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Methodology Review:
Statistical Approaches for Assessing
Measurement Bias

Roger E. Millsap, Baruch College, City University of New York

Howard T. Everson, The College Board

Statistical methods developed over the last
decade for detecting measurement bias in psycho-
logical and educational tests are reviewed. Earlier
methods for assessing measurement bias generally
have been replaced by more sophisticated statistical
techniques, such as the Mantel-Haenszel procedure,
the standardization approach, logistic regression
models, and item response theory approaches. The
review employs a conceptual framework that distin-
guishes methods of detecting measurement bias
based on either observed or unobserved conditional
invariance models. Although progress has been
made in the development of statistical methods for
detecting measurement bias, issues related to the

choice of matching variable, the nonuniform
nature of measurement bias, the suitability of cur-
rent approaches for new and emerging perform-
ance assessment methods, and insights into the
causes of measurement bias remain elusive.

Clearly, psychometric solutions to the problems of
measurement bias will further understanding of the
more central issue of construct validity. The con-
tinuing development of statistical methods for
detecting and understanding the causes of mea-
surement bias will continue to be an important
scientific challenge. Index terms: bias detection,
differential item functioning, item bias, measurement
bias, test bias.

Given the widespread use of standardized tests in education, the issue of test or measurement bias
is central to measurement theoreticians, practitioners, and educational policy makers. But what kind
of evidence leads to the conclusion that a psychological or educational test is biased, either for or
against a particular examinee group? In this review, &dquo;bias&dquo; refers to a systematic inaccuracy of mea-
surement, a concept defined more explicitly below. Obviously, a complete answer to the measure-
ment bias question requires thorough analyses of empirical data. Statistical methods to evaluate data
in the investigation of measurement bias are reviewed. An extensive literature has evolved on this
topic over the last 30 years, and more particularly, a number of important developments have come
about in the last decade. This paper provides an up-to-date review of state-of-the-art methodological
developments appearing in the literature since the publication of the Handbook of Nlethods for Detect-
ing Test Bias (Berk, 1982).

The primary interest in this review is in group-level measurement bias. Methods for bias detection
in both continuous and ordered-categorical (including dichotomous) measures are reviewed. Also,
methods for use in testlets and multiple measures, as well as item-level methods are discussed. Methods
relying on expert judgment are not discussed. Methods for detecting predictive bias typically found
in personnel or educational selection contexts also are not reviewed. Studies of predictive bias may
have implications for measurement bias, but the two forms of bias need not be related (Drasgow,
1982; Millsap & Meredith, 1992). Also, no discussion of the developments in the area of appropriate-
ness or person-fit indexes is provided.
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The phrase &dquo;measurement bias&dquo; has been adopted in this review primarily for grammatical con-
venience, while recognizing the additional connotations of the term &dquo;bias.&dquo; Many researchers prefer
the neutral phrase &dquo;differential item functioning&dquo; (DIF) when the measurement is an item score. This
phrase is less appropriate when the measure is not an item, but rather a testlet or an entire set of
items (e.g., factor analytic studies). Because this review includes such applications, measurement bias
has been selected as a general label. A formal definition of bias is given below.

This review employs an analytic framework, presented in more detail in the next section of the
paper, that distinguishes methods based on either an observed conditional invariance (oci) or an
unobserved conditional invariance (tlcl) model of measurement bias. The various methods are clas-
sified and reviewed using this classification. A discussion of the outstanding methodological problems
in detecting measurement bias, and an overview of promising directions for future research also are
provided.

A Conceptual Framework

A distinction can be made between impact and measurement bias or DIF (Dorans & Holland, 1993).
IYnpact refers to group differences in measured performance on tests or items. Because individuals
commonly differ on the attributes measured by tests, impact is ubiquitous. For example, males typi-
cally score higher on average than females on standardized tests of mathematics such as the Scholas-
tic Aptitude Test mathematics section (Wilder & Powell, 1989). Measurement bias or DIF, on the other
hand, refers to differences in the functioning of a test or item among groups that are matched on
the attribute measured by the test or item (Dorans & Holland, 1993; Scheuneman, 1979). As Dorans
& Holland (1993) assert, it is critical when assessing measurement bias that performance differences
among matched groups be examined to avoid Simpson’s (1951) paradox. In this paradox, the direc-
tion of item impact is inconsistent with the direction of group differences among matched individuals.
For example, a math item may be more difficult for females overall, yet may be less difficult for fe-
males within a group of examinees who have been matched on ability.

A Formal Definition of Measurement Bias

The formal definition of measurement bias provided here is intentionally stated at a general level
to include many forms of measurement bias. Denote the observed scores provided by a measuring
instrument as a random variable Y which may be univariate (e.g., scores on a single item) or mul-
tivariate (e.g., scores on a set of items). Ordinarily, Y is discretely measured, but the number of possi-
ble values may be large. Examinees are divided into two or more populations on the basis of variables
denoted as V which can be multivariate. The variables in ~ are usually demographic information,
such as ethnicity, gender, or age. It is assumed that these are known and measured without error.
Finally, define W as a latent or unobserved variable for which Y is the intended observed indicator:
Y is viewed as a measure of W. The latent variable I~ may be univariate or multivariate, depending
on the nature of Y Although latent variables in the measurement context often are viewed as con-
tinuous, Gt~ will be considered to be discrete for notational convenience in the following definition.
uci holds for Y in relation to YV and V if

for all values of Want V Here, P(Y) W = w) is the conditional probability function for Y given that
Assumes the value w. If Equation 1 holds for Y the relationship between ~’ and the latent variable
W is independent of group membership. Among individuals with common values on J4§ the distribu-
tion of Y is the same across populations defined by E Y is unbiased as a measure of ~ with respect
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to V if uci in Equation 1 holds. Conversely, measurement bias in Y in relation to ~ occurs if uci
is violated.

This definition of bias flows from the distinction between impact and DIF and, as such, adequately
represents many conceptions of bias found in the literature. If Y is taken to be a dichotomous item
score variable, and W is a unidimensional latent trait, uci in Equation 1 corresponds to Lord’s (1980)
definition of lack of item bias. In this situation, uci implies identical item response functions (IRFS)
among populations. Lord’s (1980) definition forms the basis for methods of DIF detection in appli-
cations of item response theory (IRT; Thissen, Steinberg, & Wainer, 1988). ~/lellenbergh (1989) present-
ed a definition of an &dquo;unbiased&dquo; item that is nearly identical to Equation 1, as did Kok (1988). If
Y is a vector of observed continuous measures whose regression on W corresponds to the linear factor
analytic model, with W a vector of factor score variables, then uci in Equation 1 implies an
invariant factor structure for Y (Meredith, 1990). Hence, uci in Equation 1 can encompass the idea
of factorial invariance as well.

The idea of conditioning on W in defining bias is important for distinguishing measurement bias
from ordinary group differences, or impact. For example, it may be true that groups differ in score
distributions on Y or that

There is a general consensus in the literature that Equation 2 is not sufficient to establish bias as
defined above (Ackerman, 1992; Drasgow, 1987; Holland & Thayer, 1988; Lord, 1980). To the extent
that examinee performance depends on W and that groups differ on W Equation 2 may indicate
bias even if no bias exists. Empirical bias investigations usually proceed on the assumption that group
differences on ~ are possible or likely. The validity of this assumption will not be debated here, and
it will be assumed that the distribution of 1~ differs across groups.

Bias and T~ime~sio~~lity
An important issue in any bias investigation is the dimensionality of fv, or the number of latent

dimensions believed to underlie Y If the bias investigation is to be meaningful, Yin Equation 1 must
be limited to include only those dimensions for which Y is intended to be an indicator. There may
exist additional latent variables that influences in unanticipated ways. For example, suppose that
I’ is a reading comprehension item score that is intended as a measure of a unidimensional latent
variable Y~; (e.g., reading ability). Suppose, however, that the content of the reading selection for Y
is unusual and favors examinees with prior familiarity with this content. Hence, there is a second
latent variable W (i.e., prior knowledge). Given the intended purpose for Y 412 may be considered
a nuisance variable (Ackerman, 1992; Kok, 1988; Shealy & Stout, 1993). The important issue here
is that uci in Equation 1 may hold for 1~ _ (fl, W2), but not for d~Il = (1~I;).

This example illustrates that some restrictions must be placed on ~Y in Equation 1 if the bias inves-
tigation is to proceed. Thus, issues of construct validity are inextricably bound to issues of measure-
ment bias (Ackerman, 1992).

Bias and Measurement Models

Some bias detection methods attempt to test uci directly by first proposing a measurement model
relating Y and W Bias then is investigated by evaluating whether features of the model remain invari-
ant over populations defined by K In investigations of item bias, bias detection methods based on
IRT are examples of this. IRT models have been proposed for ordered-categorical response formats
as well as dichotomously-scored items. For continuous measurements, factor-analytic models are
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commonly used. Methods for investigating factorial invariance are also examples of this. Collective-
ly, these types of bias detection methods are denoted uci methods.

Other detection methods proceed without formal specification of a measurement model relating
Y and 1~ Instead, an observable random variable Z (possibly multivariate) is found that may serve
as a stratifying variable for use in examining bias. Here, Z is intended as a proxy for YV. For example,
in studies of item bias, Z may be taken as the total test score. More generally, Z could include infor-
mation external to the test under consideration. These methods investigate a form of invariance that
parallels uci in Equation 2, where

If Equation 3 holds, the distributions of scores on Y among examinees with common values on
Z are independent of group membership. If Z = 1~19 Equation 3 is identical to uci in Equation 1,
and hence Y is unbiased. These methods use empirical data on Y Z, and V to assess Equation 3
in hopes of inferring something about uci in Equation 1. In the context of item bias detection,
examples of these methods include the traditional ~2 methods (Ironson, 1982; Marascuilo & Slaugh-
ter, 1981; Scheuneman, 1979; Shepard, Camilli, & Averill, 1981), the Mantel-Haenszel (MH) X2 method
(Holland & Thayer, 1988; Mantel & Haenszel, 1959), standardization approaches (Dorans & Kulik,
1986), and logistic regression methods (Swaminathan & Rogers, 1990a). The form of invariance in
Equation 3 will be referred to as oci, and these bias detection models will be referred to as oci
methods.

As noted earlier, the oci/uci distinction provides a useful basis for organizing this review of the
broad array of methods for detecting measurement bias that have been developed over the last
decade. The next section includes a review of oci methods, including loglinear models, the MH statistic,
and methods based on logistic regression. This is followed by a review of uci methods. Both sec-
tions discuss bias detection in dichotomous and polytomous measurements.

OCI methods

Statistical methods for detecting unexpected item bias or DIP have been under development for
nearly three decades (Angoff & Ford, 1973; Berk, 1982; ~’ardail ~ Coffman, 1964). Methods such
as the traditional , 72 approaches (e.g., Ironson, 1982; Marascuilo & Slaughter, 1981; Scheuneman,
1979; Shepard et al., 1981), loglinear models (Mellenbcrgh, 1982), the MH x2 (Holland, & Thayer,
1988; Mantel & Haenszel, 1959), the standardization approach (Dorans, 1989; Dorans & Kulick, 1986),
logistic regression techniques (Swaminathan & Rogers, 1990a), and, more recently, logistic discriminant
function analysis (Miller, Spray, & Wilson, 1992) are classified here as oci approaches. In this sec-
tion, however, only those oci methods that have emerged in the last decade are reviewed. A brief
description of each method is presented, including its statistical assumptions and/or rationale. This
is followed, where appropriate, by a discussion of the research highlighting the relative strengths and
weaknesses of each method. Detailed reviews of the more traditional ~2 methods are widely availa-
ble elsewhere (e.g., Ironson, 1982; Ironson & Subkoviak, 1979; Osterlind, 1983; Rudner, Getson, &

Knight, 1980a; Scheuneman & Bleistein, 1989; Shepard et al., 1981; Shepard, Camilli, & Williams,
1985).

laglinear Models

Building on traditional ~ methods for studying item bias (Camilli, 1979; Scheuneman, 1979), a
number of researchers have extended them to fit the more general theory of loglinear and logit models
for contingency tables (e.g., Alderman & Holland, 1981; Kok, Mellenbergh, & Van der Flier, 1985;

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



301

Loyd, 1984; Mellenbergh, 1982; Van der Flier, Mellenbergh, Ader, & Wijn, 1984). Under this approach,
item responses (both correct and incorrect) are classified in a three-way contingency table, which
includes score level X group x item response (test scores are divided into score levels). Because
dichotomous item response variables are used, the loglinear models are transformed into logit models;
the logit is defined as the natural logarithm of the ratio of the number of correct to the number
of incorrect item responses. Thus, model fitting and parameter estimation are implemented using
corresponding loglinear models (Bishop, Fienberg, & Holland, 1975).

