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Effect of Estimation Method on Incremental Fit
Indexes for Covariance Structure Models
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In a typical study involving covariance structure
modeling, fit of a model or a set of alternative
models is evaluated using several indicators of fit
under one estimation method, usually maximum
likelihood. This study examined the stability across
estimation methods of incremental and non-
incremental fit measures that use the information
about the fit of the most restricted (null) model as
a reference point in assessing the fit of a more
substantive model to the data. A set of alternative
models for a large empirical dataset was analyzed
by asymptotically distribution-free, generalized
least squares, maximum likelihood, and ordinary

least squares estimation methods. Four incremental
and four nonincremental fit indexes were com-

pared. Incremental indexes were quite unstable
across estimation methods&mdash;maximum likelihood
and ordinary least squares solutions indicated
better fit of a given model than asymptotically
distribution-free and generalized least squares solu-
tions. The cause of this phenomenon is explained
and illustrated, and implications and recommenda-
tions for practice are discussed. Index terms:
covariance structure models, goodness of fit,
incremental fit index, maximum likelihood estimation,
parameter estimation, structural equation models.

Covariance structure modeling (cslv~9 Bielby & Hauser, 1977; Bollen, 1988; Duncan, 1975; Gold-
berger & Duncan, 1973; J6reskog, 1974, 1977) is a method of investigating theoretical relationships
among a set of constructs or latent variables (LVS) and observable or measured variables (Mvs) that
serve as indicators of the Lvs. Virtually all applications of CSM involve two primary objectives. The
first is the estimation of the parameters of the model, where parameters may represent, for example,
the linear effects of variables on other variables. The second is the assessment of the goodness of
fit of the hypothesized model(s) to the observed data.

This study examined whether fit indexes perform differently depending on the type of estimation
method used. Specific fit indexes may yield quite different values when a model is fit to a given dataset
using different estimation methods. Tanaka (1987) observed this in a study focusing on the issue of
sample size. La Du & Tanaka (1989) conducted a direct study of this issue and found that the goodness-
of-fit index (Gm; J6reskog & S6rbom, 1981) performed much more consistently across estimation
methods than did the normed fit index (NFI; Bentler & Bonett, 1980). If this phenomenon generalizes
beyond these specific indexes, it suggests that a researcher’s evaluation of a model could depend on
which fit index and estimation method were used. The present paper extends these earlier results
in two ways.

First, the results of Tanaka (1987) and La Du & Tanaka (1989) are discussed. There are two distinct
categories of fit indexes. In incremental indexes, the fit of a null or baseline model serves as a refer-
ence point for calculation of the index; nonincremental indexes do not use information regarding
the fit of a null or baseline model. These categories have been described by Tanaka & Huba (1989),
among others, but have not been associated in general terms with the phenomenon under study here.
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Second, La Du & Tanaka’s (1989) work is extended by providing an explanation and demonstration
revealing how and why the incremental and nonincremental indexes behave differently across estima-
tion methods.

Estimation Methods and Fit Indexes

Given a sample covariance matrix (S) and a hypothesized model, the parameters of the model
can be estimated by a number of different procedures. The estimation procedures yield the covari-
ance matrix ~ _ E(6) implied by the model and written as a function of estimates of the parameters
(0) so that i will be as close to S as possible. In other words, the parameters are estimated so that
the discrepancy between the implied covariance matrix E(6) and S is minimal. This is achieved by
minimizing some discrepancy function F[S, L(6)] that is a twice continuously differentiable, real valued
nonnegative function of the positive definite (or positive semi-definite, for the generalized least squares
estimation method discussed below) matrices E(6) and S (see Bollen, 1989, chap. 4 for details). A
general form of the discrepancy function is defined as

Let p be the number of dependent MVS and q be the number of independent MVs. Then the terms
sand cr are column vectors containing the [(p + q)(p + q + 1)]/2 distinct elements of the correspond-
ing matrices S and 1:(8) defined above (i.e., s’ - 1s119 S21 s229 5319 S329 S33, ..., Skk] and 6~ = [611, &OElig;w

aw a3!, a32’ &OElig;33, ..., &OElig;kkD. Thus the entries in (s - 0’) are residual variances and covariances represent-
ing the difference between observed sample values and values reconstructed from the model. W is
a weight matrix, and serves to weight the residuals in (s - 0’).

