
1

Methodology Review:
Analysis of Multitrait-Multimethod Matrices
Neal Schmitt

Michigan State University

Daniel M. Stults
Quaker Oats Company

Procedures for analyzing multitrait-multimethod
(MTMM) matrices are reviewed. Confirmatory factor
analysis (J&ouml;reskog, 1974) is presented as a general
model allowing evaluation of the discriminant and
convergent validity of MTMM matrices, both as a
whole and in individual trait-method units. However,
it is noted that this model is deficient with regard to
analysis of trait-method interactions of the type de-
scribed by Campbell and O’Connell (1967, 1982).
Composite direct product models described by Browne
(1984) are one possible solution to this problem. Fur-
ther, more systematic use of hypothesis testing regard-
ing convergent and discriminant validity in nested hi-
erarchical models is recommended (Widaman, 1985),
as well as the use of a procedure to cross-validate
models of MTMM matrices described by Cudeck and
Browne (1983).

Classical treatments of measurement error have

always been concerned with random error in the
measurement of social phenomena. In 1959,
Campbell and Fiske drew attention to nonrandom
error-that error which serves to increase the in-

tercorrelations of variables because of the prox-
imity in &dquo;time, space, or structure&dquo; with which

they are measured. Campbell and Fiske proposed
the use of a multitrait-multimethod matrix (MTMM)
to determine the extent of true relationship among
traits in the presence of both method variance and

random error. The purposes of this review are

1. To consider alternatives to the analyses of MTMM
matrices in light of this major purpose;

2. To review the literature which has proposed
and compared alternative approaches to the
analysis of MTMM analyses; and

3. To make some recommendations concerning
future analyses of MTMM matrices.

The Campbell-Fiske Criteria

A MTMM matrix consists of the intercorrelations
of more than one trait measured by more than one
method. The general form of the MTMM matrix is
illustrated in Table 1. In this matrix, the correla-
tions on the diagonal (c.g., r AlAI) are internal con-
sistency measures of reliability. The triangular sec-
tions along the diagonal consisting of correlations
among traits measured by a single method (e.g.,
r AIA2) are referred to as monomethod triangles. The
values that are underlined are correlations between

different measures of the same trait (e.g., rA,,~),
referred to collectively as validity diagonals. The
blocks bordering on the dotted lines containing cor-
relations among traits measured by different meth-
ods (e.g., rAIB2) are referred to as heterotrait-

heteromethod blocks (~~r~~).
Campbell and Fiske (1959, pp. 82-83) sug-

gested four criteria by which to evaluate MTMM
matrices: a

1. The values on the validity diagonal should be
statistically significant and large enough to
warrant further examination of validity.
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2. The values on the validity diagonal should be
higher than the HTHM values in the column
and row in which the individual validity value
is located.

3. The validity value must be higher than the off-
diagonal values in its monomethod triangle;
that is, a variable should correlate higher with
an independent effort to measure the same trait
than with other traits measured with the same

method.

4. The patterns of trait interrelationship should
be the same in all heterotrait triangles in both
monomethod and heteromethod blocks.

Early researchers were quick to point out three
problems with Campbell and p’iske9s proposals for
MTMM analysis. First, Campbell and Fiske had pro-
vided no method for quantifying the degree to which
criteria were met, hence judgments were neces-
sarily of a qualitative nature (Jackson, 1969). Sec-
ond, and perhaps more significant, various authors
pointed to the desirability of separating method
variance from random error. Campbell and Fiske
indicated that the evaluation of the MTMM corre-

lations must account for the reliabilities of the in-
dividual measures. If A2 in Table 1 is measured

with low reliability, then conclusions about the
method variance in A, and Ag may be inflated.
Jackson ( 1969) and Althauser and Heberlein (1970)

suggested correcting the MTMM matrix for atten-
uation due to unreliability. The third problem was
that the Campbell-Fiske criteria were incomplete.
Several authors (Althauser & Heberlein, 1970; Al-
win, 1974; Kalleberg & Kluegel, 1975; Krause,
1972) pointed out that implicit in the Campbell-
Fiske criteria were the assumptions that there are
no correlations between trait and method factors;
that all traits are equally influenced by method fac-
tors ; and that method factors are uncorrelated. As

noted below, the problem of intercorrelated trait
and method factors has continued to be a vexing
one (Campbell & O’Connell, 1967, 1982).
The next section outlines the various methods

which have been proposed to deal with some or all
of these three problems. However, the review of
research in which MTMM matrices were presented
indicated that at least half the studies simply re-
ported the matrix of intercorrelations and discussed
them in light of the Campbell-Fiske criteria out-
lined above.

Proposed Methods

Analysis of Variance of MTMM Matrices

Perhaps the most commonly used method of
summarizing a MTMM matrix is by means of an
analysis of variance (AGV) paradigm, proposed by
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Guilford (1954) and further developed and illus-
trated by Stanley (1961), Boruch and Wolins (1970),
and Boruch, Larkin, Wolins, and MacKinney
(1970). In an Aov model, each observed variable
is the sum of four components: e ( 1 ) a general factor
that underlies all measures of a person across traits
and methods; (2) a trait dimension on which all
measures identify the person as being superior or
inferior to her/his location on the general factor;
(3) a method factor that measures the extent to
which a particular measurement method gives higher
or lower scores on all traits to a particular person;
and (4) random error.
As the Aov model is usually applied (King,

Hunter, & Schmidt, 1980), a number of restrictive
assumptions are made. Each trait and method factor
is defined as of the factor and
independent of each other. Note that this inde-
pendence assumption precludes the estimation of
trait intercorrelations, method intercorrelations, or
trait-method intercorrelations. Further, because the
model is usually applied by averaging correlations
of different types (i.e., validity values, heterotrait-
monomethod [HTMM] values, ~&reg;n&reg;rncth&reg;d-hetcr~-
trait [MMHT] values, and HTHM values), it also as-
sumes that the variances of different trait and method
factors are equal. Further, the Stanley (1961) der-
ivations assume that persons, traits, and methods
are random factors. While this may be justifiable
in the case of persons, it would not be likely for
traits and methods in most applied measurement
situations.

These rather restrictive assumptions may or may
not prove to be a liability in any given application.
However, the most serious practical limitation is
that the AOV provides only a global estimate of
trait, method, and person variance and does not
allow the evaluation of individual trait-method units.

In some cases (e. g . , King et al., 1980), this sum-
mary measure is all that the researchers desired,
but in most applications the research objectives
include an evaluation of individual trait-method units.
A further limitation has been noted by Stanley (1961)
and King et al. (1980) and was alluded to above:
Any potential estimate of trait-method interactions
is impossible unless data collection is repeated. In
the absence of repeated measures, the interaction

of persons, traits, and methods serves as the error
term in Aov analyses.