Following Bishop et al. (1975), the saturated loglinear model for the natural logarithm of the ith
item response category (i = 1, ... , m - 1) in the kth score level (k = 1, 2, ... , s) and the jth group
( j = 1, 2, ... , g) ise

The corresponding saturated logit model, where correct (i = 1) and incorrect (i = 2), is

where

In is the natural logarithm,
F1jk is the expected frequency of correct item responses in the jth group,
FOjk is the expected frequency of incorrect item responses in the jth group,
a is the overall item difficulty effect parameter,

I3k is the main score level effect,
6j is the main group effect, and

(Ö!3)jk is the score level x group interaction effect.
A model for an unbiased item is created as a special case of the saturated model in Equation 5 by
eliminating the terms 8, and (Ö!3)jk’ If this model fits the data for an item, the item is declared to
be unbiased. Ordinarily, this &dquo;unbiased&dquo; model will be tested first.
A less restrictive model is created by eliminating only the (8p)j, term from the saturated model

in Equation 5. An item that fits this model (and does not fit the unbiased model) shows &dquo;uniform&dquo;
bias (Mellenbergh, 1982). Under uniform bias, the differences between groups in item performance
are consistent across score levels. For example, one group may consistently correctly answer the item
more frequently than the other group across all score levels. The interaction term (6fl), represents
&dquo;nonuniform bias in which the group differences in performance vary over score levels.

Model testing is done using sample frequencies to estimate the expected frequencies of the contin-
gency table and calculating the likelihood ratio G2 statistic (Fienberg, 1980), which is distributed
asymptotically as ~Z (Kok et al., 1985; Mellenbergh, 1982; Van der Flier et al., 1984). The GZ statis-
tic is

where ítk is the expected frequency estimate under the model tested, andfj, is the sample frequency.
The degrees of freedom (4f) will depend on the model being tested. The unbiased model is tested
with s(g - 1) df Hierarchical tests between models that are logically nested can be conducted using
differences in the respective G2 statistics. These tests are useful for distinguishing uniform and
nonuniform bias.

Loglinear models offer several advantages for bias detection. The models are flexible and can be
extended to polytomous items, to multiple examinee groups, or to simultaneous bias detection in
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several items (Agresti, 1990; Kelderman, 1989). The distinction in these models between uniform and
nonuniform bias is important for understanding the nature of any bias that is present.

One difficulty in the use of these models may arise when a substantial portion of the items are
biased, resulting in bias in the total score used to match examinees. Van der Flier et al. (1984)
proposed that biased items be removed from the total score by iteratively applying the loglinear
detection procedure. They demonstrated that this iterative approach leads to improved bias detection
in simulated data.
A more fundamental problem with the loglinear approach is the assumption that the loglinear

model adequately represents the data for purposes of bias detection. When the item responses fit
the Rasch model, the response probabilities can be represented by a loglinear model (Cressie &

Holland, 1983); however, data generated by more complex IRT models [e.g., the two-parameter logistic
model (2PLM)] cannot. One aspect of this problem is the adequacy of the total score as a substitute
for the unobserved latent trait. Under the Rasch model, the total score is a sufficient statistic for
the latent trait, and is an adequate substitute (Lord & Novick, 1968). Sufficiency breaks down when
the underlying response model is more complex. As a result, problems would be expected to be
encountered in using loglinear models for bias detection in data generated by multiparameter IRT
models. The robustness of the loglinear approach in such cases has not been studied thoroughly.
Kelderman (1989) presented encouraging results in a small simulation study. The studies by Van der
Flier et al. (1984) and Kok et al. (1985) did not properly address the issue because the examinee groups
used did not differ in distributions of the latent trait (0). More thorough studies of the robustness
of the loglinear approach are needed.

Mantel-Haenszel Statistic

The MH statistic (Mantel & Haenszel, 1959), a contingency table method derived initially for use
in biomedical research, was extended by Holland (1985) and subsequently by Holland & Thayer (1988)
for use in detecting DIF. It has rapidly become one of the more widely used methods for detecting
item-level measurement bias. Like the loglinear models, the MH statistic is a natural extension of the
traditional X2 approaches described by Scheuneman (1979) and Marascuilo & Slaughter (1981). Others
(e.g., Holland & Thayer, 1988; Thissen et al., 1988) have noted the relationship between the MH proce-
dure and IRT -based methods for detecting measurement bias at the item level.

The MH procedure compares the performance of two groups of examinees-the reference and focal
groups-on all the items in a given test, one item at a time. The group designated as the focal group
is the group that is believed to be disadvantaged by the presence of DIF in the test. The group desig-
nated as the reference group serves as a comparison group for the purpose of DIF detection. Like
the loglinear methods discussed above, the performance of comparable members of both groups are
contrasted. Typically the total test score is the matching variable for establishing comparability
between the groups.

The data for the MH procedure are contained in a s x 2 x 2 contingency table (where s desig-
nates the number of test score levels). Thus, at each score level k, individual item data from two groups
of examinees can be arranged as a 2 x 2 table (see Table 1). From the s x 2 x 2 table for any given
item, the following statistics are computed (see Holland & Thayer, 1988):

r- 8 , --, .-.
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where

where aMH is the common odds ratio across the s x 2 x 2 tables for a particular test item. ccMH ranges
from 0 to m, with values of 1.0 signifying no DIF. Values less than 1.0 indicate that the item is less
difficult for examinees in the focal group, controlling for total test score. aMH values greater than 1.0,
on the other hand, indicate that the item is less difficult for examinees in the reference group.

Table 1
Mantel Haenszel, s x 2 x 2 Contingency Table

The null hypothesis tested in the MH procedure is that (XMH across the s tables is equal to 1.0. This
null hypothesis corresponds to Equation 3 with Z defined as the total test score and Y defined as the
studied item score. The alternative hypothesis tested is that aMH is not equal to 1.0. Note that this
alternative hypothesis includes only a subset of the possible situations that depart from the null hypothe-
sis. Only situations involving homogeneous OMn across the s tables are considered, as discussed by
Holland & Thayer (1988). The MH XI test is the uniformly most powerful test against alternatives
within this class.

To perform the test, the MH X value is referred to the ~ distribution with 1 cdf. As an index of
DIF, the odds ratio estimator in Equation 10 is consistent and is efficient over a wide range of true
odds ratio values (Holland & Thayer, 1988). The transformed estimator in Equation 11 expresses DIF
in the metric of the Educational Testing Service’s delta scale; Dorans & Holland (1993) labeled this
estimator MH D-DIF.

Largely because the MH statistic is conceptually simple, relatively easy to use, and provides a ~ 2

test of significance, it has become a widely used method for detecting measurement bias at the item
level. Moreover, the MH procedure addresses the general problem with x2 methods of only providing
tests of the null hypothesis and lacking a parameter estimate of the amount of DIF present in the item
(Holland & Thayer, 1988).

As a result of this widespread use, the MH procedure also has been the focus of much research
recently. The MH procedure, for example, has been compared with the standardization method (Dorans
& Kulick, 1983, 1986; Wright, 1987), described below, and has yielded similar results. Others have
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examined many factors thought to affect the stability of the statistic, including grouping of scores on
the matching variable (Donoghue & Allen, 1991), the amount and type of DIF (Uttaro, 1992), inclu-
sion of the studied item in the matching variable score (Donoghue, Holland, & Thayer, 1993), sample
ability differences (Harvey, 1990), and sample size (Mazor, Clauser, & Hambleton, 1991; Ryan, 1991).

The MH procedure does have several disadvantages. First, the procedure is not designed to detect
nonuniform bias. The MH procedure sacrifices some sensitivity to achieve greater power for detecting
uniform bias (Holland & Thayer, 1988). Several studies have shown that the MH procedure has rela-
tively low power for detecting nonuniform bias (Swaminathan & Rogers, 1990a, 1990b; Uttaro, 1992).
This problem is of concern if the item responses are generated by non-Rasch IRT models.

The second problem concerns the adequacy of the total score as a substitute for the latent trait.
Both theoretical studies (Meredith & Millsap, 1992; Millsap & Meredith, 1992; Zwick, 1990) and simu-
lation studies (Uttaro, 1992) have shown that when the item responses are generated by complex IRT
models, the MH procedure can falsely indicate DIP when no bias is present. This problem is more seri-
ous in short tests (less than 20 items). As test length increases, the total score becomes a better proxy
for the univariate latent trait.

Several extensions of the MH procedure are available for polytomous item scores (Zwick, Donoghue,
& Grima, 1993). One extension is based on the procedure given by Mantel (1963) that considers ordered
categories. In this extension, index numbers are assigned to the ordered response categories, and examinee
groups are compared on their mean responses, conditional on the total score group. A 1 df X statistic
is used to test the null hypothesis of no DIF. The second extension is based on the generalized MH
statistic (Mantel & Haenszel, 1959; Somes, 1986). This statistic considers examinee group differences
in the entire response distribution across the m response categories within a given score group. A yl 2

statistic with m - 1 df’ is used to test the null hypothesis of no DIF. Zwick et al. (1993) used both of
these procedures in simulated and real data and found that both procedures adhered to the nominal
Type I error rate under no-DIF conditions in the simulations. They also found some differences be-
tween the two procedures in the form of DIF that was detected most readily. Both procedures require
further study.

Standardization Method

Another DIF assessment technique which is highly related and, indeed, complementary to the MH
procedure is the standardization approach developed by Dorans & Kulick (1983, 1986; Dorans & Holland,
1993). While the MH procedure is a statistically powerful technique for detecting measurement bias
at the item level, the standardization method is a more easily understood procedure for describing and
explaining the nature of the measurement bias.

The initial step in this method is to define the empirical item-test regressions for both the focal and
reference groups. At score level Z, these regressions take the form E, (YI Z) and Er(Y~Z), where Y is
the item score. Thus, the definition of measurement bias in the standardization method implies

The primary DIF statistic computed using the standardization method is commonly referred to as the
standardized p difference (STD P-DIF), and is computed as follows:

where [WJ2:(Wk)] is the weighting factor at the kth score level that weights the differences in the propor-
tions correct between the focal group (1’k = hfklnrk) and the reference group (Pk = hrklnrk)’
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These weighted differences are summed across the score levels to yield STD P-DIF. The STD P-DIF index
ranges from -1.0 to + 1.0, with positive values indicating that the item favors the focal group and nega-
tive values indicating the item favors the reference group. STD P-DIF values between -.05 and + .05 are
considered negligible; values between -.10 and -.05 and .05 and .10 will cause the item to be flagged
for further inspection. The next step is to try to understand the causes for the DIF. According to
Dorans, Schmitt, & Bleistein (1992), these cutoff points work well in practice.

The results of the standardization method are usually in close agreement with those of the MH proce-
dure (Dorans & Holland, 1993). The close relationship between the two procedures suggests that the
problems found in the MH procedure also will affect the standardization procedure. For example, the
standardization procedure also uses the total score as a substitute for the unobserved latent trait, and
hence should encounter problems in data generated by multiparameter IRT models.

Recently, the standardization method has been extended to all response options (Dorans et al., 1992).
This new approach, referred to as comprehensive DIF or CDIF (Dorans et al., 1992), may prove useful
for understanding the differential functioning of distractors, as well as for identifying differential speed-
edness on omitted items near the end of a test. This ability to identify differential speededness may
help clarify the cause of DIF in some items and, in turn, reduce the noise in the matching variable
used in the MH procedures. The standardization approach holds promise for furthering understand-
ing of why a test item functions differentially for some groups and not others.