For any given weight matrix, model, and sample covariance matrix, the parameters of the model
can be estimated so as to minimize the value of the discrepancy function. Obviously, the selection
of different weight matrices results in the definition of different discrepancy functions. Different es-
timation methods are defined by the selection of the weight matrix in Equation 1. In this study, four
estimation methods were considered-maximum likelihood (ML), generalized least squares (GLS),
asymptotically distribution-free (ADF), and ordinary least squares (OLS).

Weight Matrices and Discrepancy Functions

Under ML, GLS, and ADF, elements of the weight matrix are defined to be consistent estimates
of the asymptotic variances and covariances of the entries in S. That is, the typical element [~];,;,k,
of W is defined as an estimate of the asymptotic variance or covariance of sample variance or covari-
ances Sij andskl. As will become clear later, the effect of estimation methods on fit is tied closely
to the nature of the weight matrices used by the methods.
ML estimation. The ML method is by far the most widely used approach for fitting covariance

structure models to sample data. For ML estimation, W in Equation 1 has the typical element

The discrepancy function is defined as

S approaches E asymptotically (Bollen, 1989). Because E is not known in practice, elements in WE
are computed from the model estimates of E, given by f = 1:(ê). To maximize FMu 0 estimation
yields parameter estimates that maximize the joint likelihood of obtaining the observed data from the
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population described by those parameter estimates under the assumption of multivariate normality.
GLS estimation. Under GLS estimation, the residuals in (s - s) are weighted in accordance with

their sample variances and covariances. The weight matrix in Equation 1 for this estimation method
has the typical element of

A general form of the GLS discrepancy function is

Note that the form of the weight matrices used in ML and GLS is similar-the typical elements of
those weight matrices are

for ML, and

for GLS. The difference is that under ML the entries in WE are computed from elements of E(6),
whereas under GLS the entries in W are computed from elements of S. Thus, if the model fits well,
meaning that S = E(6), the weight matrices under these two methods will be similar.
ADF estimation. Browne (1982, 1984) extended the notion of GLS to the ADF method that yields

optimal parameter estimates under less restricted assumptions than that of multivariate normality.
For ADF, the elements of ADr are a complex function of the second-order (variances and covari-
ances) and fourth-order moments (kurtosis and multivariate kurtosis) of the MVs. The discrepancy
function to be minimized is

The specific function defining the elements of WADF was given by Browne (1982, 1984). These ele-
ments are computed from entries in S, and i~ADF can provide an estimate of the asymptotic covari-
ance matrix for the elements of S (i.e., the same matrix estimated by Wr and ~), without any prior
distributional assumptions.

OLS estimation. The &reg;~,s discrepancy function minimizes one-half the sum of squares of ele-
ments in the residual matrix. For purposes of comparing the OLS discrepancy function to the func-
tion defined for the other estimation methods, PoLS is defined in terms of residual correlations as
(Browne, 1969)

where S is a diagonal matrix whose diagonal entries correspond to the sample standard deviations
of the mvs. Under the usual definition of the OLS estimation method, W&reg;,,S is defined as an identity
matrix. However, this is rescaled to the standardized form so that discrepancy function values of F&reg;LS
are comparable to other discrepancy function values, such as FML or F’~L59 which are invariant under
changes in scale of the MVs. Equation 9 can be rewritten as

where D is a diagonal weight matrix. For an elernent s~k of S, which becomes an entry in the vector
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s, the corresponding entry in D is S,~Skk. Equations 3, 5, 8, and 10 represent the four discrepancy
functions. They have the same general form as Equation 1 but involve different weight matrices. Differ-
ences among these weight matrices will be important in understanding the behavior of some fit in-
dexes under different estimation methods.