King et al. (1980) presented a good example of
the use of the Aov approach. They were interested
in evaluating the degree of halo (method bias, in
Campbell-Fiske terms) in ratings for a forced-choice
rating instrument. Their MTMM matrix consisted of
ratings by five raters (methods) on four different
performance dimensions (traits). Following the for-
mulations of Stanley (1961), they computed the
averages of three different types of correlations in
the MTMM matrix:
i . ~-g9 which represents the average of correlations

in which the trait and rater were different,
referred to as HTHM values by Campbell and
Fiske (1959);

2. ~M, which represents the average of the cor-
relations between variables involving the same
method, or rater in this instance, referred to
as HTMM values by Campbell and ~^is~~9 and

3. ~T, which represents the average of the cor-
relations between variables involving the same
trait, referred to as ~&reg;n~tr~it-het~r&copy;~~th~d

(MTHM) values by Campbell and Fiske.
Stanley showed how these values can be related to
a three-way analysis of variance, that is, Persons
x Traits x Methods. The general factor is anal-
ogous to the person effect, the method or halo
factor to the Person x Method interaction, and the
trait effect to the Persons -- Trait interaction.

The calculations and results of the applications
of this model to one set of data from the King et al.
(1980) paper are presented in Table 2. The average
HTHM correlation was 29, he~ce the estimate of the
variance due to Persons (due to a general factor)
is 29. The average HTMM correlation was 52, so
the estimate of variance due to the halo or method
factor was 23 (52 - 29). Similarly, the variance
attributable to trait differences was computed by
subtracting the general component from the aver-
age MTHM value (42). The remaining variance is
attributable to a combination of the interactions of

Persons, Traits, and Methods, and measurement
error. When estimates of measurement error are

available, these two effects are separable; but in
most applications these two sources of variance are
confounded. This last variance component is also
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Table 2

Example of AOV Analysis of an MTMM Matrix

Note. Data are Time 1 figures from the King et al. (1980) study.
Because they had estimates of the reliability of their findings,
King et al. were able to separate the effect of measurement error
from the interaction between Persons, Methods, and Traits. In most

studies, these two components are not separable and are simply
considered error.

used as an error term to test the significance of the
Person, Trait, and Method effects (Stanley, 1961).

The AOV approach has been used by researchers
in a wide variety of contexts. Most frequent has
been its application in studying the &dquo;construct va-
lidity&dquo; of ratings (Lee, Malone, & Greco, 1981;
Roberts, Milich, Loney, & Caputo, 1981; Turnage
& Muchinsky, 1982). Data collected by measures
produced by different types of scaling procedures
have also frequently been evaluated by the AOV
procedure (Dickinson & Tice, 1977; Dickinson &

Zellinger, 1980; Freedman & Stumpf, 1978; John-
son, Smith, & Tucker, 1982; Schriesheim & DeNisi,
1980). Comparisons of different instruments meas-
uring similar traits using the AOV have been made
by several investigators (Mayes & Ganster, 1983;
Mellon & Crano, 1977; Tinsley & Kass, 1980).
Herzberger and Clare (1979) investigated hy-
potheses concerning attribution theory by compar-
ing observations of actors and observers in various
situations using the AOV summary measures.

Nonparametric Analysis of 1VIT’ Matrices:
The Generalized Proximity Function

Hubert and Baker (1978, 1979) proposed the
nonparametric equivalent of the AOV procedure as
a special variant of a generalized proximity func-
tion. The procedure begins, as does the AOV, with
the computation of three indices: (1) the average

of the same-trait correlations, or the validity di-
agonals in Campbell-Fiske terms; (2) the differ-
ence between the average of the same-trait corre-

lations and the average for different traits measured

under different methods; and (3) the difference be-
tween the average of the same-trait correlations and

the average of the same-method correlations.

Whereas the Aov approach uses the usual analysis
of variance F-tests to test the significance of trait
and method variance, Hubert and Baker developed
nonparametric significance tests. Another differ-
ence is that most users of the Aov approach have
been primarily interested in the variance accounted
for by traits and methods; the Hubert and Baker
focus is on the tests of significance.

Hubert and Baker (1978) began with the null
hypothesis that the MTMM matrix exhibits no pat-
terning of observations into methods or traits; that
is, the actual assignment of the tests to various
trait-method combinations was obtained by a ran-
dom-labeling process. Under this null hypothesis,
the expected value of the validity diagonal is equal
to the average off-diagonal correlation in the matrix
as a whole, and the expected values of the second
and third indices cited above are zero. Formulas
for the variance of these statistics are also pre-
sented. Tests of significance are computed either
with an exact test of the probability of a particular
patterning or by monte carlo simulation.
The Hubert-Baker approach is, like the Aov ap-
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proach, an intuitively appealing summary of the
entire MTMM matrix. Since their procedure employs
nonparametric notions, none of the usual assump-
tions regarding normality and homogeneity of var-
iance assumptions are necessary. However, prob-
lems of differential reliability of measurement and
trait-method intercorrelations are not addressed. As
with the AOV approach, the indices derived by Hu-
bert and Baker provide information regarding the
MTMM matrix as a whole rather than for each trait-

method unit. Further, a test of the patterning of
trait interrelationships (Campbell & Fiske’s fourth

criterion) remains to be developed.

Partial Correlations

An hypothesis regarding the failure of some cor-
relational data to meet MTMM criteria is that all data
across or within method are affected by leniency
(Schriesheim, 1981a, 1981b) or halo error (Holz-
bach, 1978). Since these factors inflate all corre-
lations in the MTMM matrix, they tend to mask any
evidence for discriminant validity which may exist.
Both of these authors developed measures of these
general &dquo;bias&dquo; factors and partialled their effects
out of the MTMM matrix prior to the assessment of
convergent and discriminant validity, using the Aov
method described above.

Schriesheim (1981b) examined the convergent
and discriminant validity of both the zero-order
correlation matrix and a first-order partial MTMM
correlation matrix, controlling for leniency as mea-
sured by a leniency scale (Schriesheim, 1981a).
Controlling for leniency resulted in relatively small
decreases in the size of the convergent validities,
but also gave fairly significant increases in the de-
gree to which Campbell-Fiske criteria for discrim-
inant validity were met. In performing the com-
parisons regarding the discriminant validity of the
zero-order correlation matrix and the partialled ma-
trix, Schriesheim simply counted the number of
times the three conditions for discriminant validity
were met. The use of partial correlations, then,
aided in identifying the unique trait variance or

discriminant validity, while producing little dec-
rement in assessed convergent validity.

Holzbach (1978) used a similar analysis in ex-

amining the convergent and discriminant validity
of performance ratings supplied by supervisors,
peers, and ratees themselves. An overall rating by
each of these three groups of raters was partialled
out of their ratings on six individual performance
dimensions. The assumption was that this global
assessment of the individual being rated repre-
sented halo.

Holzbach then analyzed both zero-order corre-
lation matrices and partial-correlation matrices us-
ing the AOV methods. Removal of the overall ef-
fectiveness variance failed to improve discriminant
validity overall, but did reduce the halo effect sub-
stantially for superior ratings. Intercorrelations

among traits for supervisor ratings decreased from
a mean of .62 to . .12. Applying the same procedure
to four previous studies of performance ratings,
Holzbach found that controlling for the overall ef-
fectiveness ratings resulted in a general lowering
of halo and convergent validity indices with little
effect on discriminant validity indices; thus dis-
criminant validity improved relative to halo and
convergent validity.