Logistic Regression Models

Swaminathan & Rogers (1990a) introduced a DIF procedure based on the logistic regression model,
which is sensitive to both uniform and nonuniform DIF. For example, let Z be the observed proxy vari-
able (usually the total test score) that is used to match individuals for purposes of bias detection. Let
~ be the indicator variable that identifies demographic group membership. In the full logistic regres-
sion model, the conditional probability that an examinee will correctly answer the test item, given Z
and ~ is

where Y is the item score variable. Equation 14 can be rewritten as a linear model in the logit metric as

The regression parameters in Equation 15 can be estimated using maximum likelihood (Bock, 1975)
and can be tested for significance. If the item is unbiased, only po and fli should be nonzero. A model
that includes ~30, (3&dquo; and B2 corresponds to an item that shows uniform bias. If the interaction parameter
B3 is nonzero, nonuniform bias is present. Swaminathan & Rogers (1990a) argue that &dquo;... the Mantel-
Haenszel procedure can be thought of as being based on a logistic regression model where the ability
variable is discrete and no interaction term between the group variable and ability is permitted&dquo; (p. 365).

The logistic regression procedure can be viewed as a reformulation of the loglinear approach for
the case of dichotomous item scores with stratified sampling. Bishop et al. (1975) described the rela-
tionship between logit models and the general loglinear model. The tests of uniform and nonuniform
bias described under Equation 15 above are equivalent to those given by the loglinear approach.

The logistic regression procedure is flexible because it can be extended to multiple examinee groups
and to polytomous item scores (Agresti, 1990; Miller, Spray, & Wilson, 1992). Recent research
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comparing the logistic regression procedure to the MH procedure (Swaminathan & Rogers, 1990a, 1990b)
suggests that the logistic regression model is as powerful for detecting uniform DIF as the MH proce-
dure and more powerful for detecting nonuniform DIF than the MH procedure. In their simulation
studies, Swaminathan & Rogers (1990b) manipulated sample size (N = 250 vs. 500), test length (40,
60, or 80 items) and the nature of DIF (uniform or nonuniform). Under uniform DI~’, both the logistic
regression and the MH procedures performed equally well; however, the MH performed slightly better
in the smaller sample. Only the logistic regression model, however, was able to consistently detect the
nonuniform DIF. Finally, logistic regression procedures produce estimates of the regression coefficients
which, when plotted, may be useful for locating DIF along the score scale (Miller et al., 1992).

Logistic regression procedures share the difficulties faced by loglinear methods. The use of the total
score as a proxy for the latent trait will encounter problems if the item responses follow multiparameter
IRT models. The simulations conducted by Swaminathan & Rogers (1990b) used relatively long tests,
reducing the opportunity for problems to arise. In shorter tests, theory suggests that false indications
of bias will be encountered in the no-DIF case.

The logistic regression procedure allows for the inclusion of curvilinear terms and other factors-
such as examinee characteristics like test anxiety or instructional opportunity-that may be relevant
factors for exploring possible causes of DIF. Logistic regression models also produce estimates of the
regression coefficients which, when plotted, may be useful for determining where along the score scale
the DIF is problematic (Miller et al., 1992). Thus, thoughtful use of this approach may further under-
standing of the theoretical nature of DIF.

Logistic Discriminant Function Analysis
The call for performance assessments relying on item formats other than the traditional correct/

incorrect or dichotomously scored responses has generated interest in methods for detecting item bias
when more than one response category is appropriate, commonly referred to as polytomous item
responses. Miller et al. (1992) developed an extension of logistic regression procedures (Swaminathan
& Rogers, 1990a) that holds promise for identifying DIF in polytomously scored items, an approach
they termed logistic discriminant function analysis.

Thus, recasting the logistic regression model yields

where the probability of observing each dichotomous response Y is modeled as a function of two predictor
or explanatory variables, the observed test score Z and a group term h Miller et al. (1992) argued that
it is reasonable, employing a logistic form of the posterior probability used in discriminant analyses,
to estimate 1’( i~ ~ Z, Y) even though V is fixed and Y is random. Thus, the logistic discriminant function
analysis for DIF detection with polytomously scored responses is written as

where the regression coefficients are denoted by ~;, ~ = 0, 1, 2, and 3 and, as in Equation 16, group
membership is denoted by V = 0 for the focal group and T~ = 1 for the reference group. In Equation
17, however, the response variable Y need not be restricted to dichotomously scored categories, but
can assume polytomously scored values.

Using simulated data for 25 items with four response categories, Miller et al. (1992) compared their
approach to bcth the logistic regression model using a continuation ratio logit analysis (Agresti, 1990)
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and the MH procedure with ordered responses to detect DIF in polytomously scored items. Two types
of nonuniform DIF were simulated: (1) the item difficulty (b) parameters were equal for the focal and
reference groups but the item discrimination (a) parameters differed, and (2) the a parameters were
equal and the b parameters differed between groups. Their results suggested, not surprisingly, that the
MH procedure did not detect the nonuniform DIF, and that both the logistic regression and linear dis-
criminant function analysis methods were equally powerful in detecting nonuniform DIP due to differ-
ences in then parameters. The logistic discriminant function analysis approach, however, was superior
for detecting nonuniform DIF due to differences in the b parameters.

The procedures detailed by Miller et al. (1992) appear promising. Logistic regression models, although
useful for detecting uniform and nonuniform DIF, become computationally cumbersome when applied
to polytomously scored items. The logistic discriminant function analysis approach, on the other hand,
may provide an elegant solution by treating the item response as an independent variable and requiring
only one regression model per item. The efficacy of this method under other bias conditions requires
further study.

UCI Methods

This section reviews developments in bias detection methods that operate within an assumed mea-
surement model relating the observed measure Y to the latent variable ~ The section is divided in
three subsections. The first concerns methods for dichotomously scored ~’ measures, while the second
addresses methods appropriate for polytomously scored measures. Both of these sections assume W
to be unidimensional. The final section reviews methods that consider YV as a multivariate latent variable.

Dichotomously Scored easures

These methods assume that a unidimensional IRT model underlies performance on the studied mea-
sure. Throughout, it is assumed that parameter linking has been completed prior to the construction
of any bias indexes. Before detailing the various methods, a brief discussion of the issues related to
parameter linking and the related IRT problem of scale indeterminacy is presented.

Pcarameter° linking. In the unidimensional IRT models for dichotomous items that are commonly
used, the item and 0 parameters are not identified without further constraints. For example, consider
the three-parameter logistic model (3PLM)

where c is the pseudo-guessing parameter, and D is the logistic scaling constant.
Lett and B be any constants. Then if a* = alma, b* = Ab + B, and 0* = AO + B

Hence, the item and 0 parameters are not unique and may be linearly transformed without altering
the response probabilities. The same condition holds in the one-parameter logistic model (1PLM), the
2PLM, and in the normal ogive IRT model.

The problem of scale indeterminacy can be solved in several ways. One method is to scale a so that
its mean is 0 and its standard deviation (SD) is I for the group of examinees under study. Alternative-
ly, the item difficulties could be scaled so that they have a mean of 0 and SD of 1 across the items

under study. When multiple random samples are drawn from a single population (i.e., all examinees
fit the same IRT model), separate standardizations can be done within each sample. The item parameters
estimated within each sample will vary across samples because of sampling error. However, the separate
estimates should be linearly related, as illustrated in Lord (1980). It should be possible to find values

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



308

for A and B that will linearly transform the item parameters in one sample to closely approximate
those in another sample. In contrast to classical test theory, this invariance property is a well-known
advantage of IRT (Lord & Novick, 1968).

The invariance property follows from the assumption that multiple samples are drawn from a com-
mon population, one in which all examinees can be fit by a common IRT model. The situation is
quite different when studies of measurement bias are conducted. In these studies, it cannot be assumed
that the groups under study belong to a common population. It is, in fact, this question that is being
investigated. As a result, there may exist no values of A and that will render the item parameters
equivalent across the groups under study. It is still necessary to impose some constraints within each
group for parameter estimation to proceed. An effort must be made to link the parameters across
groups so that spurious group differences due to sampling, combined with the separate standardiza-
tions, are reduced. If ordinary linking procedures are used (e.g., linear transformations based on within-
group item parameter estimates), the presence of some biased items may distort the development
of the linking transformation. The problem is to find the proper linking transformation while avoid-
ing distortions in the transformation due to biased items. This linking problem has been known for
some time (Lord, 1980), but recent work (Candell & Drasgow, 1988; Kim & Cohen, 1992; Lauten-
schlager & Park, 1988; Park & Lautenschlager, 1990) has amplified the importance of the problem
for bias investigations.

All linking procedures designed for bias investigations attempt to base the derivation of the link-
ing transformation on only the unbiased items. These methods require a preliminary screening of
biased items, followed by development of the linking transformation using the remaining items. The
issue is whether a single screening is adequate, or whether several screening iterations followed by
reevaluation of the linking transformation are needed. The question is important because the initial
screening, which uses item parameter estimates whose metrics are linked using all items, may not
properly identify all biased items. An iterative approach could improve the quality of the linking.

Lord (1980) suggested a single iteration procedure (attributed to Marco, 1977) that begins with
an initial screen for biased items. The procedure for the 3PLM consists of the following steps:
1. Estimate item parameters for the total sample combining data from all groups. Standardize on

the b parameters (i.e., force the mean b to be 0, with SD = 1).
2. Fix the guessing (c) parameters to the values in Step 1, and estimate the b and a parameters sep-

arately in each group again standardizing on the b parameters. Evaluate each item for bias.
3. Remove all items that are biased.
4. Combine groups and estimate 0 using the reduced item set.
5. Using the 0 estimates from Step 4, estimate the item parameters for all items (biased and un-

biased) within each group separately.
6. Evaluate each item for bias using the item parameter estimates from Step 5.
In this procedure, the presence of biased items will distort the parameter estimates in Step 2, and
may induce misclassification of items as biased or unbiased at that stage. The second screen in Step 6
attempts to correct any misclassifications.

Park & Lautenschlager (1990; Park, 1988) presented a modified version of Lord’s procedure that
iteratively improves the estimation. This modified procedure consists of the following steps:
1. Combine the groups and estimate 0 for all examinees.
2. Separate the groups, and within each group estimate all item parameters using the 0 estimates

from Step 1. Evaluate all items for bias.
3. Remove the biased items.
4. Using the remaining items, combine the groups and estimate 0 for all examinees.
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5. Separate the groups, and within each group estimate all item parameters using the 0 estimates from
Step 4.

6. Evaluate all items for bias.
7. Repeat Steps 3-6 until the same items are identified as biased in successive iterations.
One difficulty with both Lord’s procedure and this modified procedure is that they are computation-
ally complex (Candell & Drasgow, 1988; Kim & Cohen, 1992). Repeated estimation of the item and
0 parameters is required.
An alternative procedure suggested by Segall (1983) does not require repeated parameter estimation.

Instead, a linking function is applied, and this function is iteratively improved. The procedure involves
the following steps:
1. Item parameters are estimated within each group separately.
2. A linking function is developed to link all items.
3. After linking, all items are evaluated for bias. Biased items are removed.
4. A new linking function is developed using the remaining items, and applied to all items.
5. All items are evaluated for bias and the biased items are removed.
The last two steps are repeated until the same items are identified as biased on successive iterations.
This procedure has been used with real data (Drasgow, 1987), and in simulations (Candell & Drasgow,
1988; Park & Lautenschlager, 1990).

The accumulated evidence suggests that iterative linking can improve the accuracy of bias detection
in comparison to single iteration linking (Candell & Drasgow, 1988; Kim & Cohen, 1992; Lautenschlager
& Park, 1988; Park & Lautenschlager, 1990). Lautenschlager & Park (1988) used simulated data in which
biased items were created by introducing a second latent trait dimension. They found that when the
linking transformation was based on all items with no attempt to remove biased items, misclassifica-
tions of items as biased or unbiased often resulted. The false negative rate, or the proportion of biased
items that were not detected as biased, was fairly high in many of the conditions studied. The false
positive rate was also high in some conditions.