Fit Indexes

One way of accomplishing the second primary objective of cs~-model evaluation-is to carry
out a significance test examining the null hypothesis 1: = £(0)j that is, that the population covariance
matrix for the wtvs is exactly accounted for by the model. This null hypothesis can be tested by the
likelihood ratio XI test. Under the null hypothesis, (N - 1)F (where N is sample size) approaches a
x distribution as N becomes large, with degrees of freedom (df) equal to [(p + q)(P + ~ + 1)/2] - t,
where t is the number of distinct parameters in 0. This test is problematic in practice because models
that fit well will almost always be rejected when N is large. Such concerns have led to the develop-
ment of more than 30 alternative measures of fit (Marsh, Balla, & McDonald, 1988).

Incremental fit indexes. Incremental fit measures use the information about the fit of a highly
restricted model, often called a null model, as a reference in assessing the fit of a more substantive
model to the data. Typically, a null or baseline model proposes that Ntvs are uncorrelated in the popu-
lation (Bentler & Bonett, 1980). That is, the null model represents the hypothesis that is a diagonal
matrix. A conventional cutoff value of many incremental fit measures is .90, and larger values represent
better fit (e.g., Bentler & Bonett, 1980). The incremental fit indexes considered here were the N~’1
(&reg;1), Bollen’s delta index (&eth;.2), the Tucker-Lewis Index (p, ), and Bollen’s rho index (P2)’ 

’

Bentler & Bonett (1980) defined ~, as

F, and F, are values of the sample discrepancy function of the baseline or null model and the main-
tained or target model, respectively. The values of A, range from 0 to 1. When the best possible fit
is obtained (i.e., F;, = 0), A, = 1. In order to take the df of the model into account and minimize
the influence of the sample size on the mean of the index, Bollen (1988) modified A, by including
in the denominator a term representing the expected value of F for a theoretically correct model;
it is termed A, and defined as

p, and p, are non-normed incremental fit indexes that adjust for the df. Bentler & Bonett (1980) ex-
tended an index that was originally developed by Tucker & Lewis (1973) and defined p, as

A theoretically correct model has E(~ ;,~df&dquo;,) = 1 when the underlying assumptions for the xZ 2
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approximation are met for the maintained model. Therefore, the value of p, representing the expected
fit in the sample for a model that is correct in the population is 1 although it can be larger than 1

for an overfitting model.
p, (Bollen, 1986) is defined as

p, compares the discrepancy per df for the most restricted model relative to the target model.
The maximum value of p, is 1. Although a value less than 0 is rare, p, does not have a lower bound.

Nonincremental fit indexes. Nonincremental fit indexes do not incorporate numerical information
about the fit of the baseline model in their calculation. In the present study, four nonincremental fit
indexes were used.

The minimal population discrepancy function (F) and minimal sample discrepancy function (F)
are bounded by 0 and take on the value of 0 if and only if E = f or S = E, respectively. Although
F is defined as

F is used to estimate F. because E cannot be obtained in practice (Browne & Mels, 1990):

where

J6reskog & S6rbom (1981) devised a measure of fit called the GFI:

The numerator of the GFI can be recognized as F(6), or the minimum value of the discrepancy function,
and the denominator is the discrepancy function evaluated without fitting any model. The upper bound-
ary of GFI is 1 and negative values can occur theoretically, although that is unlikely. In this study, GFI
was computed using equations developed by Maiti & Mukherjee (1990).

