6032 361 

P-1 6814 570 41593 2030 

P-2 28500 4169 278472 26315 

P-3 25048 2865 193104 20789 

P-4 13632 1340 130349 8359 

P-5 12848 1183 95633 5923 

 

 