While Schriesheim’s and Holzbach’s analyses
are empirically correct, they are likely of limited
value for several reasons. First, the use of Aov or

counting rules on partial correlations contains the
same problems as Aov of zero-order MTMM mat-
rices. Second, the use of partial correlations de-
mands that the experimenter know that the focal
variables under investigation may be contaminated
by some other factor (such as leniency or social
desirability), and necessitates the development or
availability of an adequate measure of the biasing
factor to include in the instrumentation. Third, the
use of partial correlation techniques in this fashion
implies that all of the general factor variance in a
set of ratings is halo error rather than &dquo;true&dquo; var-

iance. This approach to rating errors has recently
generated a small controversy highlighting pre-

cisely this problem with the use of partial corre-
lations (Harvey, 1982; Hulin, 1982; Landy, Vance,
& Barnes-Farrell, 1982; Murphy, 1982).

Smallest Space Analysis

The Guttman-Lingoes smallest space analysis
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(SSA) procedure has been used to assess MTHM
matrices in at least one instance (Levin, Montag,
& Comrey, 1983). This nonparametric multidi-
mensional scaling (MDS) technique results in the
representation of variables in space, the correla-
tions serving as measures of distance. While the
procedure produces a goodness-of-fit test regarding
the degree to which the spatial representation of
the variables is useful in reproducing the correla-
tion matrix, it provides no quantitative detail re-
garding the degree to which measurements of a
given variable are the result of method of mea-
surement or the underlying hypothesized trait.

Interpretation of SSA involves a subjective analysis
of the degree to which various measures of the
same trait are or are not represented in similar parts
of a scattergram (Schlesinger & Guttman, 1969).

SSA adds little to the assessment of whether a

given MTMM matrix meets the criteria for conver-
gent and discriminant validity. While examination
of the representation of variables in space would
allow comparative statements about the degree to
which a variable seems to be more or less influ-
enced by a configuration of variables representing
a method or trait, it does not seem to the present
authors that it offers much more than a visual in-

spection of the correlation matrix would provide.
More generally, as a form of nonmetric MDS,

the use of SSA involves the removal of the first

general factor from a matrix of correlations (Dav-
ison, 1985) tin those cases which are likely to occur
most frequently. Further, the factors identified from
components analysis (if the first factor is not con-
sidered) are virtually identical to those arising from
MDS solutions. Since a general factor appears

prominently in many social science data collection
efforts, the use of SSA or other MDS methods will

greatly enhance the appearance of discriminant

ability. The choice between these techniques then
becomes a matter of whether the researcher be-
lieves that the general factor is substantively mean-
ingful or represents a response bias or methodo-
logical artifact. Treating a general factor as error
would be shortsighted if human abilities are to be
analyzed, but is more problematic in the area of
attitude measurement or performance evaluation.
(For a spirited exchange on this issue in the per-

formance evaluation area, see the aforementioned
series of papers by Harvey, 1982; Hulin, 1982;
Landy, Vance, & Barnes-Farrell, 1982; Murphy,
1982.) MDS methods cannot easily be used to choose
between alternative models of a MTMM matrix, and
do not allow for estimates of variance attributable

to various sources (trait or method or general fac-
tors) ; therefore, it appears that MDS techniques have
limited value in the analysis of MTMM matrices.

Exploratory Analyses of T Matrices

There were several early attempts (Golding &
Seidman, 1974; Jackson, 1969; Tucker, 1967) to
use factor or components analyses to assess con-
vergent and discriminant validity. These methods
are exploratory in the sense that a given measure
may have loadings on more than one (or all) trait
factors, and that one of the objectives of the anal-
yses is to see if some common factor solution can

explain measures collected with different methods.
These methods were frequently used in early anal-
yses of MTMM matrices (Schmitt et al., 1977), but
very little use has been made of exploratory anal-
yses in the last decade. Perhaps the major reason
why researchers have abandoned these methods is
that they are inconsistent with the Campbell-Fiske
criteria and logic. Correlating measures across dif-
ferent methods is done with confirmatory hy-
potheses in mind. The researcher is not interested
in discovering underlying factor structure, but rather
in confirming or disconfirming the existence of a
single a priori structure across various methods of
data collection.

Confirmatory Factor Analytic Model

A c&reg;nfirrriatory factor analytic (CPA) model which
allows evaluation of each trait-method unit was

presented by Werts and Linn (1970), who de-
scribed it as a special case of analysis of covariance
structures (Jbreskog, 1969, 1970). Earlier reviews
described the flexibility of the Werts-Linn approach
(Alwin, 1974; Schmitt, Coyle, & Saari, 1977), and
several examples of its use have been presented
(e.g., Kalleberg & Kluegel, 1975; Kenny, 1976;
Schmitt, 1978). This section describes the logic of
the technique and cites examples of its use in var-
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ious substantive areas. In a subsequent section CFA
is used as a general model by which to evaluate
MTMM matrices. Its advantages are highlighted and
some remaining problems (Browne, 1984; Wida-
man, 1985) are described, both in the use of CFA
and in the use of MTMM logic in general.
To employ the method suggested by Werts and

Linn (1970) and to analyze all potential hypotheses
regarding a MTMM matrix, a researcher must have
a minimum of three traits measured by three or
more methods. While this may appear to be a sig-
nificant limitation, the model can, with some more
restrictive assumptions, be used to test MTMM mat-
rices with smaller dimensions (e.g., Kenny, 1976).
Use of other methods applicable to smaller matrices
would necessitate the same assumptions whether
or not they are explicitly stated (Alwin, 1974).

In CFA analyses of MTMM matrices, the model
for each observed variable is comprised of three
components: a trait component, a method com-

ponent, and a random error component. Recall the
need for distinguishing between the random error
which is the concern of classical measurement the-

orists and the systematic error or method bias which
was the concern of Campbell and Fiske. In the
general model, trait and method factors may be

correlated while the random error associated with

each measured variable is uncorrelated with trait

or method factors. A diagram of this model is pre-
sented in Figure 1 and the parameters estimated by

the LISREL procedure (J6reskog & Sorbom, 1981)
are described in Table 3.

The values in Table 3A are factor loadings; those
in Table 3B represent the intercorrelations among
trait and method factors (because these are corre-
lations of the underlying or latent factors, they rep-
resent correlations between constructs measured
without error); and those in Table 3C are the unique
or random error components. Values of 0.0 and
1.0 are fixed by the researcher and represent her/
his hypotheses regarding the structure of the MTMM
matrix. Parameters which are free or estimated based

on the observed correlation matrix are numbered

consecutively in Table 3, and they total 42. Since
there are 45 (9 X 10/2) unique elements in the MTMM
matrix, three degrees of freedom are available to
test the appropriateness of the specified model.