McCauley & Mendoza (1985) used simulated data to evaluate several bias indexes, basing parameter
linking on all items without removal of biased items. They reported some evidence of elevated false
positive rates that were possibly due to the linking procedure. Several studies have directly compared
single iteration linking to multiple iterations linking (Candell & Drasgow, 1988; Kim & Cohen, 1992;
Park & Lautenschlager, 1990). In general, all studies have found improved bias classification accuracy with
multiple iterations. Park & Lautenschlager (1990), however, found that very high proportions of biased
items could lead to misclassification even under iterative linking. They found, for example, that the
most serious classification problems arose with items that were weakly biased and were classified as
unbiased. Similarly, Kim & Cohen (1992) varied group sample sizes and found that iterative linking
is most needed in small samples (i.e., N = 300 per group, using a 2PLM).

In addition to the choice between single or multiple iterations, the linking function itself must be
selected. Selecting the linking function means selecting the constants A and Z. There are two broad
classes of methods for deriving values for the linking constants. One class derives the linking constants
using only first and second moment information from the distributions of the item parameter esti-
mates in the two groups (Linn, Levine, Hastings, & Wardrup, 1981; Loyd & Hoover, 1980; Marco, 1977;
Vale, 1986; Warm, 1978). These will be denoted moment methods. The second class uses additional
information deriving constants that minimize group differences in item or test response functions (Divgi,
1985; Stocking & Lord, 1983). These linking methods will be denoted characteristic curve methods. The
characteristic curve methods use more information and might be expected to be more accurate, but
they also require more computation. In practice, poorly estimated curves could degrade the quality
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of the linking.
The available research does not clearly support the superiority of either type of method in all

situations. Stocking & Lord (1983) found that their characteristic curve method was more accurate than
the moment method developed by Linn et al. (1981), but Candell & Drasgow (1988) reached the
opposite conclusion. Baker & Al-I~arni (1991) found no differences between the characteristic curve
method and a moment method developed by Loyd & Hoover (1980). Using simulated data, Kim &
Cohen (1992) compared three linking methods, including the characteristic curve method, a weighted
moment method, and a minimum x method (Divgi, 1985). The characteristic curve and minimum
X2 methods were slightly better than the moment method. In large samples (N = 600), the methods
performed equally well. Overall, the evidence tends to favor the characteristic curve methods, but the
question remains open. Apparently, the answer depends on conditions such as sample size, the number
of biased items, the nature of the true model, and the length of the test.

Area measures. Area measures of bias express the difference between the reference and focal group
IRF as some function of the area between the IRFS, calculated over a selected interval on the 0 scale.

Thus, by defining ~(8) and ~(8) as the IRF on the studied item for the reference and focal groups,
respectively, a general definition of an area measure is

defined for 0 in the interval S = (0~, 8u) where L and U indicate lower and upper values, respectively.
Many choices for the function f and the interval boundaries are possible. Area measures differ by

whether (1) absolute, unsigned, or signed differences are used, (2) the interval S is bounded or unbounded,
(3) continuous integration or discrete approximation is used in f, and (4) the differences in f are equally
weighted or differentially weighted.

Early area measures (Ironson & Subkoviak, 1979; Rudner, 1977; Rudner, Getson, & Knight, 1980a,
1980b) used bounded intervals with discrete approximation. Rudner (1977) proposed the unsigned index

J- J

with S = (-3, + 3) and A a small interval (e.g., A = .005). The interval S is divided into 600 intervals,
each of width A = .005, and summation is performed across these 600 intervals. The measures is
easily converted to a signed measure by removing the absolute value operator, allowing both positive
and negative differences to be summed.

Linn et al. (1981) also used the measure R. Linn et al. (1981) and Ironson & Subkoviak (1979)
defined the &dquo;base high&dquo; index as

and Linn et al. (1981) defined the &dquo;base low&dquo; index as

For IZH, the summation only includes intervals in which the IRF for the designated &dquo;base&dquo; group is

above the IRF for the other group. RL is then the total area in R minus J?n. The RH and RL indexes
allow the investigator to understand the direction of bias in absolute terms, while avoiding the cancel-
lation that may occur in the signed index. Linn et al. (1981) proposed another unsigned index,

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



311

which essentially provides the root mean squared difference between the IRFS.
Shepard, Camilli, & Williams (1984, 1985) proposed variations on these signed and unsigned

indexes that restricted the summation to only the 8 values found in the samples under study:

and

In these indexes, the interval S is bounded, but the boundaries are determined by the available data.
In these indexes, N = IVR + NF is the total sample size, and 8j is the jth person’s 0 value in 1~;, regard-
less of group membership. s~s3 is identical to SOS, except that the sign of the difference is retained
and replaced after squaring. Use of either of these indexes requires that estimated 6 values be available.

Indexes that provide for differential weighting of the IRF differences also have been proposed. Linn
et al. (1981) created

from R by weighting each difference in inverse proportion to the estimated standard error (SE) of the
difference, which gives small weights to differences with large SES, denoting uncertainty in estimation.
Linn et al. (1981) found that weighted and unweighted indexes gave essentially identical results.

Shepard et al. (1984) created weighted SOS indexes (SOS, and sos,). They used the reciprocals of
the estimated variances of the differences as weights. They found that although the weighted and
unweighted indexes did not markedly differ, the weighted indexes provided more interpretable results.
This advantage for the weighted indexes was not found in Shepard et al. (1985), in which smaller
sample sizes were used.

All of the above measures use discrete approximation. More recently, continuous integration over
either bounded or unbounded intervals has been used (Kim & Cohen, 1991; Raju, 1988, 1990). These
indexes have the general form

with S = (-oo, + 00) in the unbounded case or S = (8u 8u) in the bounded case. In nearly all cases,
either the unsigned function

- . -- .. - 

...

or the signed function

is used. Raju (1988) derived closed form expressions for both cases when S = (-m, +00) and both

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



312

IRFS are either one-, two-, or three-parameter logistic functions. In the 3PLM case, A~ in Equation
30 is infinite if the cs differ between groups. When the iRFs are both based on the IPLM, the signed
and unsigned indexes have the same absolute values. Interestingly, only the unsigned indexes are in-
fluenced by any group differences in the a parameters in the 2PLM and the 3PLM. The signed indexes
in these models are a function only of the b parameters and, if present, the common value of the
c parameter.

Kim & Cohen (1991) developed closed-form expressions for signed and unsigned indexes using Equa-
tions 31 and 32 in the bounded case, in which both the signed and unsigned indexes are influenced
by group differences in the a and c parameters under the 2PLM or the 3PLM. These indexes are finite
when groups differ with respect to the c parameter in the 3PLM.
A long recognized difficulty with all of the area measures is that the SEs of the measures are

unknown, making it difficult to evaluate the statistical significance of any differences found (Linn
et al., 1981). The use of weighted indexes, such as those proposed by Linn et al. (1981), still does
not accomplish this goal. Raju (1990) presented asymptotic SE formulas for Raju’s (1988) unbounded
signed and unsigned measures. These SEs can be used to generate z tests of significance under
normality assumptions. In an analysis of items from a vocabulary test, Raju (1990) found that the
asymptotic test statistics gave sensible results and were fairly consistent with MH statistics calculated
on the same data. More empirical study of these test statistics is needed. At present, no SEs for
bounded area indexes are available.
An alternative approach to the significance problem is to construct confidence bands around the

IRFS, or around their differences. Linn et al. (1981) suggested the use of separate bands for each IRF,
and illustrated their use. These bands are built using the estimated SE of the difference between the
IRFS, evaluated at each 8 value. Similarly, Thissen & Wainer (1990) and Lord & Pashley (1988)
developed &dquo;confidence envelopes&dquo; for logistic Irks. These envelopes are built by first deriving con-
fidence bounds on the parameter vector and then translating these bounds in terms of the IRF, in
a manner similar to that used to construct confidence bands in linear regression. More recently, Pashley
(1992) extended this methodology to produce confidence bands for the difference between IRFS from
different examinee groups and illustrated the approach with the 3PLM. An advantage of the methods
developed by Thissen & Wainer (1990), Lord & Pashley (1988), and Pashley (1992) is that the confi-
dence bands developed are simultaneous, rather than pointwise as in the Linn et al. (1981) approach.
Joint probability or confidence statements have a firmer basis in the simultaneous approach.

In general, there appears to be little advantage in using discrete approximations if simple differ-
ence functions (such as Equations 31 or 32) are used, and if the IPLM, 2PLM, or 3PLM are fit. Com-
putation of the area is simplified by the methods of Raju (1988) and Kim & Cohen (1991). This
advantage of the continuous integration measures may be lost if more complicated functions are used,
such as those that use differential weighting. Weighted continuous indexes comparable to those used
with the discrete approximation measures are not widely used, although Raju (1988) discussed weighting
by the prior distribution of 0.

The choice between bounded and unbounded area measures remains unclear. One disadvantage
of the unbounded measures is that they are infinite when there are group differences in the c parameter
in the 3PLM. If these measures are used with a 3PLM, common c parameters must be used. Kim &
Cohen (1991) compared bounded and unbounded area measures under the 3PLM using real data in
which bias was experimentally manipulated (Subkoviak, Mack, Ironson, & Craig, 1984). Few differ-
ences were found between the two types of area measures in the detection of the biased items or
in false positive rates. Subkoviak et al. (1984) also used the bounded 3PLM continuous area measure
with group differences in c parameter values, and found this measure to be slightly superior to the
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other measures, both bounded and unbounded.
A disadvantage of the bounded measures is that their value depends on the endpoints of the selected

interval-this choice is arbitrary to some extent. On the other hand, IRF differences in the extreme
regions of the 0 scale carry few implications for practical measurement, and should be excluded by
using a bounded measure. Raju (1988) noted that the bounded area measures may be substantially
smaller than the unbounded measures. More comparative studies will be needed to resolve the debate.

The choice between signed and unsigned area indexes is also not clear. In the IPLM case, or when
neither the a nor c parameters differ between groups, the signed and unsigned continuous indexes
have the same absolute values. Comparative studies have been performed using real data (Cohen,
Kim, & Subkoviak, 1991; Ironson & Subkoviak, 1979; Kim & Cohen, 1991; Raju, 1990; Shepard et
al., 1981; Shepard et al., 1984, 1985; Subkoviak et al., 1984) and simulated data (McCauley & Mendoza,
1985; Shepard et al., 1985). No clear superiority for either signed or unsigned indexes has emerged
from these studies. The two indexes may not correlate highly across items because of the bipolar
nature of the signed index.

Many of the above studies used the 3PLM with common c parameter values. In this case, items
showing bias must have group differences in a parameters before performance differences will ap-
pear between signed and unsigned indexes. The Shepard et al. (1985) simulation studies used the 3PLM,
but created bias only as a function of the b parameters, which reduced the chances of finding differ-
ences between signed and unsigned indexes. No substantial differences were found. Raju (1990) used
his asymptotic SEs to conduct significance tests for both signed and unsigned indexes. In real data
on a 40-item vocabulary test, the unsigned index identified more items as biased than did the signed
index. It is not clear whether differences in the test statistics in the two cases account for this phenome-
non. Although a substantial number of studies have compared signed and unsigned indexes in real
data, simulation studies are rare and more are needed.

Yvald statistics. Lord (1980) proposed that the null hypothesis of identical IRFs across groups be
tested using a test for equality of item parameters under an assumed parametric model. To illustrate,
suppose that the 3PLM is found to fit in both groups. Lord (1980) recommended that the test for
parameter equality be confined to the b and a parameters, with c parameters constrained to be equal
across groups.

Under maximum likelihood estimation (joint or marginal), an estimate of the 2 x 2 covariance
matrix for the parameter estimates is available, calculated separately for each group. Let the covari-
ance matrix estimates for the focal and reference groups be SF and SR, respectively. These are found
as the inverses of the information matrices within each group. The null hypothesis to be tested is

stating that item parameters are equal across groups. To conduct the test, a 2 x 1 vector of parameter
estimate differences is formed as

with the estimated covariance matrix S = SF + S,. Then standard theory implies that under Hp,

which has a central x2 distribution with 2 df in large samples. The df are equal to the number of
constraints placed on the parameters under Ho. This is a large sample test.