Steiger & Lind (1980) developed the root mean square error of approximation (RMSEA). It is
defined as

where Fo is the minimal population discrepancy function value, which is replaced with jFo in
practice. For a hierarchy of nested models fit to a given sample, the values of RMSEA across the var-
ious models would be monotonically related to the X 2/ df ratio. Values below .10 represent a reason-
able fit, and values below .05 represent a very good fit (Steiger, 1989). Values below .01, representing
an outstanding fit, are rarely attained.
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Calculating Fit Indexes Under Different Estimation Methods

All eight fit indexes (the four incremental indexes-&reg;&dquo; &reg;Z, pi, pz-and the four nonincremental
indexes-F, F, GFI, and RMSEA) defined above may be computed from discrepancy function values
obtained under each of the four estimation methods (ADF, GLS, ML, OLS). None of the indexes is
defined in such a way as to be meaningful only under certain estimation methods. Each is defined
only in terms of discrepancy function values that are sensitive to the difference between S and ~(8).
Under specified distributional conditions and estimation methods, it is possible to define distribu-
tional properties of some fit indexes (Browne & Cudeck, 1992). However, such conditions are not
necessary for the calculation and interpretation of these fit measures under any estimation method.

Issues Investigated

Fit measures may behave differently depending on the type of estimation method used. For in-
stance, Tanaka (1987) noticed that GFI values were larger under ML than GLS in his study of sample
size and goodness of fit. In addition, La Du & Tanaka (1989) found that NFI or A values differed
substantially under GLS and ML, whereas GLS-based and ML-based GFI values were similar.

Such observations represent specific instances of a much more general phenomenon involving the
fundamental difference between incremental and nonincremental fit indexes. To begin to develop an
explanation for such a phenomenon, consider some observations involving the discrepancy functions
defined earlier.

The weight matrix for ML, W~’, is computed from the reproduced covariance matrix, E(6). The
weight matrices for ADF and GLS are computed from S. All three weight matrices are estimates of
the same unknown matrix; that is, the matrix of asymptotic variances and covariances of the ele-
ments of S.

Consider the ideal situation in which a model fits the data well [i.e., S = S(6)L the sample size
is large, and the assumption of multivariate normality is approximately satisfied. Under these condi-
tions, the residuals in the vector (s - 0&dquo;) would be small and the weight matrices defined for the ML,
GLS, and ADF discrepancy functions would be very similar. As a result, the values of the discrepancy
functions produced by these three estimation methods would be quite similar. However, for the same
model and data the value of the Oils discrepancy function would most likely be quite different be-
cause the OLS weight matrix (Equation 10) is diagonal. This weight matrix would be similar to the
weight matrices for the other discrepancy functions only when the MVs were approximately mutu-
ally uncorrelated, which would be highly unusual.

It is important also to consider the behavior of these discrepancy functions under the null model.
Clearly, in most empirical studies the null model would fit very badly [i.e., S ~ L(6)], resulting in
large residuals in the vector (s - c;). However, if the assumption of multivariate normality is approxi-
mately satisfied and if sample size is large, the weight matrices for the ADF and GLS discrepancy func-
tions would still be quite similar, because both of these weight matrices would be estimates of the
asymptotic covariance matrix of the elements of S and both are computed from the entries in S under
distributional conditions sufficient for both methods. Thus, under these conditions, obtained values
of ~DF and FILI would be very similar for the null model, even though that model fits very poorly.
On the other hand, if sample size were small and/or the normality assumption were substantially

violated, these two discrepancy function values would be less similar because the weight matrices
for ADF and GLS would be different. Under these same conditions, W.’ is computed from the ele-
ments of ~(8), which is very different from S under the null model, and the weight matrix for OLS
is diagonal; thus, the values of ~L and FOLS would likely be quite different from each other and
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from the values of the other discrepancy functions for the null model.
These observations are important because they have implications for the behavior of incremental

versus nonincremental fit measures. Because incremental fit indexes are functions of the fit of the null

model, and because the discrepancy function values for the null model may vary substantially across
estimation methods, it is to be expected that the values of incremental fit indexes may vary similarly
even for models that fit well. On the other hand, nonincremental fit measures should be less prone
to such instability because their values are not sensitive to the fit of the null model. Thus, if these

phenomena hold in practice, a given model may be evaluated quite differently when different fit measures
and methods of estimation are used. This rationale would provide further evidence and explanation
for the results observed in the study by La Du & Tanaka (1989).