While this is the smallest MTMM matrix for which
a full model can be tested, some restrictive as-

sumptions can be used to allow testing of smaller
matrices. For example, an absence of relationship
among trait and method factors might be specified,
which in the Table 3 model would involve fixing
parameters 22-27 and 29-31 at 0.0 (later, it will

be shown that these parameters produce estimation
problems as well). Alternatively, Alwin’s (1974)
characterization of the Campbell-Fiske criteria-
as indicating a lack of correlation among method
factors and among trait and method factors, and an

equivalent influence of method factors across traits

Figure 1
Illustration of Hypothesized Determinants of Nine Measured Variables Each Comprised of a Trait,

Method, and Random Error Component, All Traits and Methods Interrelated
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Table 3
Parameters Estimated in Confirmatory Analysis of MTMM

Matrix Depicted in Figure 1

Note. Xl through X9 indicate the nine measured variables; T1
though T3’ the three trait factors; M1 through M3, the three method

factors; 1.0 and 0.0 are fixed values; the numbers from 1 to 42
indicate values estimated by the program based on the observed MTMM
matrix.

assessed by that method-would involve fixing pa-
rameters 22-33 and specifying a single loading for
each method factor. This would gain 18 additional
degrees of freedom. Any or all of these restrictive
assumptions may be employed to test MTMM mat-
rices with less than three traits or methods if those
restrictive assumptions are substantially reason-
able.

The CFA approach has been discussed in path

analysis terms by Althauser (1974), Althauser and
Heberlein (1970), Althauser, Heberlein, and Scott
(1971), Alwin (1974), and Werts and Linn (1970);
but more frequently the confirmatory nature of the
strategy is obvious (Avison, 1978; Bagozzi, 1978,
1980; Jbreskog, 1971, 1974; Kalleberg & Kluegel,
1975; Kenny, 1976; Lee, 1980; Marsh & Hocevar,
1983; Schmitt, 1978; Schmitt, Coyle, & Saari, 1977;
Schmitt & Saari, 1978). The content areas in which
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applications have appeared are varied. Arora (1982)
and Bagozzi (1980) outlined the use of the ap-
proach in problems related to marketing research.
Convergent and discriminant validity of different
personality measures was investigated by Watkins
and Hattie (1981). The subject of the Schmitt and
Saari (1978) application was the perception of leader
behavior by self, supervisor, and subordinate
sources. A confirmatory analysis of a MTMM matrix
consisting of two measures of the self-concept of
secondary school students was presented by Marsh
and O’Neill (1984) as well as by Marsh and Ho-
cevar (1985), and a confirmatory analysis of col-
lege students’ responses to two forms of a leisure
activities questionnaire was the subject of a paper
by Tinsley and Kass (1980). Kalleberg and Kluegel
(1975) analyzed responses to different measures of
job motivation.

The analysis of attitudinal data presented by Wi-
daman (1985, Table 8) is used as an example of
the application of the technique and the type of
information it provides. The data were from a study
by Kothandapani (1971) in which the affective,
behavioral, and cognitive components of attitudes
toward churches were assessed using four different
attitude scaling approaches. In Table 4 these data
are presented in a format that replicates Table 3.
As in Table 3, each measured variable loads on a

single trait and a single method factor; other load-
ings were fixed at .00. As can be seen in Table 4
by examining the relative sizes of the trait and
factor loadings, several measured variables are

heavily influenced by a method factor. This is par-
ticularly true of the self ratings. The intercorrela-
tion of the trait and method factors indicates a rel-

atively high intercorrelation between the first and
second trait factors, but relatively low correlations
with the third trait factor and between all method

factors. Trait-method intercorrelations were set at

.00. Finally, Table 4C indicates that there are rel-
atively large unique components to some measured
variables, particularly those associated with the
Guttman technique and self ratings.
The confirmatory approach allows for estimation

of parameters, as indicated in Table 4, as well as
tests of their significance and the decomposition of
each bivariate correlation in the MTMM matrix into

a trait and method component. These topics are
treated in a later section of this paper in which a

general confirmatory model is discussed. While the
CFA model has some limitations (Widaman, 1985),
the present authors believe it to be the preferred
method of analyzing MTMM matrices.

Comparison of Methods
of Analyzing T Matrices

Since the Schmitt et al. (1977) review of MTMM
matrices, there have been numerous papers that
have compared an examination of the MTMM matrix
using Campbell-Fiske criteria with one of the meth-
ods described above; most frequently used have
been the Aov and CFA methods. Four papers have

compared alternative methods of analyzing MTMM
matrices.

Ray and Heeler (1975) compared (1) restricted
maximum likelihood factor analysis (J6reskog,
1969); (2) a clustering/nonmetric scaling method;
and (3) Jackson’s (1969) multimethod factor anal-
ysis. The MTMM matrix originally presented by
Campbell and Fiske (1959) was used as an ex-
ample. Ray and Heeler pointed out that analyses
of this matrix by J6reskog and by Boruch and Wol-
ins ( 197U) using the same technique led them to
different conclusions. Boruch and Wolins included

a general factor while Jdreskog did not. Boruch
and Wolins concluded that there were only four
distinguishable traits, while J6reskog retained the
five original traits, noting that one (&dquo;cheerful&dquo;)
was highly related to other traits. The Jackson (1969)
approach to this matrix yielded the conclusion that
all traits displayed substantial discriminant valid-
ity. The Campbell-Fiske interpretation of this ma-
trix was that there was reason to question the dis-
criminant and convergent validity of &dquo;unshakeable
poise&dquo; (in contrast to l3ort~ch and Wolins who
questioned the cheerful trait). The interpretation of
the clustering/nonmetric scaling technique was
consistent with the Campbell-Fiske interpretation.

Yet another analysis of these same data was con-
ducted by Ray and Heeler (1975). They used a
hierarchical clustering method which also indicated
four distinctive traits; unshakeable poise was not
identified as a separate trait. They found that staff
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ratings and teammate ratings produced very similar
information on the four distinctive trait clusters.

Comparisons of the application of the different
techniques and analyses led to the same conclusion
with respect to three traits, but the authors dis-
agreed about the distinctiveness of the cheerful and
unshakeable poise traits. Ray and Heeler used these
results to emphasize the inherent subjectivity of
evaluating MTMM matrices even when confirrnatory
analyses are employed. They recommended the use
of multiple techniques and the use of nonmetric
data as well as correlations in analyzing the con-
vergence of data collected with different metho-

dologies. They did not, however, suggest how in-
consistencies in such multiple analyses should be
resolved other than citing the preponderance of evi-
dence from a series of studies. This represents a

suggestion that results of MTMM analyses be cross-
validated, a topic treated in more depth below.
The Levin et al. (1983) study, discussed above

in connection with SSA, also compared smallest
space analysis with a varimax-rotated factor anal-
ysis of the MTMM matrix. There was substantial
agreement between the two procedures as applied
to the analysis of four personality constructs mea-
sured by the Comrey Personality Scales, the Eysenck
Personality Scales and the MMPI. Both procedures
led to the conclusion of substantial convergent and
discriminant validity. The present authors would
not predict similar results; nor would Davison (1985).
However, Levin et al. restricted their interpretation
to a two-factor solution (even though a three-factor
solution was indicated), which was also suggested
by the varimax rotation. As in many other com-
parisons, a series of subjective judgments of sim-
ilarity or dissimilarity is involved. Levin et al. also
indicated that special testing instructions de-

signed to minimize faking and social desirability
response sets were provided to respondents. These
instructions may have minimized the effect of the

general factor. 0
Lomax (1978) analyzed five MTMM matrices us-

ing CFA and Jackson’s (1975) revised multimethod
factor analysis. He called their use of CFA &dquo;ex-

ploratory&dquo; since four different models of each ma-

trix were evaluated. The five matrices varied in
terms of the degree to which they appeared to meet
the Campbell-Fiske criteria. Lomax found the

greatest agreement between analysis methods when
either all or none of the Campbell-Fiske criteria
were met. Disagreement across analysis methods
was greatest between a matrix presented by Levin
(1973), which was judged as having met only the
first of the Campbell-Fiske criteria, and a matrix
from Roshal, Frieze, and Wood (1971) which sup-
posedly met the first and fourth of the Campbell-
Fiske criteria. Lomax and Algina (1979) described
the comparisons of exploratory factor analysis and
Jackson’s multimethod factor analysis for these two
matrices. The models evaluated in their &dquo;explor-
atory&dquo; analyses included models in which (1) all
trait and method factors were correlated zero;

(2) correlations among trait factors were estimated,
but all others were zero; (3) correlations across trait
and method factors were constrained as zero, others
were estimated; and (4) all trait-method factors were
correlated (which represents the CFA model de-
scribed in Table 3).