The test just described for the 3PLM can be constructed in an analogous way for the IPLM or the
2PLM. In the IPLM case, the x2 test statistic reduces to
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where SR and S2 are the estimated variances of bR and ~,, respectively. This statistic is simply the
square of the z statistic proposed by Wright, Mead, & Draba (1976; &dquo;the Draba statistic&dquo;) for the
Rasch model. The x in Equation 36 is evaluated with df = 1.

Thissen et al. (1988) pointed out that the test statistic in Equation 35 is a member of the class
of Wald (1943) statistics that are frequently used with maximum likelihood estimation. Amemiya
(1985) and Rao (1973) presented the relevant asymptotic theory that underlies these statistics. Although
much is known about the large sample behavior of these statistics, the small sample behavior has
not been thoroughly investigated. The minimum sample size required for convergence of Equation
35 to the ~Z distribution in IRT applications is unknown at present. An important question in under-
standing the behavior of the statistic in finite samples concerns the adequacy of the estimator S (the
covariance matrix for the parameter estimates). Under joint maximum likelihood estimation, S may
be poor even in large samples in the 2PLM and the 3PLM. McLaughlin & Drasgow (1987) demonstrated
using simulations that SE estimates were negatively biased under these models with joint maximum
likelihood estimation. Type 1 error rates for Lord’s test were inflated as a result. This problem may
be lessened under marginal maximum likelihood estimation (MMLE) because the consistency of the
item parameter estimates is not an issue with this estimation method. The sample behavior of S under
MMLE needs to be investigated.

Lord’s x2 test has been compared to other IRT test procedures in a number of studies (McCauley
& Mendoza, 1985; Shepard et al., 1981; Shepard et al., 1984, 1985; Thissen et al., 1988). Nearly all
of these studies have used the test with the 2PLM or the 3PLM. A common finding is that the per-
formance of the statistic correlates fairly closely with that of unsigned area indexes (Shepard et al.,
1981; Shepard et al., 1984; McCauley & Mendoza, 1985). Studies of the statistic using the 3PLM have
used common c parameter values, as recommended by Lord (1980). MMLE methods with prior dis-
tributions on the c parameters can reduce the numerical problems encountered in estimating these
parameters. Improved estimation may permit wider use of the ~2 statistic in testing all three parameters
(a, b, and c) for equality. More studies are needed to evaluate the accuracy of the statistic in this
case, especially with moderate to small samples.

One criticism of Lord’s ~‘ statistic is that the null hypothesis may be rejected even when the
unsigned area between IRFS is fairly small throughout the 0 range in which most data appear. Artifi-
cial examples can be constructed to illustrate this (Linn et al., 1981), and the phenomenon also ap-
pears in real data analyses (Shepard et al., 1984). The argument here parallels the argument about
the merits of bounded versus unbounded area indexes. Both L,ord’s xz statistic and the unbounded
area indexes have the advantage of mathematical tractability, permitting the use of SEs and formal
hypothesis tests. The best approach may be to supplement the ~ 2 with some calculation of a bound-
ed area index when the x is significant.

Likelihood ratio methods. An alternative procedure for testing the equality of item parameters
between groups is based on the likelihood ratio for two models: In Model 1 (MJ the item parameter
values on the studied item may vary between groups, and in Model 0 (Mo) these parameter values
are constrained to equality between groups. Thissen et al. (1988) and Thissen, Steinberg, & Gerrard

(1986) described the use of this test procedure. In the likelihood ratio methods, a subset of items
must be selected to serve as &dquo;anchor&dquo; items. These anchor items are assumed to be unbiased and
link the metric for parameter estimation. Assuming that this requirement is met, the likelihood ratio
test statistic (j,~) is calculated as
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In Equation 37, L, is the value of the likelihood function for I~ll, and the numerator Lo is the value
of the likelihood for Nio. In general, Lo < L&dquo; and LR > 0. LR has a ~ distribution in large samples
under the null hypothesis that the model yielding Lo fits. The df for LR are the number of constraints
required to derive Mo from R4i . For example, suppose that the studied item is assumed to follow a
3PLM and that Nl, permits all three parameters to be free. If Mo constrains all three parameters to
equality, LR will have df = 3. Amemiya (1985) and Rao (1973) provided a more detailed discussion
of the theory underlying LR.

As noted by Thissen et al. (1986), LR is easily extended to permit simultaneous tests of bias for
multiple items. In this extension, more than one studied item is constrained under Mo, which allows
conclusions about the presence of bias in a set of items. However, rejection of Mo would leave open
the question of which items are biased. Presumably, a post hoc item-by-item search could be initiated
with appropriate controls on the Type I error rate. Another extension of LR in Equation 37 would
involve tests for bias across more than two examinee groups.
LR should, in theory, give results close to those given by Lord’s ~2 test, provided that samples

are large enough. Asymptotically, Wald and LR statistics converge to the same distribution under
Mo (see Buse, 1982, for a description of the relationship between these statistics). In practice, the
two statistics may differ to some degree, in part because of the difficulty in estimating the covariance
matrix required in the Wald procedure. Thissen et al. (1988) provided a good discussion of the rela-
tive merits of the two statistics in bias applications.

At least two difficulties arise in any practical use of the LR procedure. First, a set of unbiased
anchor items must be available. This may not be a problem in large-scale testing, in which item banks
are available containing prescreened items. Prescreened items can be administered along with the tar-
get items. In other situations, no items that are known to be unbiased may be available. There is
some risk in this case that the anchor items will include some biased items. The influence that such
items may have on the distribution of the test statistic is unclear, and requires further study. This
problem is analogous to the parameter linking problem discussed earlier.
A second problem is the lack of software for performing the required calculations. Calculation

of the likelihood values requires multiple-group simultaneous estimation. The parameter constraints
in Mo are equality constraints that operate across groups, and the constraints should be imposed during
simultaneous estimation. At present, the only widely available program that can easily perform the
estimation is MULTILOG (Thissen, 1990). Neither LOGIST (Wingersky, Barton, & Lord, 1982) nor BILOG
(Mislevy & Bock, 1984) will permit the required estimation under parameter equality constraints that
operate across groups.

Approximcate procedures. Two other procedures have been proposed that use 0 estimates, but do
not perform direct comparisons of item parameters. Both procedures assume that the measures in
each group can be fit adequately by a unidimensional IRT model.

Linn & Harnisch (1981) developed a procedure that assumes that each group can be fit by a 3PLM.
The detection procedure begins by combining the groups and estimating all item and 0 parameters
under a 3PLM. Following this estimation, the target group (i.e., the group against which bias is sus-
pected) is selected. The 0 scale is divided into intervals in the target group using the 0 parameter
estimates. Linn & Harnisch (1981) created five intervals in their example. For example, let It be the
estimated probability of passing the zth item for the jth person in the target group. This probability
is estimated using the parameter estimates obtained earlier. The estimated proportion of examinees
who should pass the ith item in the gth subgroup is
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where n, is the number of examinees in the gth subgroup. Using the response data, the actual number
of examinees who passed the ith item in the gth subgroup can be found. Let this number be 0,9, Both
the expected and actual numbers of passing examinees for the entire target group are formed as

and

respectively. Bias indexes then may be calculated, both for subgroups and for the entire target group, as

and

In addition, standardized difference scores may be calculated as

and

where § is the score for the j th person on the i th item.
The bias indexes in Equations 41 through 44 measure discrepancies between the actual responses

in the target group and those predicted under a common 3PLM. Large discrepancies are expected when
the 3PLM with parameter estimates obtained from the pooled sample does not fit the target group.
The logic of the method is that if it is assumed that both groups are fit by a (possibly different)
3PLM, large discrepancies may indicate that parameter values differ in the two groups. Parameter
differences then would imply bias. Linn & f-Iarnisch (1981) proposed this method for use when sample
sizes are too small to conduct 3PLM estimation within the target group alone. Instead, estimation
is done in the larger pooled sample.

Linn & Harnisch (1981) illustrated the use of their procedure in real data on a 46-item math test,
but did not present extensive studies of the method. Two comparative studies using the procedure
in combination with other procedures have been conducted (Ironson, Homan, Willis, & Signer, 1984;
Shepard et al., 1985). Both studies compared the Linn & Harnisch (1981) procedure to the delta plot
method (Angoff & Ford, 1973) and Lord’s x~ procedure. Ironson et al. used real data in which bias
was manipulated by altering the reading level on some math story problem items. The target group
was defined by scores on an independent reading test. The Linn & Harnisch (1981) bias indexes were
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found to correlate more highly with manipulated bias than did the indexes provided by the other
two methods. Shepard et al. (1984) used both real math test data and simulated data. Biased items
in the math test had been identified previously using large samples (Shepard et al., 1984). The target
group sample size was 300 in both datasets. The Linn & Harnisch (1981) method performed much
better than the delta plot method in detecting biased items, and performed slightly better than Lord’s
x 2 procedure.

These studies support the value of the method in small samples, but the properties of the method
have not been thoroughly studied. For example, Linn & Harnisch (1981) noted that biased items may
disrupt the initial parameter estimation, leading to later distortions in the bias indexes. The effects
of varying proportions of biased items on detection accuracy are unknown. Other questions that
could be addressed with simulated data include: (1) How sensitive is the method in detecting bias?
and (2) How does the sensitivity vary with test length?
A second bias detection procedure was presented by Hulin, Drasgow, & Komocar (1982). This proce-

dure assumes that the measure under study can be fit by a 2PLM in all groups. The procedure begins
by estimating 2PLM item and 0 parameters separately in each group, and then &dquo;standardizing&dquo; the
b parameters within each group (i.e., fixing the mean to 0 and the SD to 1). Next, the 0 scale is divided
into intervals within each group. The empirical IRFs, or the proportions of examinees passing the
studied item, are plotted for each group using the midpoint of each interval on the 0 scale. Let &reg;k(8g)
be the observed proportion passing the studied item in the g th interval within the kth group. These
observed proportions are transformed to logits

Note that if the observed proportions fit the 2PLM perfectly, then

This logit is a linear function of 0,. If the groups under study have identical IRFS on the studied
item, these linear functions should be identical. Hulin et al. (1982) proposed that these linear func-
tions be regarded as regression functions. The functions may be plotted and a standard F’ test for
equality of regression functions may be applied. The item is considered to be biased if these func-
tions are not equal.

Although this method has been used with real data involving language translations of attitude
scales (Hulin et al., 1982; Hulin, Drasgow, & Parsons, 1983), no systematic studies of the method’s
properties have been published. As in Linn & Harnisch’s (1981) method, biased items may distort
the initial 0 estimates, leading to detection inaccuracies. Violations of the 2PLM assumptions also
can be expected to produce inaccuracies. The robustness of the method to these violations could be
studied with simulated data. Finally, advances in IRT parameter estimation methods may have ren-
dered this method obsolete, because estimation within the 2PLM is no longer difficult.

P&reg;lyt&reg; &reg;us Measures

Polytomously scored measures are becoming more important due to increased emphasis on
performance-based measurement and constructed-response items. Ability or achievement test items
that are awarded partial credit are polytomously scored, as are many attitude and personality scales
(e.g., Likert scale attitude items). Testlets (Wainer & Kiely, 1987) are another source of polytomous
measures. A testlet consists of a cluster of related test items that are scored together. A typical
example is a reading comprehension testlet in which a paragraph is followed by a series of questions
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about the paragraph. The examinee’s score is usually some function of the number of questions an-
swered correctly. The bias detection procedures discussed below assume that the observed measures
fit a unidimensional IRT model.

IRT models for polytomous measures have a long history (Rasch, 1960), but there has been rela-
tively little work on bias detection for these measures. This is due in part to the wider use of dichoto-
mously scored measures in educational and employment testing and to the complexity of IRT models
for polytomous measures. More parameters are needed per measure than in the dichotomous case.
Furthermore, the increase in response options means that the number of possible response patterns
across measures is greatly increased, complicating the assessment of fit. In some cases, goodness-of-
fit tests will have little power except in very large samples.