The practical importance of this investigation stems from its implication that if indicators of fit
behave differently depending on the type of discrepancy function minimized, then the conclusion of
model evaluation based on the same set of fit indexes would be dependent on the estimation method
used. This issue was investigated by analyzing a large empirical dataset with four different estimation
methods (ADF, ML, GLS, and OLS) and comparing four incremental fit measures (A,, &reg;Z, pi, pz) and
four nonincremental fit measures (f, F, GFI, RMSEA) for a set of alternative models.

Method

Dataset

Although three large empirical datasets (MacCallum, Roznowski, & Necowitz, 1992; Mels & Knoorts,
1989; Verhoef & Roos, 1970) were examined, results for only one dataset (Dataset 1) will be discussed
here in detail because of the consistency of the outcomes across the datasets (Sugawara, 1992). Part
of the data from a project by the Human Sciences Research Council (Verhoef & Roos, 1970) analyzed
by Cudeck & Browne (1983) was used. A battery of six ability tests (Elder, 1957) was administered
to 2,677 high school students (approximately 14, 16, and 18 years of age) in 1965, 1967, and 1969.
The six ability tests were Number Series, Pattern Completion, Classification of Word Pairs, Verbal
Reasoning, Figure Analogies, and Word Analogies.

Procedure

A set of alternative models was constructed. They consisted of (1) a null model in which all MVs
were uncorrelated (Null); (2) a model with a single general factor (G); (3) an orthogonal three-factor
model with three factors representing the three uncorrelated occasions (OR3); (4) a six-factor orthogonal
factor model with six factors representing six uncorrelated abilities (OR6); (5) and a six-factor oblique
factor model with six factors representing six correlated abilities (OB6). The models first were fit to
the data by the ADF, GLS, ML, and OLS estimation methods. Then the four incremental fit indexes
and four nonincremental fit indexes were computed to evaluate the fit of the models.

Computer Program
The RAMONA computer program (Browne & Mels, 1990) was used for the data analysis. This pro-

gram is based on the reticular action model (McArdle & McDonald, 1984) with a slight modification.
When ADF, GLS, or ML is used, RAMONA provides the values of x2, F, F, and RMSEA. Only £ is provided
when OLS is used. The desired incremental indexes and GFI (or all indexes except F in the case of OLS)
can be obtained from the information provided by RAMONA by hand calculation.

Results

Table 1 includes values of the eight fit indexes for the five models under the four estimation methods.
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Table 1
Values of Incremental and Nonincremental Fit Indexes for
Five Models Using Four Estimation Methods for Dataset 1

Incremental Fit Indexes

For a given model, values of the incremental fit indexes differed substantially depending on the
estimation method used. When ADF, GLS, and ML are compared, the trend observed was systematic.
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For OB6, the A and p fit indexes based on ML solutions had values higher than a conventional cutoff
of .90, showing &dquo;good&dquo; fit; however, the values of ADF and GLS did not exceed the cutoff value.
The highest values obtained were &reg;Z = .81 and A, = .74 for OB6 under ADF and GLS, respectively.
Moreover, all incremental fit index values under the ADF and GLS estimation methods were substan-

tially smaller than corresponding ML-based values.
Across estimation methods, the incremental fit measures suggested that OR3 had the worst fit and

OB6 had the best fit. Although model selection in practice would also take into account factors such
as parsimony or interpretability of solution, here the purpose was to evaluate similarities and
differences in behavior of these fit measures specifically with respect to their relationships with the
different estimation methods. The erratic behavior of the incremental fit indexes was particularly
apparent under the OLS estimation method. For all models except OR3, the OLs-based incremental
fit measures had values higher than .96, indicating very good fit. This was inconsistent with the results
based on the other three estimation methods for which only the ML-based index values for OB6
exceeded .90. The incremental fit measures yielded values indicating poor fit for OR3 which was
evaluated to have the worst fit among the four target models. For OR3, the ML-based values were

higher than the ot.s-based values; however, the trend was reversed for the other three models.