For both sets of data, multimethod factor anal-

ysis indicated substantial convergent and discrim-
inant validity. Traits measured by different meth-
ods loaded on the same factor, and there was no
evidence of a method factor. For the Levin (1973)
data, two models seemed to be equally reasonable:
the third model described above, in which trait-
method correlations are constrained at zero, and

another model in which there were three intercor-

related method factors and a single trait factor.

Clearly, the latter model is more consistent with
the Campbell-Fiske interpretation of the Levin data;
namely, that only the first of the Campbell-Fiske
criteria were met. For the Roshal et al. ( 1971 ) data,
neither the third nor the fourth models converged
satisfactorily. A fifth model comprised of three
method factors and two trait factors (three were
intended) seemed to fit reasonably well. Even in
this instance, one of the three traits loaded only on
method factors. Again, this result is clearly incon-
sistent with the multimethod factor analysis which
seems to highlight, perhaps artifactually, the dis-
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tinctiveness of traits. In this respect, multimethod
factor analysis is similar to the SSA and partial
correlation methods described above.
Marsh and Hocevar (1983) compared Aov and

CFA analyses of student and self ratings of faculty
performance on nine dimensions. They concluded
that AOV provides convenient summary and statis-
tical tests of levels of convergent, discriminant,
and method effects, but that the Aov. effects are
not consistent with those given similar labels by
Campbell and Fiske. Marsh and Hocevar were not
specific as to what these inconsistencies are, but it
is important to note that most uses of the AOV
approach are not themselves consistent with the
approach as outlined by Stanley (1961). Compare,
for example, King et al. (1980) and Stanley with
Boruch et al. (1970) and Dickinson and Zellinger
(1980). To the present authors’ knowledge, only
the King et al. (1980) use of the Aov approach was
consistent with Stanley’s original formulation which,
on a matrix level, seems consistent with the Camp-
bell-Fiske criteria. Subsequent users of the Aov
approach would be well-advised to return to the
Stanley paper or to King et al. Marsh and Hocevar
(1983) do correctly point out that the AOV approach
does not allow analysis of trait-method interactions
due to the use of the three-way interaction as an
error term in the AOV. As stated above, both Stan-

ley (1961) and King et al. (1980) recommended
that the measures be replicated for each case within
a given study, thus providing independent esti-
mates of the three-way interaction (the method-trait
correlations) and the random error term.

The Marsh-Hocevar (1983) preference was clearly
CFA. They cited as significant advantages (1) the
ability to test various alternative models of the MTMM
matrix; (2) the use of underlying variables as op-
posed to observed variables, which circumvents the
reliability problem; and (3) the ability to separate
trait, method, and unique variance in each mea-
sure. They also mentioned the utility of testing
alternate models nested within a general model,
though their own analyses did not follow this for-
mat.

Comparisons of methods for the analysis of MTMM
matrices lead to several conclusions. First, the

methods yield different conclusions when the ma-
trix as a whole or the individual traits being mea-

sured are marginal in terms of the degree to which
they meet Campbell-Fiske criteria. When the
Campbell-Fiske criteria are relatively unambigu-
ously met or when there is no evidence of con-

vergent or discriminant validity, then most methods
of analyzing MTMM matrices yield identical con-
clusions. When there is conflicting or inconsistent
evidence regarding the degree to which Campbell-
Fiske criteria are met, then researchers using dif-
ferent methods of analysis are most likely to reach
different conclusions. Second, the major difference
among methods involves the degree to which con-
clusions regarding individual traits can be drawn,
in addition to conclusions regarding the matrix as
a whole. As an example, CFA allows both types of
conclusions, whereas an AOV approach provides
analysis only of the matrix as a whole. Third, even
those methods which are confirrnatory in nature
allow for a great deal of experimenter subjectivity
in deciding which model of the matrix is appro-
priate and which criteria for construct validity are
met. This is not necessarily bad; one experimenter
working in a given situation may realize that dis-
criminant or convergent validity is more important
than another experimenter whose research interests
are different. However, differences in conclusions
may also result from inefficient use of the power
of confirmatory analysis and a relatively nonsys-
tematic use of these procedures in analyzing MTMM
matrices. For example, the use of nested models
to test specific hypotheses about convergent and
divergent validity has been described (J6reskog,
1969, 1974), but frequently illustrations of the

technique have presented statistics regarding a va-
riety of models with little or no guidance as to the
implications to be drawn from these presentations
(Marsh & Hocevar, 1983; Schmitt, 1978).

Summary

Throughout the discussion of various methods
of analyzing MTMM matrices, two major questions
concerning the convergent and discriminant valid-
ity of a set of measures have recurred. Specifically,
1. In the MTMM matrix as a whole, does the tech-

nique allow for the evaluation of the impor-
tance of

a. trait-method interactions,
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b. method intercorrelations,
c. trait versus method factors?

2. Does the technique allow for the separation of
trait, method, and random variance in indi-
vidual trait-method units (i.e., measured var-
iables) ?

These major questions subsume the Campbell-Fiske
(1959) criteria. As is true of the use of all statistical
techniques, researchers have been interested in the
estimation of the relative size of parameters relating
to trait and method factors. They have also been
interested in testing hypotheses about traits, trait

interrelationships, and trait-method relationships.
In the last section of this paper, the use of the CFA

approach is presented as the most comprehensive
means of estimating and testing hypotheses related
to the two major questions cited above.

Confirmatory Factor Analysis as a General
1VI&reg;del to Evaluate TMNI Matrices

The CFA model posits that the MTMM matrix E
can be expressed as a function of common factors
as follows:

where A is the matrix of factor loadings (see Ta-
ble 3A),

is the matrix of correlations among fac-
tors (see Table 3B), and

is a diagonal matrix of unique factor var-
iances (see Table 3C).

As can be seen in Table 3, each measured variable
is expressed as a function of a trait factor, a method
factor, and some unique variance. Jbreskog (1969,
1971), assuming that the factor analytic model ex-
pressed in Equation 1 is appropriate and assuming
a multivariate normal distribution, developed max-
imum likelihood estimation procedures for all pa-
rameters in A, (b, and W. The following sections
outline how CFA allows for hypothesis testing as
well as estimating the size of method, trait, and
unique variance in providing answers to the two
questions posed at the end of the previous section.