In spite of these problems, bias detection in polytomous IRT models is important. Wainer, Sireci,
& Thissen (1991) and Shealy & Stout (1991) described some advantages in considering testlets as the
unit of analysis in bias detection. Small amounts of bias at the individual item level may accumulate
across items, producing larger biases at the testlet level. An empirical example of this was given by
Wainer et al. (1991). Bias &dquo;cancellation&dquo; also may occur if small biases in different directions cancel
at the testlet level. Another reason for using testlets is that some tests may not meet the usual local
independence assumptions at the item level. Violations of the assumption may come about as a result
of the item structure-a group of items may refer to a common stimulus (e.g., a reading selection).
Dependence could also arise for subtle, unanticipated reasons, as illustrated in Wainer & Kiely (1987).
Rosenbaum (1988) presented some results extending the local independence assumptions to the test-
let or &dquo;item bundle&dquo; level. In this extension, the idea of conditional association developed earlier
by Holland & Rosenbaum (1986) was applied to testlets, resulting in useful theorems that character-
ize unidimensional models for testlets. This work is valuable in developing a theoretical basis for
bias investigations at the testlet level.

Models for polytomous data. Thissen & Steinberg (1986) presented a useful taxonomy of IRT models
for polytomous measures. If the possibility of guessing is ignored, Thissen & Steinberg demonstrated
that nearly all existing models can be viewed as special cases of either Samejima’s (1969) graded response
model or Bock’s (1972) nominal response model. Thissen & Steinberg denoted the class of models
derived from Samejima’s (1969) model as &dquo;difference models&dquo; and the class defined by Bock’s (1972)
model as &dquo;divide-by-total&dquo; models. These labels loosely describe the functional form of the response
functions in each case.

There are several important special cases within the &dquo;divide-by-total&dquo; class. Thissen & Steinberg
(1986) showed that all of the cases can be derived from Bock’s model through parameter restrictions.
Two special cases are the partial credit model (PCM; Masters, 1982) and the rating scale model
(Andrich, 1978). Both of these models are members of the Rasch family of IRT models (Masters &

Wright, 1984). An important feature of these models is that given items fitting the model, the sum
of the item scores is a sufficient statistic for the 0 parameter. The availability of a sufficient statistic
is important in bias detection applications (Meredith & Millsap, 1992; Zwick, 1990).

The PCM includes m - 1 b parameters for each m-category item. Masters (1982) described these
as &dquo;step difficulties,&dquo; viewing completion of the item as involving m steps. An examinee’s score on
the item denotes the number of steps completed. The steps may differ in difficulty, and the step difficul-
ties need not be ordered. Also, step difficulties may differ among items. No a parameter is included
to allow different levels of discrimination among items. The model can be generalized to include such
parameters (Muraki, 1992), but their inclusion destroys the sufficiency property.

The rating scale model can be derived as a special case of the PCM by restricting each step difficulty
to be the sum of two parameters, one that depends only on the item, and one that depends only
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on the step. The latter can be viewed as &dquo;threshold&dquo; parameters, and have common values across
items. This model is intended for use with items having common response scales, such as Likert scaled
items in attitude measurement. The model is generally not appropriate for items that differ in the
number of response categories.

Bock’s (1972) nominal model is the most general model in the divide-by-total class. The model
includes difficulty parameters for each item and category, and discrimination or slope parameters
for each item and category. Many special cases of the Bock model that are intermediate between
the Rasch models and the general Bock model can be derived through appropriate parameter
restrictions.

Parameter linking. As is true for dichotomously scored measures, the parameters in the models
for polytomous measures are generally not identified without further constraints. In Bock’s nominal
model for example, constraints are needed to identify the difficulty and discrimination parameters.
In the PCM, the sum of all of the step parameters across items is constrained to be 0. The general
problem of implementing identification constraints while linking metrics across groups has not received
much attention in the literature. As noted earlier, the presence of biased items can greatly complicate
the linking process. These complications are expected to occur in the polytomous case as well. This
problem should receive more attention if polytomous models are to be used fruitfully in bias investi-
gations.

Evaluating bias. Once an appropriate model has been found for the groups under study, the in-
variance of the IRF over groups can be tested. Potentially, any of the three major approaches reviewed
for the dichotomous case could be used here: area statistics, likelihood ratio procedures, or Wald
statistics.

Area statistics will be cumbersome to use with polytomous measures. Each measure has multiple
response categories. If there are m categories, there will be rrc - 1 different response functions under
the model. Each of these could be compared across groups, resulting inc - 1 area statistics for a
single item. The separate area measures could be combined into a composite index. Given these multiple
response functions, there are more opportunities for sign reversals in the area measures than in the
dichotomous case. Biases may reverse directions across score categories. Although area measures can
theoretically be calculated, there are no published examples of their use in polytomous data.

Likelihood ratio procedures have been used in bias investigations of polytomous measures, and
in goodness-of-fit testing outside of the bias context (Thissen & Steinberg, 1986; Thissen, Steinberg,
& Mooney, 1989; Wainer et al., 1991). The procedure is similar to that used in the dichotomous case,
but there are potentially more hypotheses to investigate. Group differences in response functions may
appear in many forms. For example, suppose that Bock’s (1972) nominal model is used with items
having m response categories. In the full model there will be 2(rn - 1) item parameters for each item.
Any one of these may differ between groups. If the uci null hypothesis is rejected, the investigator
must decide which of the potential 2(m - 1) parameters to test for invariance. A careful sequence
of nested hypothesis tests could be used, perhaps beginning with tests for invariance of all difficulty
or all discrimination parameters.

Thissen et al. (1989) demonstrated the use of Bock’s nominal model in testlet data on four reading
comprehension testlets, but did not use the procedure for bias detection. Thissen & Steinberg (1986)
illustrated the use of Samejima’s graded response model and Bock’s model in fitting several types
of measures, again outside the context of bias investigation.

Wainer et al. (1991) used Bock’s model in a bias investigation of another reading comprehension
test consisting of four testlets. MULTILOG (Thissen, 1990) was used for estimation and hypothesis
testing in this study and in the two previous studies. An interesting feature of the Wainer et al. (1991)
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study is that both internal and external matching criteria were used. In the internal case, only the
data on the four testlets were used in the analysis. Hence, 0 estimates were based on the equivalent
of a four-item test. In the external case, examinee data on six multiple-choice items that were external
to the four testlets were included in the analysis. These external items were fit using the 3PLM. The
four testlets then were analyzed individually, each in turn being included with the six-item external
anchor. Parameters for the external anchor were constrained to be equal across groups. Two models
were fit: the &dquo;no bias&dquo; model, I0/I~, in which the testlet’s parameters were constrained to be equal
across groups, and an unconstrained model, h4i , in which the testlet’s parameters were permitted
to vary across groups. The log likelihoods for these models then were used in a likelihood ratio test,
in a manner identical to that described earlier for the dichotomous case.

Wainer et al. (1991) noted that using the external anchors provided an advantage in efficiency rela-
tive to the internal anchor. In their example, the external anchor consisted of six dichotomous items,
creating two possible score patterns. In contrast, the internal anchor consisted of four testlets, each
with 10 response categories, resulting in 10 possible patterns. The reduction in the number of score
patterns with the external anchor provided computational savings. To be useful, however, the items
used in the external anchor should themselves be free of bias.

Wald statistics also could be used in tests of uci under any of the polytomous models reviewed
here. These models require more parameters than in the dichotomous case, resulting in larger df if
simultaneous invariance restrictions are applied. SE estimates or error covariance matrices are required.
Covariance matrices could be obtained as a byproduct of maximum likelihood estimation. These
are estimated separately for each group, and then are substituted for SF and SR in the S matrix in
Equation 35. Group differences in the parameter estimates are substituted for V’ in Equation 34.
The test statistic then is given in Equation 35.

Ferrara & Walker-Bartnick (1990) presented an example of the use of the PCM in a bias investiga-
tion of direct writing samples in an essay test. Essays were scored by raters using modified holistic
procedures, and the ratings were averaged to yield a score that included seven categories. The statisti-
cal phase of the investigation used the Draba (1978) statistic to assess group differences in individual
item parameters. As noted earlier, the square of the Draba statistic can be viewed as a single df Wald
statistic. There are at least two difficulties in using the Draba statistic in the polytomous case. First,
multiple tests are required for each item due to the many parameters. Second, the individual parameter
tests do not reflect the covariances among the different parameter estimates. The individual tests are
evaluated independently, but the estimates are not independent. A solution to this problem is to con-
duct simultaneous tests using the parameter estimate covariance matrix, assuming that this matrix
is available.

Multidimensional IRT Models

All of the bias detection procedures discussed thus far have been based on the assumption of a
unidimensional latent trait underlying test performance. Most practical applications of IRT make this
assumption. However, the definition of uci used here does not require that the latent trait space be
unidimensional. Some of the earliest attempts to study measurement bias employed factor analysis
in a multidimensional context (e.g., Thurstone, 1947). More recently, measurement bias itself has
been viewed as evidence of multidimensionality (Ackerman, 1992; Kok, 1988; Shealy & Stout, 1993).
Hence there is reason to examine multidimensional IRT models and their role in bias detection.

Recently there have been some important contributions to the methods available for assessing dimen-
sionality. These new procedures may be useful in bias investigations as preliminary analyses. Holland
& Rosenbaum (1986) presented theorems that give conditions that must be met under any uni-
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dimensional, monotone latent variable model. These conditions involve forms of association among
the observed measures fit by the model. The conditions can be evaluated empirically. This provides
a very general test for unidimensionality in that no specific parametric form need be assumed for
the underlying measurement model.

Stout (1987) presented a different method for assessing dimensionality that is also nonparametric.
This procedure provides a large-sample statistical test for dimensionality that has performed well
in simulations. A third development is the full-information factor analysis procedure developed by
Bock and his colleagues (Bock & Aitkin, 1981; Bock, Gibbons, & Muraki, 1988). This factor analytic
method can be applied to dichotomous item data, but avoids the known pitfalls encountered when
factoring phi coefficients (see Hattie, 1985, for a discussion). Also, modifications are included to
adjust for guessing and for omitted items. This method has been implemented in the TESTFACT pro-
gram (Wilson, Wood, & Gibbons, 1987). The procedure can efficiently handle up to 100 items, with
up to five factors.

The bias detection procedures reviewed here all assume that there are multiple latent variables that
influence Y One or more of these variables are the &dquo;traits&dquo; that Y is intended to measure, but there

may be additional influences as well. For now, both types of latent variables will be included in W.
In addition, these bias detection procedures specify a measurement model relating observed mea-
sures Y to the latent variables Tv. Bias is investigated as violations of uci, possibly limiting uci to
a subset of the latent variables in Y~ (as explained below).

Two cases can be distinguished. First, measures in Y may all be continuous. In this case, the most
commonly used measurement model is the common factor model. The second case arises when Y
contains dichotomous or ordered-categorical data. In this case, both factor analytic and multi-
dimensional item response models have been used.

Continuous measures. The study of measurement bias in continuous measurements has largely
relied on the common factor model. Factorial invariance across populations has been of interest since
the early days of factor analytic theory (Thurstone, 1947). The development of efficient estimation
methods for restricted factor analysis has enabled researchers to test hypotheses for factorial invari-
ance under normal theory (J6reskog, 1971). There are several good reviews of restricted factor methods
for tests of invariance (Bollen, 1989; Byrne, 1989; Byrne, Shavelson, & Muthén, 1989; Rock, Werts,
& Flaugher, 1978). Because this area is already well-documented, only two recent developments will
be discussed: testing invariance in latent mean structures and the use of asymptotically distribution-
free (ADF) estimation.