Nonincremental Fit Indexes

Results for the nonincremental indexes in Table 1 provide further information, as well as an
explanation, for the behavior of the incremental indexes. Considering the results for the values of
the sample discrepancy function, F, for the null model, ADF and GLS produced very similar values,
whereas ML and OLS produced much larger values. The similarity of the ADF and GLS values was
consistent with expectations and arose because of the large sample and the approximate normality
of the variables. Under these conditions, the weight matrices for ADF and GLS became similar, resulting
in similar discrepancy function values. The discrepant values produced by ML and OLS for the null
model also were expected because the weight matrices defined by these functions were different from
those defined by ADF and GLS, even when sample size was large and normality held.

These varied values of the discrepancy function for the null model accounted for the erratic
behavior of the incremental fit indexes. When ML or OLS was used, the fit of the null model was
indicated by much higher values of the respective discrepancy function, as compared to results
obtained from the ADF or GLS method. The numerators of Equations 11-14 defining the incre-
mental fit indexes compared function values for the null model and a substantive model. The wide
variation in function values for the null model across estimation methods, as seen in Table 1, will
naturally give rise to similar variation in values of incremental fit indexes, even for a model that fits
the data quite well. More specifically, improvement in fit expressed by an incremental fit measure
tends to be intensified under ML and OLS estimation due to the increased size of the null model

discrepancy function values under these methods as compared to ADF and GLS. Thus, the incre-
mental fit index values based on ML and OLS estimations were larger than corresponding values based
on ADF or GLS.

Results in Table 1 also show more stable behavior for two of the nonincremental fit indexes. The
GFI and RMSEA indexes were especially consistent for a good-fitting model, with consistency decreasing
as model quality deteriorated. For OB6, these measures showed the model to be quite good under
all estimation methods.

Regardless of the estimation method or fit index, the model selection process yielded a consistent
result. That is, OB6 was the preferred model, and OR3 had the worst fit compared to the other models,
excluding the null model. Overall however, the order of the models with respect to their fit was

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



374

consistent across the estimation methods although the size of the index values varied substantially.

Additional Datasets

In order to examine the effect of estimation methods further, two other large empirical datasets
were examined (see Sugawara, 1992, for a detailed description of the analysis). Dataset 2 consisted
of responses to self-report measures from 3,148 hospital employees (MacCallum et al., 1992). The
models examined for this study included six ~,vs and 15 MVS, whereas the original model evaluated
by MacCallum et al. (1992) included seven Lvs and 21 MVs. Dataset 3 consisted of 213 nurses’ responses
to a job satisfaction questionnaire (Browne & Mels, 1990).

Table 2 summarizes F values for the null model under ADF, GLS, ML, and OLS for the three datasets.
The deviation from normality is reflected by the degree to which the relative kurtosis value deviated
from 1. Results in Table 2 provide further evidence for the phenomena described above. Specifically,
for data in which N is large and normality is approximately satisfied (Datasets 1 and 2) the ADF and
GLS methods produced similar values of the discrepancy function for the null model, whereas the
ML and OLS methods produced substantially different values. For these datasets, incremental fit in-
dexes behaved erratically, even for good-fitting models, across estimation methods. As a result of
the smaller sample in the third dataset, some divergence was seen between the ADF and GLS discrepancy
function values for the null model, indicating that values of incremental fit measures produced for
good-fitting models under these methods would be moderately different.

Table 2

Sample Discrepancy Function Values for the
Null Model Under ADF, GLS, ML, and

OLS From Three Datasets

Discussion

The most important finding of this study is that for a given model, values of incremental fit in-
dexes varied substantially across estimation methods. Considering the results presented in Table 1,
this phenomenon held across all models from poor to good fitting models. The incremental fit index
values based on ML estimates were always larger than corresponding GLS-based or ADF-based incremen-
tal index values. The OLs-solution based values were the largest, except for OR3 for which the ML-
solution based values were the largest. Index values above the cutoff of .90 were observed only for
OB6 under ML and for all models except OR3 under OLS.
On the other hand, variation in values of nonincremental indexes across the estimation methods