Hypothesis Testing

In specifying a model of a MTMM matrix (as in

Table 3), a null hypothesis is expressed in each
case in which a parameter is left free to be esti-
mated. The significance of each of these parameters
is tested by calculating a z-ratio: the parameter es-
timate divided by its asymptotic standard error.
Those estimates with absolute values greater than
2.00 are considered significant beyond the .05 level.
In addition to these tests of the significance of in-
dividual parameter estimates, there is also a ~2 test
of the overall fit of the hypothesized model. This
x2 test involves a test of the significance of the
difference between the observed correlation matrix

(if the model were perfect it would completely ac-
count for these observed correlations) and the re-

produced correlation matrix. The reproduced ma-
trix is the one implied by the parameter estimates;
the mechanics of reproducing the matrix are de-
tailed below. The number of degrees of freedom
associated with this ~2 test is equal to the number
of independent elements in the correlation matrix
minus the number of parameters in the hypothe-
sized model. If the ~2 is significant, there is basis
for rejecting the model and evaluating a model that
includes more parameters.

Since this ~2 test is dependent on sample size,
models with relatively good fit may be rejected
when sample size is large. Consequently, there have
been recommendations that the theoretical and con-

ceptual appropriateness of the model be considered
(Browne, 1984, p. 153), as well as the X2/df ratio
(J6reskog & Sorbom, 19~1). The latter is then taken
as a goodness-of-fit measure. In addition, Bentler
and Bonett (1980) provided two goodness-of-fit
measures. These two practical tests of significance
were labeled rho and delta. Rho is a relative index

of the degree of off-diagonal covariation among
the observed variables which is explained by the
model. Specifically, rho is expressed as follows:

where N refers to a model with no hypothesized
relationships, or a null model, and S refers to the
model being evaluated. The goodness-of-fit of a
model, then, is relative to the degrees of freedom.
Delta is an absolute measure of fit in that it rep-
resents the proportion of off-diagonal covariation
accounted for in a model independent of the de-
grees of freedom. In formula terms,

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



14

Similar indices have been incorporated in recent
versions of LSSREL (Jbreskog & Sorbom, 1981),
the computer program usually used to obtain CFA.
A conventional rule of thumb is that p and A values
should exceled .9~ to permit the conclusion that a
model is acceptable (Bentler & Bonett, 1980; Tucker
& Lewis, 1973; Widaman, 1985).

These various goodness-of-fit indices and tests
of significance then provide tests of both the overall
model of a MTMM matrix plus tests of individual
variables, trait, method, and unique variance com-
ponents. Another set of questions normally ad-
dressed in evaluating a MTMM model is whether all
hypothesized method factors, trait factors, or method
and trait factor relationships need be included in a
model. For example, a researcher, after looking at
the results presented in Table 4, might decide to
compare that model with a model that includes only
two trait factors because T, and T2 were correlated
.61. The CFA approach provides a means of testing
the significance of the difference of these two models,
provided one model is nested within the other. Re-
cently, Widaman (1985) provided a critique of ear-
lier applications of these tests and provided a sys-
tematic array of structural models.
Widaman (1985) proposed to first identify the

model of best fit and then proceed to make com-
parisons of this best-fitting model with other models
nested within the best-fitting model, as a means of
testing various aspects of convergent and discrim-
inant validity. In systematically generating an array
of structural models, Widaman considered the re-

lationships among underlying trait factors and

method factors separately (in Table 3, the trait fac-
tor interrelationships are measured by parameters
28, 32, and 33). In each case, there are three pos-
sible structures: (1) no trait (or method) factors;
(2) trait (or method) factors with fixed intercorre-
lations : either 0, indicating a high level of discrim-
inant validity, or 1, indicating a total lack of dis-
criminant validity; and (3) trait (or method) factors
with freely estimated intercorrelations. The major
contribution of the Widaman critique of the use of
CFA was the observation that past applications of
the technique did not use it to full advantage in
testing hypotheses and evaluating the practical im-

plications or degree of fit of substantively important
models. His proposal for a systematic approach to
confirmatory analyses of MTMM matrices is briefly
outlined above. Widaman’s 3C model is apparently
the least restrictive model that is identifiable, and
would include estimation of all parameters listed
in Table 3 above with the exception of parameters
22-24, 25-27, and 29-31, which represent the
trait-method intercorrelations. The latter are fixed

at zero. The following restrictions provide tests of
convergent validity, discriminant validity, and
method bias for the matrix as a whole.

l. Comparison of this model with one in which
only correlated methods factors were present
would provide a test of convergent validity.
The difference in lhe x2 tests of fit associated
with these two models is itself distributed as
a )(2 with degrees of freedom equal to the dif-
ference in degrees of freedom associated with
the two models. In terms of the model de-
scribed in Table 3, the three trait factors would
be dropped. There would be no estimation of
trait factor loadings (of which there are 9), or
of trait intercorrelations (of which there are 3).
Hence, in this case, the test of convergent va-

lidity has twelve degrees of freedom.
2. Comparison of the full model with a model

that includes perfectly intercorrelated trait fac-
tors yields a test of discriminant validity for
the matrix as a whole. This comparison would
have three degrees of freedom for the matrix
presented in Table 3, as parameters 19-21
would be fixed at 1.0.

3. An overall test of method bias would be pro-
vided by comparing the fall model to one which
includes no method factors. As in the test for

convergent validity, this comparison would
yield 12 degrees of freedom as the method
factors, their loadings, and their intercorrela-
tions are eliminated.

Comparison of these models is facilitated by the
x2 tests, but perhaps most importantly by the in-
dices of degree of fit provided by Bentler and Bo-
nett (1980). While these three tests would be of
major initial interest to most researchers, additional
tests will almost always be suggested by the initial
analyses. For example, suppose the first compar-
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ison above results in a conclusion that significant
convergent validity exists (that is, a model with no
trait factors does not fit the data well compared to
the full model). However, examination of the trait
intercorrelations in the full model indicates that the

first two underlying traits are highly correlated. A
reasonable modification, then, might be a model
with two trait factors. There are obviously many
different possibilities, but these possibilities should
be explored in a systematic manner; Widaman (1985)
offers such a paradigm for organizing the inves-
tigation of MTMM matrices.
Widaman’s suggestion that the hypothesis test-

ing stage begin after identification of a reasonable
model, as opposed to comparisons with the least
restrictive model, may also be helpful. Browne
(1984) noted that models providing good fit to a

particular data set often include what he terms
&dquo;wastebasket&dquo; parameters. He cited two instances:
the Jbreskog (1974) analysis of the Campbell-Fiske
data, and the Schmitt (1978) analysis of the Ostrom
(1969) data. To avoid the inclusion of these pa-
rameters, Browne encouraged an examination of
the practical meaningfulness of parameters in models
even if they fit well, and the use of an empirical
cross-validation of models of MTMM matrices.

Obviously, as various hypotheses regarding a
MTMM matrix are evaluated, the procedure be-
comes more exploratory than confirmatory; in fact,
Ray and Heeler (1975) titled their use of the con-
firmatory procedures described here &dquo;explora-
tory.&dquo; A best-fitting model discovered by this pro-
cess should be confirmed with additional independent
data collection efforts or the cross-validation pro-
cedure suggested by Cudeck and Browne (1983).
This cross-validation procedure represents a new
development and is discussed more fully below.