Although theory for investigating invariance in latent mean structures in addition to covariance
structures has been available for some time (S6rbom, 1974), investigators have been slow to use these
methods. Byrne et al. (1989) reviewed the literature and found only two published empirical studies
that investigated group differences in latent mean structures. Yet as illustrated by these authors, an
analysis that includes latent means may uncover group differences that cannot be studied if only co-
variance structures are analyzed. Also, the analysis of mean structures permits the investigator to
study invariance in both intercepts and factor loadings. Invariance in both sets of parameters is re-
quired under ucl. Millsap & Everson (1991) described how invariance hypotheses can be tested with-
in a latent means model. These procedures were illustrated in Everson, Millsap, & Rodriguez (1991)
in an examination of gender differences in the Test Anxiety Inventory (Spielberger, Gonzalez, Taylor,
Anton, Algaze, Ross, & Westberry, 1980). A thorough investigation of measurement bias within the
factor analytic model should include the analysis of latent mean structures in addition to covariance
structures.

Another development that will affect the use of factor analysis in bias investigations is the greater
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use of robust or ADF estimators (Bentler, 1983; Browne, 1984). Traditionally, the maximum likelihood
estimation methods used in programs such as LISREL have required assumptions of multivariate nor-
mality for the latent variables or for the conditional distributions of observed latent variables (J6reskog,
1967; Lawley & Maxwell, 1971). These assumptions are required if the SEs and test statistics produced
under maximum likelihood procedures are to have useful interpretations. LISREL VII (J6reskog &
S6rbom, 1989) now includes options for using general weight matrices in the fit functions that

implement the ADF estimation. A practical limitation in using these new estimation methods is that
they are computationally unwieldy if the number of observed variables is moderate (25-33 variables).
LISREL VII (J6reskog & S6rbom, 1989) offers a second option that simplifies computation, but gives
only large-sample approximations to the parameter sampling variances. These developments permit
tests of OCI under very general distributional assumptions, giving greater flexibility in practical
applications.

Discrete measures. Multidimensional models for discrete measures that are scored with a small
or moderate number of categories also must be considered. Examples include Likert scaled items
used in attitude or personality measurement, ability or achievement test items that are scored for
partial credit, or testlets. Dichotomously scored items are included here as well. There are two broad
types of multidimensional models for these items: factor analytic models and multidimensional IRT
models.

Factor analytic models are now available for use in both dichotomous and ordered-categorical
data. These models generally assume that a latent scalar random variable w* underlies a given mea-
sured variable. Responses on the measured variable are determined by rv’x in combination with a set
of threshold parameters t = (tl, ... , tm-l)’ where m is the number of response categories. The latent
scalar ~~* is, in turn, given factor analytic representation in the model.

The full-information factor analysis model of Bock et al. (1988) is designed for dichotomously
scored measures. A single threshold parameter is required for each measure. The threshold parameter
becomes a difficulty parameter within a normal ogive model. The latent scalar w* is given a common
factor representation, with multiple common factors and a single unique factor. The measured response
probability is a normal ogive function of the difference between the threshold and w*. The TEST-
~~C~’ program (Wilson et al., 1987) that implements this model is not designed for bias investiga-
tions, however. Multiple examinee groups cannot be analyzed simultaneously, and factor pattern
elements cannot be fixed to nonzero values.

The model developed by Muthén (1984) applies generally to any ordered-categorical or dichoto-
mous measure. In this model, the measured response is determined directly by the value of w* in
relation to the threshold values. The common factor representation for w’x includes parameters for
both mean structures and covariance structures. This model is implemented within the LISCOMP pro-
gram (Muthén, 1987). LISCOMP permits simultaneous analyses for multiple examinee groups.
Parameter constraints that operate within or across groups may be imposed. The program provides
XI goodness-of-fit indexes and significance tests for individual parameters.

LISCOMP can be used to conduct likelihood-ratio tests of hypotheses involving parameter invari-
ance over groups. A variety of parameter restrictions could be considered here. Invariance in item
thresholds, factor loadings, and factor intercepts would be of immediate interest. Complete uci in
Equation 1 also would require invariance in the unique variances (Muthén & Lehman, 1985). Under
multivariate normality assumptions for the latent scalars and factor scores, invariance in the com-
mon factor covariance structure is not required for uci.

LISCOMP provides a highly flexible and useful tool for bias investigations in the multidimensional
context. One present limitation of the program is that it is computationally efficient only for a moderate
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number of observed measures. Muthén (1984) stated that the estimation method used in LISCOMP
is practically useful for up to 15 to 20 variables. Another practical limitation is that large samples
are needed to obtain useful estimates of SEs for testing fit. More research is needed to determine
the required sample sizes and to study the behavior of the estimates in smaller samples.

Another method of analysis for ordered-categorical data would use the PRELIS program (J6reskog
& S6rbom, 1989) to estimate tetrachoric or polychoric correlations, followed by simultaneous multiple-
group factor analysis in LISREL. In addition to estimating the needed correlation matrix, PRELIS pro-
vides estimates of a weight matrix used for weighted least squares estimation in LISREL. The maxi-
mum likelihood estimation option in LISREL does not give the correct SEs and test statistics for the
discrete variable case. Weighted least squares, combined with the PRELIS weight matrix, will yield
the correct large-sample SEs and test statistics (see Bollen, 1989, for a discussion).

LISREL permits a wide range of invariance hypotheses to be tested. The hypotheses are essentially
identical to those tested in the continuous case. In the discrete case, these hypotheses refer to the
factor structure for the latent response variables w*, rather than the observed variables. Threshold
parameters are not part of the LISREL model because the program works directly with the correla-
tions among w* as provided by PRELIS. Also, it is unclear whether factor means and intercepts may
be modeled in LISREL using PRELIS input. There are no examples of such analyses in the LISREL manu-
al, nor any published examples. As is true for LISCOMP, the test statistics provided by LISREL require
large samples for accurate significance levels, but more research is needed for specific recommendations.

Multidimensional models have been proposed within IRT for use with discrete measures (Fraser,
1987; Hirsch & Miller, 1991; McKinley & Reckase, 1983; Reckase, 1985; Reckase & McKinley, 1991;
Samejima, 1974; Sympson, 1978). These models have largely been developed for use with dichoto-
mous items. The general ordered-categorical case appears not to have been studied intensively. Multi-
dimensional models are not used widely in practical measurement work, and have found even less
use in direct assessments of bias in IRT. No published examples of studies that investigated uci or
bias within a parametric multidimensional model were found.
A number of researchers have proposed conceptions of bias that are built on an assumption of

a multidimensional latent space (Ackerman, 1992; Kok, 1988; Shealy & Stout, 1991). In these con-
ceptions, test item performance is determined by a latent &dquo;target&dquo; trait that the test is intended to
measure, and one or more additional latent &dquo;nuisance&dquo; traits. These nuisance traits may influence

performance, but are irrelevant to the purpose of the test. For example, Kok (1988) posited a &dquo;test-

wiseness&dquo; nuisance trait that denotes familiarity with &dquo;contextual clues&dquo; that may aid in solving the
item. Another example might be &dquo;reading ability&dquo; as it influences math test performance in a story-
problem item.

The existence of these nuisance traits is not sufficient to violate uci however. Another require-
ment is that the groups being compared must differ in their distributions on these nuisance traits.
To illustrate, let W be the target trait, and W be a possibly vector-valued nuisance trait. Then if bias
is present, it must be true that

Equation 47 says that there are group differences in the conditional distribution of W given W (Kok,
1988). Finally, the multidimensional formulation assumes that in the &dquo;complete&dquo; latent space
W = ( W, W, 1, uci in Equation 1 holds. Given these assumptions, Kok (1988) showed that uci will
not hold with respect to W alone, or that
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The implication is that a unidimensional IRT model should demonstrate that Y is biased, although
in this situation the bias can be attributed to group differences in nuisance trait distributions.

Ackerman (1992) presented a detailed discussion of how bias might appear in a unidimensional
latent trait analysis of an item set, even though uci may hold in the complete latent space. Reckase
(1985; Reckase & McKinley, 1991) proposed a multidimensional 2PLM for a single item Y in the com-
plete latent space as

where a’ is a vector of discrimination parameters, one for each latent dimension, and b is the item
difficulty. Ackerman (1992) considered the special case in which there are two latent dimensions-
the target dimension and the nuisance dimension. He then considered what might happen when a
unidimensional 2PLM is fit to items with true multidimensional IRFS. Wang (1986) gave expressions
for the unidimensional 2PLM item parameters and trait variable in terms of parameters from the multi-
dimensional 2PLM. Ackerman (1992) demonstrated that given the inequality in Equation 47, uci will
be violated in the unidimensional model even if UCI holds in the multidimensional model. This
means that group differences in the distribution of W = 1 ~ ~} may lead to bias within a unidimen-
sional context. For example, group differences in means, variances, or covariances between W, and
g may result in bias as defined in relation to W. Oshima & Miller (1990) demonstrated that even
if the only difference between the groups is in the correlation between the two latent dimensions,
bias may appear in the unidimensional model and can be detected by area statistics.

This multidimensional perspective on bias is valuable in providing a coherent theoretical account
of why bias may appear when unidimensional latent variable models are used. At least one impor-
tant bias detection procedure has evolved from this perspective (Shealy & Stout, 1991), and is dis-
cussed below. It is important to recognize that although uci may hold for a measure in the complete
latent space, this latent space may be quite different from the latent dimension for which the measure
is the intended indicator. This distinction between the &dquo;intended&dquo; latent dimension and the &dquo;com-

plete latent space&dquo; lies at the heart of the problem of construct validity. It is, of course, possible
that there are multiple &dquo;intended dimensions&dquo; for a given measure Y (e.g., Y as an achievement test
score). If t1~1 does not hold for the measure under study in relation to its intended latent dimension
(or multiple intended dimensions), then that measure is biased, for all practical purposes. It is in-
correct to say that this bias is illusory simply because there exists an even larger latent space within
which the measure may not be biased. Oshima & Miller (1990) appeared to suggest this when urging
caution in the use of unidimensional bias detection procedures for measures that are &dquo;unbiased&dquo;
in the multidimensional space.

Recent Developments

Some recent work has appeared that will influence future developments in bias detection that does
not fit easily within the OCI/UCI categories. For example, the SIBTEST detection procedure proposed
by Shealy & Stout (1991) crosses boundaries between oci and uci methods. Other work has expand-
ed the scope of traditional tRT. Much of this work follows a trend toward nonparametric or semi-
parametric modeling of the IRF.

The SIBTEST Procedure

Shealy & Stout (1991) proposed a bias detection procedure that builds on the multidimensional
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conception of bias described above. Their procedure is intended for use with dichotomous measures,
and may be used to detect bias that is present simultaneously in a set of test items. The procedure
begins by identifying a subset of the items that constitute the &dquo;valid subtest&dquo;; that is, a group of
items that are believed to measure only the target trait. Hence uci holds for these items in relation
to the target trait. A total score Z is calculated for the valid subtest items, and the sample is stratified
on Z. Within each stratum, &dquo;adjusted&dquo; means are calculated for the studied score Yin the reference
and focal groups. If more than one item is being studied, Y is defined as the total score across items.
Finally, a summary test statistic is computed as a weighted average of the differences between the
reference and focal group adjusted means on Y, averaging across strata defined by Z. This statistic
resembles the standardization index of Dorans & Kulick (1986). Under the null hypothesis of uci
for Y in relation to the target trait, the distribution of the test statistic is available. The null hypothesis
can be tested using a z test. The test is sensitive to unidirectional bias in which, at all values of the
target trait, the reference group is expected to score as well or better than the focal group.

Formally, this test procedure resembles oci detection procedures in conditioning on an observed
score Z, the valid subtest. The procedure departs from the usual oci pattern in applying an adjust-
ment to the mean of Y prior to comparing the groups on these means. This adjustment attempts
to remove that portion of the group mean difference that is attributable to group differences in target
trait distributions. Particularly in short tests, conditioning on Z may not fully control for these prior
trait level differences because Z is imperfect as a measure of the target trait. In this way, the proce-
dure resembles uci detection methods without imposing a formal measurement model.

The Shealy/Stout detection procedure has been implemented in the computer program SIBTEST
(Shealy, Stout, & Rossi, 1991). The current version of the program will accept up to 80 items and
3,000 examinees. Preliminary simulation evidence has shown that the SIBTEST procedure has Type
I error frequencies that adhere closely to the nominal error rate set by the user. The evidence also
indicates that the procedure has acceptable power for detecting unidirectional bias (Shealy & Stout,
1991b). The behavior of the procedure under other bias conditions has not yet been studied extensively.