was more dependent on the quality of the model. For instance, the values of on and RMSEA for
OB6 were consistent under all estimation methods. As the quality of the model became poorer, non-
incremental indexes varied more in comparing different estimation methods. This tendency was par-
ticularly obvious for the null model under the ML and OLS methods, which consistently yielded less
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desirable values for F, F, and GFI as compared to the ADF or the GLS methods. The index values
for the OLS solution based on the null model were the largest. It follows that the same model is sug-
gested to have a better fit by incremental fit indexes using a ML or OLS solution because of the degree
of the fit of the null model. In other words, because the null model had a worse fit when ML or
OLS was used, even minor improvement in the fit of a non-null model is magnified although the degree
of fit of the non-null models is expressed as a consistent, if not identical, index value. ADF and GLS
estimation methods yielded similar values when the sample size was large and the data were normally
distributed.

The second observed pattern is related to the issue of model selection. Based on ADF, GLS, or
ML, OB6 was recommended regardless of the type of fit measure or estimation method used. However,
this was not the case when the incremental indexes under OLS were used.

These findings confirm and extend those reported by Tanaka (1987) and La Du & Tanaka (1989).
Nonincremental fit indexes tend to behave much more consistently across estimation methods than
do incremental fit indexes, especially for good models. Furthermore, an explanation for why this
phenomenon occurs was provided, showing that it arises from the fact that different estimation methods
yield very different discrepancy function values for a null model, due to the differences in the defini-
tion of the weight matrix used in the various discrepancy functions. As a result, incremental fit

measures, which use the discrepancy function value for the null model in their calculation, tend to
behave erratically across estimation methods, even for a model that is quite consistent with the
observed data.

Thus, a researcher’s choice of estimation method and fit indexes may substantially influence the
evaluation of each model’s fit to the observed data. That is, depending on the fit measures and the
type of estimation method used, the conclusion regarding the degree of model fit tends to vary. For
example, the researcher should be aware that a model’s fit may be enhanced when the judgment is
based on incremental indexes under the ML or OLS estimation method.

It has been recognized in the literature that the behavior of some fit measures may be influenced
by other factors, including sample size (e.g., Bollen, 1990; Marsh et al., 1988) and violations of dis-
tributional assumptions (e.g., Boomsma, 1983). Although a strong and systematic effect of estima-
tion methods on the behavior of incremental fit indexes was demonstrated here, it was not systematically
investigated how this effect might vary as a function of various characteristics of data. However, this
does not represent a major limitation of the study. Results in Table 2 clearly indicate that the critical
phenomenon (i.e., the variability in discrepancy function values observed for the null model) can
occur in both large and small samples. Furthermore, the explanation for the cause of this phenome-
non, in terms of the behavior of weight matrices used in the various discrepancy functions, should
be valid even when distributional assumptions are violated. These arguments could be tested using
simulation.

These findings are important if the typical selection of estimation methods and fit measures is
considered. ML estimation is the default method in csm computer programs and is used routinely
in empirical applications. To illustrate the selection of fit measures, 42 applications of CSM published
in the Journal of Applied Psychology from February 1986 to August 1991 used the following fit indexes
with the indicated frequencies: root mean squared residual (28), GFI (26), NFI (20), p, (14), adjusted
GFI (14), parsimonious fit index (10), xZldf ratio (5), relative NFI (2), Ecm (1), parsimonious GFI (1),
relative fit index 2 (1), relative parsimonious ratio (1), and p, (1). Researchers apparently tend to use
indexes provided by LISREL (e.g., adjusted GFI, xz, GFI, root mean squared residual) and to calcu-
late additional incremental indexes (e.g., NFI, p,). The present results clearly indicate that the use
of these latter indexes may be problematic due to their lack of stability across estimation methods.
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The use of nonincremental fit measures instead of incremental fit measures is recommended when
the ML estimation method is the only method used. Based on these findings, RMSEA would be one
of the most appropriate practical choices among the nonincremental fit measures because it behaves
consistently across estimation methods for good models and also has an interpretable scale asso-
ciated with it for determining the degree of fit.
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