Estimation of Trait and Method Effects

As indicated above, parameters are estimated via
maximum likelihood procedures detailed by J6res-
kog (1969, 1971). The results of CFA provide the
data by which to evaluate the size of the effect of
hypothesized trait, method, and unique factors. Us-
ing the parameter estimates, such as those pre-
sented in Table 4, each bivariate correlation can
be decomposed.

Widaman (1985) alluded to the advantages of
CFA in the decomposition of the variance of indi-
vidual measured variables and to the decomposition
of individual correlations in a MTMM matrix. These

advantages provide significant information to a re-
searcher interested in assessing particular measured
variables. It is important to repeat that the decom-
positions suggested here assume an absence of trait-
method correlations. Suppose a researcher is in-

terested in assessing the degree to which individual
differences in the first measured variable (X,) in
Table 3 are due to trait, method, and unique var-
iance. The trait variance would be estimated by
squaring the first parameter in Table 3 (the factor
loading &reg;f Xl on T,). The method variance would
be estimated by squaring parameter 2 (the factor
loading of Xi on Ml). The unique variance asso-
ciated with X, would be estimated by squaring pa-
rameter 34 (without trait-method intercorrelations,
this would be parameter 25). Similar decomposi-
tions of the variance of each measured variable

would allow an investigator to draw conclusions
about individual measures in the MTMM matrix. 0

Individual correlations between measured vari-

ables can also be decomposed to provide assess-
ment of the degree to which correlations result from
common trait or method variance. Schmitt (1978)
provided examples of the decomposition of MTHM
correlations, HTMM correlations, and HTHM cor-
relations, but his examples included provision for
trait-method correlations. Figure 2 provides ex-

amples of such decomposition for the three types
of correlations in a MTMM matrix. Correlations be-

tween measured variables are the sums of the prod-
ucts of the parameters associated with hypothetical
paths connecting the two measured variables. So,
for a HTHM correlation, the intercorrelation due to
common trait variance is a product of the factor
loadings of the measured variables on the traits

involved and the intercorrelation of the traits. Sim-

ilarly, the intercorrelation due to common method
variance is a product of the factor loadings of each
measured variable on appropriate method factors
and the intercorrelation of the two method factors.
The sum of the common trait and method corre-

lation is the value of the HTHM correlation sug-

gested by the model representing the MTMM matrix.
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Figure 2
Examples of the Decomposition of Monotrait-Heteromethod Correlations,

Heterotrait-Monomethod Correlations, and Heterotrait-Heteromethod Correlations
(Numbers in Parentheses in the Diagrams are the Parameter Estimates as Designated in Table 2)

Applying these formulas to the data presented
in Table 4 and reproducing the correlation between
X, and X4 would yield the following:

The fact that Xl and X, index the same trait ac-
counted for most (.646) of the reproduced corre-
lation between these two variables, while method
variance accounted for a small portion (.014). The
observed correlation in this instance (see Kothan-

dapani, 1971) was .58, so the model overestimated
the correlation by .08. Variance in X, itself is pri-
marily due to the trait factor (.712 = 50%) and the
uniqueness associated with this measured variable
(.742 = 49%), while method variance played a
minimal role (.17z = 3%). Given that the latter
three are independent sources of variance, they
should equal 100%; in this case, rounding error
produced a slightly larger figure. Given the appro-
priateness of the model, estimates of the influence
of trait, method, and unique factors are available
for each measured variable and for each correlation

in the MTMM matrix.

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



17

Remaining Problems s
and New Developments

In terms of the general model outlined at the
beginning of this paper, CFA as operationalized via
LISREL (J6reskog & Sorbom, 1981) has one defi-
ciency : Trait-method correlations cannot be eval-
uated. One potential solution to this problem has
been developed by Browne (1984). A second prob-
lem with CFA is that the search for an appropriate
model of a MTMM matrix means that CFA, as em-

ployed in most instances, becomes more explora-
tory than confirmatory. A cross-validation of MTHM
models has recently been suggested by Cudeck and
Browne (1983). A final problem is that tests of the
significance of some parts of a model may be per-
formed in two different ways (against a null hy-
pothesis of r = .00 or ~- = 1.00), both of which
may be of minimal interest to researchers interested
in the actual population value. In this respect, meta-
analyses of the substantial MTMM literature may be
helpful.

Trait-method correlations. One important dif-
ference between Widaman’s (1985) proposal and
the outline of the confirmatory model given in Ta-
ble 3 and Figure 1 is that Widaman does not pro-
pose the estimation of correlations among trait and
method factors. Widaman cites personal commu-
nication with J6reskog and Bentler in making the
case that these intercorrelations present logical and
empirical problems. Support for the contention that
estimation of these parameters produces an iden-
tification problem is evident in various applications
of CFA using ~,~s~t~~. (Kalleberg & Kluegel, 1975;
Lee, 1980; Marsh & Hocevar, 1983; Watkins &
Hattie, 1981). These applications have resulted in
factor loadings which exceed 1.00; the presence of
Heywood cases, in which estimates of unique var-
iance are near zero (indicating total lack of mea-
surement error); and very large standard errors for
some parameters resulting from the high intercor-
relation of the parameter estimates.
The possibility that trait-method intercorrela-

tions exist was first suggested by Campbell and
O’Connell (1967). They presented evidence that
method factors may interact in a specific multipli-
cative way with trait factors: The higher the basic
relationship between two traits, the more that re-

lationship is increased when the method is shared.
On the other hand, when two traits are basically
independent, their correlation, even when mea-
sured by the same method, is still zero. Returning
to this problem, Campbell and O’Connell (1982)
used autoregressive time series models to investi-
gate the hypothesis that differences in method at-
tenuate relationships which are more clearly evi-
dent when method is held constant than when cross-
method correlations are examined. Traditional be-

lief is that some method correlations are inflated
above true values more appropriately shown in cross-
method comparisons. Campbell and O’Connell
provide evidence for a trait-method interaction, and
indicate that support for an augmentation model is
best. That is, correlated error or method bias tends
to exaggerate correlations between the more highly
correlated traits. The major point, however, is that
there is evidence that method-trait correlations ex-

ist.