Developments in IRT

Rosenbaum & Holland described ways of testing assumptions such as unidimensionality or local
independence in IRT (Holland, 1981; Holland & Rosenbaum, 1986; Rosenbaum, 1984). Holland &
Rosenbaum (1986) noted that traditional IRT models make three fundamental assumptions: unidimen-
sionality of the latent trait, monotonicity of the IRF, and local independence. These assumptions
have implications for the covariance structure among items that meet the assumptions. These
implications are testable, even without specification of a parametric form for the IRF. Holland (1981)
and Rosenbaum (1984) described some test procedures. Taken together, this work provides a non-
parametric basis for deciding whether a set of items could be fit by any monotone, unidimensional,
locally independent model.

Rosenbaum (1985, 1987a) discussed some nonparametric tests that can be used when two examinee
populations are being studied. Rosenbaum (1985) considered the case in which uci holds under a
unidimensional model but the trait distributions are stochastically ordered. This condition can be
shown to have testable consequences for the item response patterns. Certain order relations must
hold between the populations for the expected values of functions of the item responses. Although
Rosenbaum (1985) viewed violations of these order relations as evidence against ordering of the latent
trait distributions, the violations also could be due to violations of oci. In this sense, the order rela-
tions offer a nonparametric check on uci under stochastic ordering. Rosenbaum (1987b) described
ways of comparing IRFS of items that all follow a monotone, locally independent IRT model. He
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defined the latent odds ratio and considered items with odds ratios that are proportional over values
of the latent trait. Items following the Rasch model have proportional latent odds, but more general
examples can be found as well. Given two examinee populations and two items that have propor-
tional odds ratios in both populations, Rosenbaum (1987b) described a nonparametric test for equality
of the relative difficulties of the two items. He noted that this provides a test of UCI for the items.

There also has been much work in the last decade that extends the boundaries of IRT by weaken-
ing assumptions of unidimensionality or local independence. Stout (1987, 1990) developed theory
for test items that are &dquo;essentially unidimensional&dquo; in the context of an infinite item pool. These
items are dominated by a single latent trait, with additional traits possibly influencing small numbers
of items. This concept is probably more useful than strict unidimensionality as a model for real test
data. Stout (1990) defined the related notion of &dquo;essential independence&dquo; as an alternative to strict
local independence.
A set of items are essentially independent if the average covariance between pairs of items in the

set, conditional on the latent trait, is close to 0. Essential independence and unidimensionality have
testable consequences apart from any parametric specification of the IRF. Junker (1991) extended
the essential independence concept to include polytomous items and showed that maximum likelihood
estimates of the latent trait are consistent under essential independence. Jannerone (1987) presented
a family of &dquo;conjunctive&dquo; item response models that exhibit local dependence, yet may have useful
statistical properties (e.g., consistent estimators or sufficient statistics) similar to those of traditional
models.
A different direction has been toward the elimination of fully parametric IRFS, with substitution

of semiparametric functions. A recent example of this is provided by Ramsey & Winsberg (1991),
who presented a modeling approach that uses monotone regression spline functions in place of the
usual parametric functions. MMLE is used to estimate the spline coefficients. Preliminary simulation
evidence indicated that the method can efficiently recover the shapes of known IRFS. This semi-
parametric approach, and others like it (Drasgow, Levine, Williams, McLaughlin, & Candell, 1989),
permit wide flexibility in modeling test item responses. It is too early to tell whether the added flexi-
bility also will give greater scope for bias detection.

Discussion

The past decade has produced important developments in statistical methods for bias detection.
Both UCI and oci methods have been actively pursued. Continued interest in methods for bias de-
tection is likely, given the wide social concern for fairness and equal treatment. Although progress
has been made in developing detection methods, problems still remain. This section focuses on some
of these problems and considers the prospects for their solution.

OCI Methods

New developments in oci methods for dichotomous measures have now replaced the earlier x 2

and delta plot methods. The MH procedure is computationally efficient, works well in samples of
moderate size, and can accurately detect bias under some realistic conditions. When all items follow
the Rasch model, the MH procedure detects bias with adequate power. The procedure often fails to
detect bias when the focal and reference response functions intersect-the &dquo;nonuniform&dquo; bias case.
Nonuniform bias may occur when the 2PLM or the 3PLM hold for the studied item. In some cases,
logistic regression or loglinear methods will have more power.

The MH procedure falsely indicates bias under some conditions. One such condition occurs when
the studied item score Y is excluded from the total score Z, and Z is itself unbiased. Here Z and Y
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will be conditionally independent given the latent variable W under standard local independence
assumptions. The problems created by conditional independence affect all OCI methods and are
not unique to the MH procedure (Meredith & Millsap, 1992). As noted by Holland & Thayer (1988),
the studied item should be included in the sum that defines Z.

The standardization procedure is closely related to the MH procedure, and the two procedures
give results that are very similar (Dorans & Holland, 1993). The problems that affect the MH pro-
cedure also should affect the standardization procedure.

All OCI methods have two additional problems that must be considered in practice. First, bias
in the matching variable Z will reduce the accuracy of Z as a proxy for W This problem has been
known for some time (e.g., Van der Flier et al., 1984). It is not clear whether the presence of
biased items in Z will produce spurious indications of bias in studied items or whether it will mask
the bias in some items. The usual approach to this problem has been to iteratively purify Z by
successively removing biased items. The adequacy of this strategy, however, has not been thoroughly
investigated and warrants more attention.

The second problem concerns the adequacy of Z as a proxy for Y~ in general, apart from the
presence of bias in Z. oci methods rely on Z to control for group differences in ~ Recent theo-
retical work has shown that, in general, Z will be adequate as a proxy for W when Z is a sufficient
statistic for T~ (Meredith & Millsap, 1992; lVlillsap & Meredith, 1992; Zwick, 1990). In the item bias
case, if all items follow a Rasch model and Z is an unweighted total score including the studied
item, Z is a sufficient statistic for W. The total score Z is not sufficient for W under multiparameter
logistic models such as the 2PLM or the 3PLM. Under these models, OCI methods may falsely
indicate bias when the focal and reference groups are stochastically ordered on W This error is
especially likely in short tests (e.g., 20 items or less). In long tests, &dquo;near&dquo; sufficiency may be achieved
even under these models (Meredith & Millsap, 1992). The required test length is difficult to specify
generally, but could be determined using simulations.

One approach to achieving sufficiency for Z in relation to W is to expand Z to include information
on examinees that is external to the test, but is relevant to W In this case, Z could be a vector-valued
variable containing the total score on the test under study and other scores on tests that are alterna-
tive measures of W As more information is added to Z, the risk of including measures that are them-
selves biased may increase. This expansion strategy requires that unbiased external measures be
available, and this requirement may be difficult to fulfill in practice. Also, larger samples will
generally be needed to accommodate matching with a multivariate Z.

Although oci methods for dichotomous measures have received considerable attention, the
ordered-categorical case is less well understood. Two practical difficulties contribute to this situa-
tion. First, the larger number of categories results in many potential values for Z in moderate or
long tests. The contingency table that is produced after conditioning on Z will be sparse unless the
sample is large. Score categories for Z may be combined, but at the possible cost of reducing the
quality of Z as a proxy for 6~! The second problem is that bias can assume a variety of forms
in the ordered-categorical case. Complete uniform bias in every item score category is likely to be
the exception, rather than the rule. oci methods that are sensitive to nonuniform bias are needed
in this case.

Finally, the performance of oci methods under multidimensionality in W has not been studied.
Although OCI methods make no explicit assumptions concerning W, the use of a univariate Z carries
a tacit assumption of unidimensionality in W If W is multivariate, the univariate Z will ordinarily
not be a sufficient statistic for YT; and may be a poor proxy in general. It is surprising that this problem
has received no attention.
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UCI Methods

Three general VCI methods for detecting bias under unidimensional models for dichotomous
measures are now available: area methods, Wald statistics, and L,R tests. Prior to the use of any of
these methods, the problem of parameter linkage must be solved. This problem is solved implicitly
in the simultaneous estimation procedures that lead to 1,~ tests, provided that appropriate anchor
items are available. Iterative linking methods are preferred for area indexes and Wald statistics.

More research is needed to investigate the advantages of different linking methods. Once linkage
is achieved, both Wald statistics and I,1~ tests have firm statistical foundations for large samples. Not
enough is known~about their behavior in small or moderate samples. Simulation studies of this ques-
tion would be useful. One disadvantage of these methods is that they provide no easily interpretable
index of the size of the bias. Judgments of statistical significance are vulnerable to the effect of sam-
ple size.

Area measures can supply the needed indexes. Unweighted continuous area measures are comput-
ed easily. Although weighted measures should be useful in theory, the evidence to date has not demon-
strated their advantage over unweighted indexes. The choice between bounded or unbounded measures
remains unclear. At present, it appears that a useful uci strategy would generate either I,R or Wald

tests, with area measures used as indexes of the size of any bias found.
uci methods for bias detection in ordered-categorical data are still in the early stages of develop-

ment. Factor-analytic methods have progressed rapidly in the last decade. Both LISCOMP (Muth6n,
1987) and PRELIS/LISREL (.1&reg;reskog ~ S6rbom, 1989) offer flexible systems for bias investigations
using LR procedures. IRT models exist for ordered-categorical data, but these models have not yet
been used extensively for bias investigations. In such applications, Wald statistics or I,R tests are likely
to be used. More research on the development of area measures or other effect size indicators is needed
for the ordered-categorical case. The accuracy of bias detection using these models in practice has
not been investigated thoroughly. This is a fertile area for new research.

The sample size requirement for uci methods continues to be a practical problem. Developments
in the past decade in MMLE and Bayesian estimation methods have improved the situation to some
degree for IRT models (Mislevy & Stocking, 1987). Sample sizes that are adequate for estimation
within a single sample may be inadequate for between-sample statistical comparisons, however.
Parameter estimation within models for ordered-categorical data will usually require larger samples
than the dichotomous case. With few exceptions, bias investigation with uci methods remains a
large-sample enterprise.
A general problem affecting all uci methods is that of selecting the correct measurement model

for the relationship of Y to W Nearly all current Llc1 methods operate within parametric measure-
ment models. Meaningful group comparisons of parameters or response functions require that
adequate models are available for the groups under study. If the proposed model is inadequate, tests
of uci are likely to be confounded with tests of fit. Ideally, tests of uci should be conducted under
minimal assumptions about the form of the function relating Y to W The trend over the last decade
toward semiparametric or nonparametric modeling is encouraging and is likely to affect future
developments in bias detection.

Additional Issues

One aspect of model choice that is especially important in bias studies is the dimensionality of
GV Apart from the factor analytic applications, nearly all tlcl investigations to date have been con-
ducted with unidimensional models. Strict unidimensionality is likely to be violated in real data.
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Additional dimensions in YV are possible sources of bias. Recent work has incorporated this idea,
distinguishing between the intended or &dquo;target&dquo; latent variable tv, and additional &dquo;nuisance&dquo; latent
dimensions whose measurement is not the intended purpose for Y It is important to identify these
&dquo;nuisance&dquo; dimensions to help understand the sources of bias.

There is some confusion in the IRT literature concerning the so-called &dquo;invariance&dquo; properties of
item parameters in item response models. Parameter invariance or uci should be regarded as an em-
pirical question to be investigated, rather than a mathematical property that can be assumed to hold
generally across examinee populations. In the absence of any data on test performance in these
multiple populations, there is little that can be said about the invariance properties of parameters
in these models. The invariance properties only appear after the fit of the model has been evaluated
and uci has been tested directly.

Most measurement researchers regard measurement bias as an important practical and ethical
problem. It should be more widely recognized that measurement bias is an important scientific problem
as well. Studies of measurement bias provide empirical tests of construct interpretations. The
existence of bias in a given measure indicates that the constructs being measured are not fully under-
stood. Hence, studies of measurement bias should be encouraged as part of the general process of
construct validation, if for no other reason. The development of adequate methods for bias detec-
tion is, and will continue to be, an important scientific challenge.
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