Recently, Browne (1984) made a similar point
concerning existing models of MTMM matrices and
proposed a new ’ ’composite direct product model’’
with a multiplicative property. The usual factor
analysis model is an additive one; Browne posited
that the appropriate expression of a covariance ma-
trix of observed measures is the product of the
method factors and the trait factors. Browne’s hy-
pothesis is that methods act to enhance or dampen
the expression of particular traits. The formulas for
estimation of parameters in this composite direct
product model are in Browne (1984, pp. 13-14).
He presented an analysis of the Campbell-Fiske
(1959) Table 12, which resulted in a reasonable
and interpretable summary of the data in that table,
even though a significance test indicated a lack of
fit. By contrast, Browne pointed to the results of
J6reskog’s (1974) analysis of the same data, in

which inclusion of method factors was necessary
to provide a reasonably fitting model even though
parameters associated with these method factors
made little interpretive sense. Browne also pointed
out that his direct product model is mathematically
equivalent to Tucker’s (1966) three-mode factor
analysis. Interestingly, since the Schmitt et al. (1977)
presentation of methods of analyzing MTMM mat-
rices, the authors are aware of no further use of
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Tucker’s multimode analysis for this purpose. Fu-
ture widespread use of Browne’s composite direct
product model is, of course, dependent on the
availability of computer software.
Widaman (1985) has clearly pointed to a poten-

tially important deficiency in the analysis of MTMM
matrices. More empirical work regarding the prac-
tical importance of trait-method interactions and
trait-method correlations seems warranted. Finally,
it should be noted, as it has been elsewhere (e.g.,
Marsh & Hocevar, 1983; Schmitt, 1978; Widaman,
1985), that assuming trait-method correlations (if
this represents a reasonable position) to be zero
facilitates the interpretation of MTMM matrices. This,
of course, was true of the calculations presented
above as well. Each measured variable can be rep-
resented as a function of three independent sources
of variance: trait, method, and random variance.

Cross-validation of MTMM models. As indi-

cated above, most modeling attempts involve con-
siderable trimming and respecifying before an ad-
equate fit is produced. This makes the whole process
exploratory and necessitates that attention be di-
rected to cross-validation of these models. Cudeck

and Browne (1983) have developed a technique to
accomplish cross-validation of competing models.
This cross-validation of models of the MTMM ma-

trix involves the following steps: (1) computation
of covariance matrices from two samples, a cali-
bration and cross-validation sample; (2) estimation
of model parameters in a calibration sample;
(3) computation of the reproduced covariance ma-
trix based on these parameter estimates; and
(4) comparison of the reproduced covariance ma-
trix with the cross-validation sample covariance
matrix.

The reproduced covariance matrix is obtained by
minimizing the discrepancy function associated with
the maximum Wishart likelihood estimates (see
Browne, 1984, Equation 6.3; or Schmitt, 1978,
Equation 2). The cross-validation index is com-
puted using the sample covariance matrix from the
cross-validation sample and the reproduced co-
variance matrix from the calibration sample, and
computing the discrepancy function. This process
is equivalent to cross-validation of linear regres-
sion, in which regression weights are obtained in

a calibration sample by minimizing the sum of
squares as a discrepancy function.
The cross-validation is carried out by evaluating

the residual sum of squares in the cross-validation

sample using the calibration sample weights. When
there is no &dquo;shrinkage&dquo; from calibration sample
to cross-validation sample, an identical residual sum
of squares is expected. The degree to which the
residual sum of squares is larger in the cross-val-
idation sample than it was in the calibration sample
represents the degree to which a regression equa-
tion represents a poor model of the linear relation-

ship between predictors and criterion.
Tests of significance versus estimates of rela-

tionships. Some tests of significance for individ-
ual parameters which are possible using CFA may
not be particularly important. For example, if a
researcher is interested in the relationships among
the trait factors (see Table 3B), he/she is asking
questions concerning discriminant validity. Wi-
daman (1985), among others, points out that two
&dquo;tests of significance&dquo; are possible in this instance.
First, the hypothesis that the estimates of intercor-
relation between underlying factors are signifi-
cantly greater than zero can be tested. This is con-
sistent with the assertion that a conclusion of

discriminant validity means that all trait relation-
ships are nonsignificantly different from zero. Al-
tematively, the hypothesis that all trait interrela-
tionships are nonsignificantly different from 1.00
can be evaluated. It may be concluded that dis-

criminant validity exists when estimates of the trait
correlations were two or more standard errors be-
low 1.0.
Most researchers, however, are more interested

in the degree of relationship between underlying
traits than in tests of significance. For at least some
trait interrelationships, as well as relationships be-
tween different methods of data collection, it may
be appropriate to resort to meta-analyses (Hunter,
Schmidt, & Jackson, 1982) of existing data to gen-
erate estimates of these parameters. Relationships
between affective, behavior, and cognitive com-
ponents of attitude have likely been investigated in
dozens of studies. Cumulating these studies may
result in reasonably good estimates of these inter-
relationships. These estimates could then be used
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as fixed values in subsequent research, or they could
be used as the value against which to test signifi-
cance of a particular sample relationship.

King et al. (1980) provided an example of such
a meta-analysis. They were interested in the degree
of trait, method or halo, and general factor variance
in performance ratings, and reviewed the results
of eleven different studies which provided multi-
trait-multirater matrices. They reanalyzed the data
from these studies using the Aov approach and
found that, on the average, 30% of the variance in
ratings was accounted for by halo (which was their
primary interest).

Summary and Conclusions

Various procedures (primarily those presented
in the last decade) designed to analyze MTMM mat-
rices have been reviewed. Since a similar review

in 1977 (Schmitt metal., 1977), three new ap-
proaches to the analysis of MTMM matrices have
been presented: smallest space analysis (Levin et al.,
1983); a nonparametric approach (Hubert & Baker,
1978, 1979); and a composite direct product model
(Browne, 1984). Most frequently used in the anal-
yses of MTMM matrices have been the Aov ap-
proach (Stanley, 1961 ) and the CFA approach sug-
gested by J6reskog (1974). Earlier exploratory factor
analysis techniques (~&reg;lding ~ Seidman, 1974;
Jackson, 1969, 1975; Tucker, 1967) seem to have
been discarded.
The present authors have a strong preference for

the analysis of MTMM matrices by the use of CFA.
Explaining MTMM matrices on the basis of under-
lying factors solves the differential reliability of
measurement problem cited by early critics of

Campbell-Fiske criteria. This approach also allows
for the evaluation of convergent and discriminant

validity hypotheses at both the matrix and individ-
ual measure level. Further, it provides both statis-
tical tests of hypotheses (when hierarchically nested
models are used) and goodness-of-fit indices. Use
of CFA should be greatly facilitated by Widaman’s
(1985) paper in which an array of hierarchically
nested models is described.
A technique used to compute a cross-validation

index for models of MTMM matrices was described

and should prove useful. In addition, meta-analyses
of some frequently investigated relationships should
be conducted so as to provide more definitive an-
swers concerning the convergent and discriminant
validity of widely investigated relationships.
At least one significant problem in the analysis

of MTMM matrices is not addressed by the CFA
approach: evaluation of trait-method interactions
(Campbell & &reg;’Co~nell9 1967). A recent proposal
by Browne (1984) to use models he termed com-
posite direct product models may be useful in this
regard, as may be the Tucker (1966) multimode
factor analysis procedure. Probably because the an-
alytical tools to address the problem have not been
available, not much is known about the empirical
nature or practical importance of these interactions.
Recent work on this problem by Campbell- and
0’Council (1982) resulted in the tentative conclu-
sion that correlated error exaggerates the correla-
tion between highly correlated traits relative to traits
whose correlation is comparatively low.

Future research regarding the existence and im-
portance of the trait-method interaction and trait-
method intercorrelation problems may benefit from
the use of monte carlo simulations. Various meth-
ods of analysis of MTMM matrices with known
structure could be compared on the basis of whether
or not appropriate conclusions were drawn.
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